

1 -

RHESSI AND FUTURE MEASUREMENTS OF GRB POLARIZATION

W. Hajdas on behalf of PSI RHESSI team and POLAR collaboration PSI, Villigen, Switzerland

Warszawa, Astro-PF, 4-6 Oct 06

HW15

RHESSI SATELLITE

- The Rouven Ramaty High Energy Solar Spectroscopic Imager
- **Goal:** Spectroscopy and Images of Solar Flares SF in X- and γ -rays
- Launch: 5th February 2002 as NASA SMEX mission, 2 years, extended +5 ٠

GSFC **UCB** PSI

- Orientation: points toward the sun and rotates period of 4 s ٠
- Orbit and Inclination: Low Earth 588 km, 38 deg ٠
- Instruments: Imager/Telescope, Ge-Spectrometer ٠
- **Data acquisition:** event by event; photon energy, time, detector No. •

See R.Lin et al., Sol. Phys., 2002

Warszawa, Astro-PF, 4-6 Oct 06

PSI, RHESSI SUBSYSTEMS and DBASE

- PSI HW contribution
 - Solar and Roll Aspect Systems SAS, RAS
 - Telescope trays and tube
 - Twist Monitoring System TMS
- PIF Qualification COTS mission oriented
 - 10 krad total dose TID- no damage
 - SEU cross section small
 - SEL protection circuit
- Satellite Mass Model (except Ge-spectr.) and MC
 - off-axis response functions for NS science
 - atmospheric scattering
 - maintains RHESSI GRB web

GERMANIUM SPECTROMETER

- 9 hyper-pure, cylinder-like Ge-detectors
- Size: ϕ = 7.1 cm, h = 8.5 cm, operation at 75 K
- Segments: front (1.5 cm) and rear (7.0 cm)
- Only thin side shield of Ta-Sn-Fe stack (2 mm)
- Transmission grids from front (50%)
- Effective area up to 200 cm² at 200 keV.
- Energy range 3 keV 20 MeV
- ΔE ≈ 3 keV ; Δt = 1 μsec

See D.Smith et al., Sol. Phys., 2002

RHESSI AS GRB DETECTOR

- Photons with E>25 keV can enter from the side
- Photons with E>100 keV enter from all directions
- Excellent for detection of Gamma Ray Bursts GRB
- Large field of view ($\approx 2\pi$), large volume (\sim SPI INTEGRAL)
- 376 GRB observed until March 2006
- Typical detection rate: 1-2 per week
- Active area depends on GRB direction (A_{eff}≈150 cm²)
- See online catalogue http://grb.web.psi.ch

بے ا

HW15

_1

GRB DETECTIONS vs. MISSION

γ-RAY POLARIZATION MEASUREMENTS

(based on numerous M. McConnell presentations)

Utilizes Compton scattering; photons scatter at right angles to initial polarization vector;

PAUL SCHERRER INSTITUT

 $\boldsymbol{\theta}$ - Compton Scatter Angle

 η - Azimuthal Scatter Angle

HW15

Signature from distribution in azimuth scatter angle $C(\eta) = A \cos 2(\eta - \varphi) + B$

Modulation Factor for 100% polarization defines polarimeter: $\mu = \frac{C_{\text{max}} - C_{\text{min}}}{C_{\text{max}} + C_{\text{min}}}$

Instrument determines level of polarization as $P = \frac{\mu_P}{\mu_{100}} = \frac{1}{\mu_{100}} \left(\frac{C_{\max}(P) - C_{\min}(P)}{C_{\max}(P) + C_{\min}(P)} \right)$

Minimum Detectable Polarization for instrument is a function of: S, B: source and background rate, T: observation time, μ_{100} : Modulation Factor $MDP = \frac{n_{\sigma}}{\mu_{100}S}\sqrt{\frac{S+B}{T}}$

$$\mu = \frac{1}{C_{\max} + C_{\min}} = \frac{1}{1}$$

$$d\sigma = \frac{r_o^2}{2} d\Omega \left(\frac{E'}{E_o}\right)^2 \left(\frac{E_o}{E'} + \frac{E'}{E_o} - 2\sin^2\theta\cos^2\eta\right)$$

Α

RHESSI AS PASSIVE POLARIMETER

- Scatterer Be-block looking at the Sun
- Used for 20 keV < E < 80 keV
- Nearby detectors measure scattered radiation
- Only rear segments used
- Spacecraft rotation samples angular scattering distribution
- Large modulation factors and figure of merit
- Big and variable background from Earth scattered photons

PAUL SCHERRER INSTITUT

RHESSI AS COINCIDENCE POLARIMETER

- For higher energies the scattering medium is one of the Ge detectors
- Another, close detector measures distribution of scattered radiation
- Rotation of the spacecraft provides sampling of the scatter distribution
- Large modulation factors feasible for near axis GRBs (front and rear)
- 18 detector pairs favorable for coincidence measurements (out of 36 combinations)

PAUL SCHERRER INSTITUT

RHESSI POLARIMETRIC CAPABILITIES

		~ -	Modulation Factor μ ₁₀₀	
Event type	GRB	<u> </u>	0.9	
Energy (keV)	100-1000	100-350	$0.4 - \mathbf$	-
Power index (1)	2	3	E 0.3	
Polar angle (deg)	20	0		-
Fluence (erg/cm ²)	2.0·10 ⁻⁴	1.2·10 ⁻³	-2.0 gringi	-
Duration (s)	1	200	Š 0.1-	-
Area single (cm ²)	177	282	0.0	
Area coinc. (cm ²)	2.19	0.698	0 200 400 600 800 1000 Energy (keV)	
Mod. Factor (%)	14.6	31.7	Effective Area	·
Signal events	1308	4165	$ GRB \text{ at } \Theta=20^{\circ}$ $ SF \text{ at } \Theta=0^{\circ}$	
Background	64	4420	6- SGR at Θ=5°	-
Accidentals	1180	512	ea (cu	1
$MDP_{1\sigma}$ (%)	35.	10.		
				-
mber of events for 1	σ MDP=40%	is ca 1000,		-
ce Feb 2002 RHESSI detected 3 such GRBs				

10

Warszawa, Astro-PF, 4-6 Oct 06

Energy (keV)

- HW15

Nu

Sir

_

CASE OF THE GRB021206 EVENT

letter to nature, Nature, 22 May 2003 W. Coburn & St. E.Boggs, SSL Berkeley "Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002"

Analysis of RHESSI data

Linear polarization detected with a C.L. of 5.7σ polarization degree is $P_{lin} = 80 \pm 20\%$

Huge impact on GRB theories but other papers revealed errors in analysis

REANALYSIS OF THE GRB021206:

Wigger et al, ApJ2004

Cuts applied:

- Energy
- Close-pairs
- Coincidence time
- Kinematical
- No-multiples

accidental coincidences: N_acc = 1081

background coincidences: N_BG = 290

Compton scattering candidates: $N_C = N_{tot} - N_{acc} - N_BG$ $N_C = 770$ ∆t = 4.10 s, N_tot = 2141

OTHER GRB POLARIZATION CANDIDATES

GRB 030329 (SN)

 $N_{tot} = 1587$ $N_{acc} = 166$ $N_{BG} = 984$ $N_{C} = 437 \pm 46$

GRB 030519B

N_tot = 1249 N_acc = 136 N_BG = 524 N_C = 589 ± 39

POLARIZATION MEASUREMENT STATUS

- Polarization observations in γ -rays were mostly neglected
- Many missions had difficulties with unambiguous measurements
- Recent reports of high polarization in GRB (RHESSI) alerted the community
- Also INTEGRAL SPI results reached ∏ ≈ 100% for GRB041219a; see E.Kalemci et al. or S.McBreen et al., Moscow and Venice Workshops 2006
- BATSE analysis of Earth scattered photons found Π > 35% for GRB930131 and Π > 50% for GRB960924; see D.R. Willis et al.
- CORONAS-F reported single case of Π > 70% (60 keV < E < 100keV) in Solar Flares from 29 Oct 2003; see Zhitnik et al.
- Large set of observations, with energy and time dependence, is needed
- Several new polarimeters are being studied and constructed

14

GRB POLARIZATION LEVELS IN THEORY

- Fireball Model high values excluded $\Pi_{\rm lin} \sim 10-20~\%$
- Cannonball Model full range possible $\Pi_{lin} = 0 - 100\%$
- Electromagnetic Model well defined, moderate Π_{lin} ~ 50 %
- To pin down the model large sample of bursts needed

EM-driven & MHD FIREBALL CANNONBALL B-field IC Synchrotron $\Delta \theta \ll 1/\Gamma$ $\Delta \theta \sim 1 >> 1/\Gamma$ < 1/L) $\theta_{ob}^{} \sim 1/\Gamma \Big\} nonstandard$ θ _{ob~} 1/Γ ob – any Π_{\max} 100% $\Pi ~ 50\%$ max 35% ~ 10 $^{-4}$ ~ 10 Chance ~ 1 No scatter in θ Γ~ are the same Rest frame Γ, 2-D random Γ_2' From M.Lyutikov, 2003

See papers discussing various models: T.Piran, A.Dar, M.Lyutikov, D.Eichler, G.Ghisellini, D.Lazzatti, M.Medvedev, E.Rossi etc.

DETECTOR REQUIREMENTS

- Simple measurement of polarization with compact instrument
- Large area, large modulation factor and large field of view
- Optimized specially for GRB observations
- Relies on given burst position and spectrum (GCN / IPN, extra det.)
- Utilizes large angle Compton scattering and tolerates the small one
- Signal to background ratio carefully studied and optimized
- Measurements of CRAB etc. if S/C pointing stabilized

POLARIMETERS UNDER DEVELOPMENT

GRAPE Gamma Ray Polarization Experiment: Low Z - high Z hybrid, 50-300 keV; last ver. AC; M.McConnell et al., balloon flight next summer

PoGO Polarized Gamma-ray Observer: phoswich of slow-fast units with AC, 30-100 keV; T.Mizuno et al., designed for balloon flight

SGD Soft Gamma-ray Detector: Compton telescope of Si-strips and CdTe pixels and AC, E<300 keV; H.Tajima et al., planned for NeXT mission

CIPHER Coded Imager and Polarimeter for High Energy Radiation: CdTe array, E<1 MeV; R.Curado da Silva, follower of CACTμS, planned for LobsterEye, SRG-II (?)

See other polarimeter projects e.g. SPIE, Orland'06 or COSPAR, Beijing'06!

POLAR DETECTOR

- 48x48 uniform scintillator array (scalable)
- Light, fast and low-Z plastic e.g. BC400
- Bar dimension 6x6x200 mm³; fits new MAPM H8500
- Optical insulation and thin (≈ 1 mm) carbon fiber outside cover
- No active shielding; though outer layers can be used if needed

See Produit et al., NIM 2005, Hajdas et al., SPIE 2006

RESPONSE and TRIGGER CONCEPT

- Intensive GEANT4 MC modeling
- Threshold set at E_{min} = 5 keV
- Trigger activation: at least 2 channels
- Selection of two highest E deposits
- Reacting pixels define geometry
- Fit function:

HW15

N=A·cos(2(ξ - ξ_0)+ $\frac{1}{2}\pi$)+B

Clear modulation signal

MODULATION FACTOR

- Peak μ_{100} reaches about 40%
- High plateau between 100 and 250 keV;
- Lower energy threshold around 35 keV; no limits for higher one
- Constant values kept up to θ_{γ} = 30° for off-axis GRB
- 30% sky coverage possible
- μ₁₀₀ values comparable with other polarimeters

HW15

-

HW15

AFFECTIVE AREA and MDP

- Maximum effective area ε·A = A_{eff} ≈ 160 cm² for 6x6 mm² bars and Band-like spectrum (22% total area)
- MDP = $n_{\sigma} / \mu_{100} S \cdot \sqrt{(S+B)/T}$
- For E = $10^{-5} \text{ erg/cm}^2 \rightarrow \text{MDP}_{3\sigma} \approx 10\%$
- Several such measurements per year !

HW15

TESTS WITH 8x8 MAPMT

- Single modules assembly with 6x6x200 mm³ BC400 plastics
- Teflon coating and AI foil isolation of each bar
- Coupling to H8500 8x8 MAPM (pitch 6 mm, anode size 5.8 mm)
- Mono-energetic fluorescence sources exposures (6-44 keV)
- Amplitude attenuation by 20% along bar length
- Threshold 5 keV feasible

ONGOING: FAST, SLS and DM

- FAST equipment ideal for POLAR tests
- Detector equivalent to smaller POLAR:
 12.8 x 19.2 x 20 cm³ scintillator array
 1536 BC400 bars (4 x 4 x 200 mm³)
 96 H6568 MAPM
- DAQ: FD, TAC, event-by-event; polarized γ-rays, beam time Oct 06
- PSI SLS synchrotron with polarized γ -rays
- Various energies up to many tens keV
- Prototype demonstration model DM with 8x8 pixels construction at PSI (DL December 06)
- Representative readout electronics and protoGSE

FLIGHT OPPORTUNITIES, FINANCING, PDR

- POLAR proposed to Indian Space Research Organisation (ISRO) for Small Astrophysical Payload; Decision November 2006
- Beijing Institute for High Energy Physics proposed POLAR for Chinese SpaceLab TianQong-2 with launch in 2010
- Preliminary Design Review and Acceptance by March 2007
- Proposal for SNF submitted for POLAR EM; budget for FM with SSO, ESA and partners

24

SUMMARY

- RHESSI is very efficient detector of GRBs with about 400 events to date
- Polarimetric capabilities of RHESSI are weak no limits on Π_{GRB} yet
- Other instruments reported isolated GRB with high Π_{GRB} but large errors
- Several new polarimeters are either under development or construction
- POLAR is compact hard X-ray GRB polarimeter using Compton scattering
- Based on low Z scintillator array; has wide FOV, large A_{eff} and μ_{100}
- It will measure Π for hundreds of GRBs and for ca. ten/year MDP₃₀ ≈ 10%
- Several lab tests completed, more ongoing, 8x8 array+GSE DM by Dec
- Financing for EM requested from SNF; FM from SSO and partners
- POLAR proposed for Indian Astro-Mission and China SpaceLab (2010)

25