


Recent Scientific Highlights of HETE-2 Mission

Tim Q. Donaghy, Don Q. Lamb (University of Chicago)

George R. Ricker (MIT Kavli Institute)

and the HETE Science Team

Warsaw, Poland 4 October 2006

HETE-2 International Science Team

Center for Space Research

Massachusetts Institute of Technology Cambridge, MA **USA**

George R. Ricker (PI) Joh Nat Butler Ros Geoffrey B. Crew Joe Peter Csatorday

John P. Doty Roland K. Vanderspek Joel Villasenor

Cosmic Radiation Laboratory

Institute of Physical and Chemical Research (RIKEN)

JAPAN

Masaru Matsuoka (NASDA) Nobuyuki Kawai (Tokyo Inst. Tech) Atsumasa Yoshida (Aoyama G. U.)

> Centre D'Etude Spatiale des Rayonnements (CESR)

> > FRANCE

Jean-Luc Atteia Celine Barraud Michel Boer Gilbert Vedrenne

> Brazil + India + Italy (Burst Alert Station Scientists)

Joao Braga Ravi Manchanda Graziella Pizzichini Astronomy and Astrophysics Department University of Chicago, IL USA

Donald Q. Lamb Jr. (Mission Scientist) Carlo Graziani Tim Donaghy

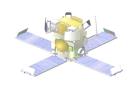
Space Science Laboratory

University of California at Berkeley USA

Kevin Hurley
J. Garrett Jernigan

Los Alamos National Laboratory

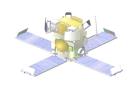
Los Alamos, NM USA


Edward E. Fenimore Mark Galassi

Board of Astronomy and Astrophysics University of California at Santa Cruz **USA**

Stanford E. Woosley

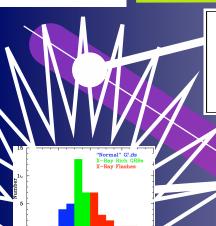
National Aero & Space Administration USA


F. Rick Harnden (NASA Program Scientist) Scott D.Barthelmy (GSFC Project Scientist)

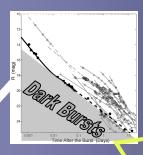
Outline of Talk

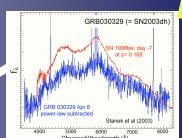
- HETE-2 Mission Status
- Science Highlights of the HETE-2 mission
 - X-ray Flashes
 - GRB-SN Connection
 - Short GRBs
 - Optically Dark GRBs
- Summary

HETE-2 Mission Statistics

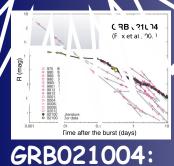


- HETE-2 localized 95 GRBs in 5 yrs of operation
- 34 of these localizations have led to the detection of X-ray, optical, or radio afterglows
- As of today, redshifts have been established for 22 of these afterglows
- HETE-2 localized 26 XRFs
- HETE-2 has observed >250 bursts from SGRs 1806-20 and 1900+14 in the summers of 2001-2004
- HETE-2 has observed ~ 1000 XRBs


HETE-2 Gamma-Ray Bursts: Six Major Scientific Insights


GRB020531:

First detection of short GRB with prompt optical/X-ray followup


GRB021211:

Insight into "Optically Dark GRB Mystery

GRB020903:

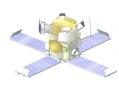
Elucidation of "X-ray Flasher"

Refreshed shock

(NASA SSU)

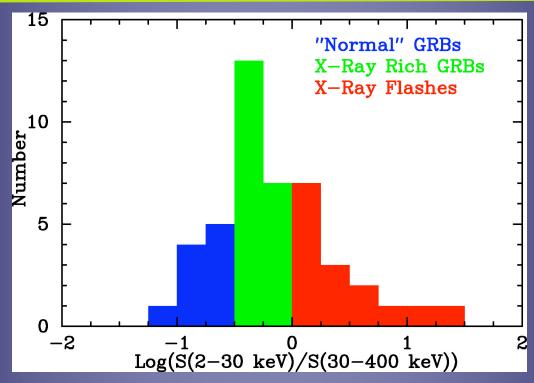
or inhomogeneous jet

$_{50} = 70 \text{ ms}$

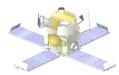

GRB050709: Short-hard GRB

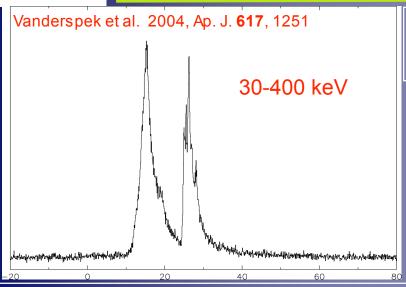
identified (zz0.16)

4 October 2006


GRB030329:

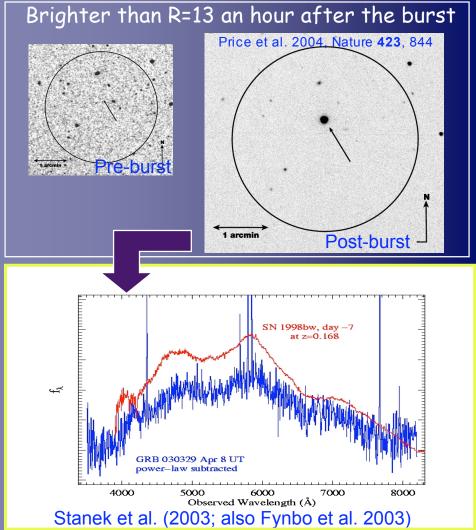
GRB-SN Connection (SN2003dh; **-**0.168)

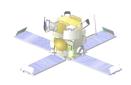

X-Ray Flashes Localized by HETE-2


- Of the HETE-2 bursts
 - 3/9 XRFs
 - 4/9 "X-ray-rich" GRBs
 - 2/9 "classical" GRBs
- Nature of XRFs is still largely unknown

- XRFs are providing unique insights into:
 - Structure of GRB jets
 - GRB rate
 - Nature of Type Ic supernovae

GRB030329: HETE-2 "Hits a Home Run"

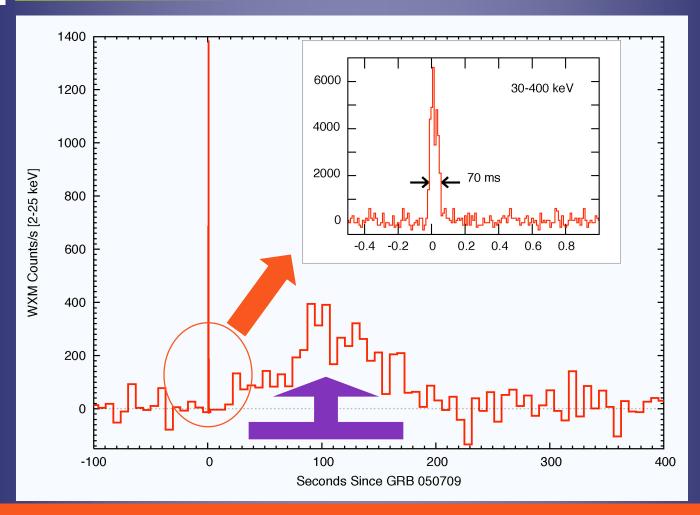




 $z = 0.1675 \Leftrightarrow$ probability of detecting a bright GRB this close by is ~1/5000 => unlikely that HETE-2 or Swift will see another such event

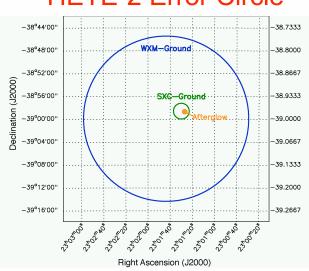
Exceptionally High Fluence (Top 1%; $1.5 \times 10^{-4} \text{ ergs cm}^{-2}$

GRB030329: Implications

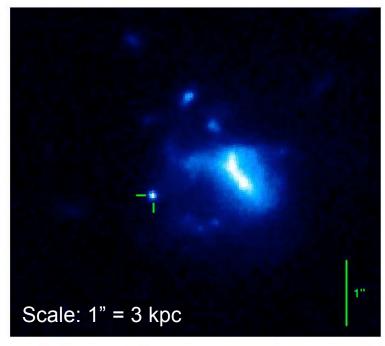

 HETE-2—localized burst GRB030329/SN 2003dh fully establishes the GRB - SN connection

Result strengthens the expectation that GRBs occur out to z ~ 20, and are therefore a potential probe of first light and reionization

GRB 050709; "Solid Gold" Short-Population GRB


- Short Spike: ~70 ms Hard Burst at t = 0 s
- Long Bump : Classic Afterglow spectrum at ~100 s

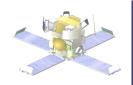
GRB 050709: HETE-2 Localizes & HST Images


Villasenor et al., Nature (6 October 2005)

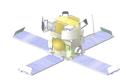
- **HETE-2**: Light Curve & Localization
- Chandra: X-ray Error Circle

Hubble: Fading Optical Counterpart

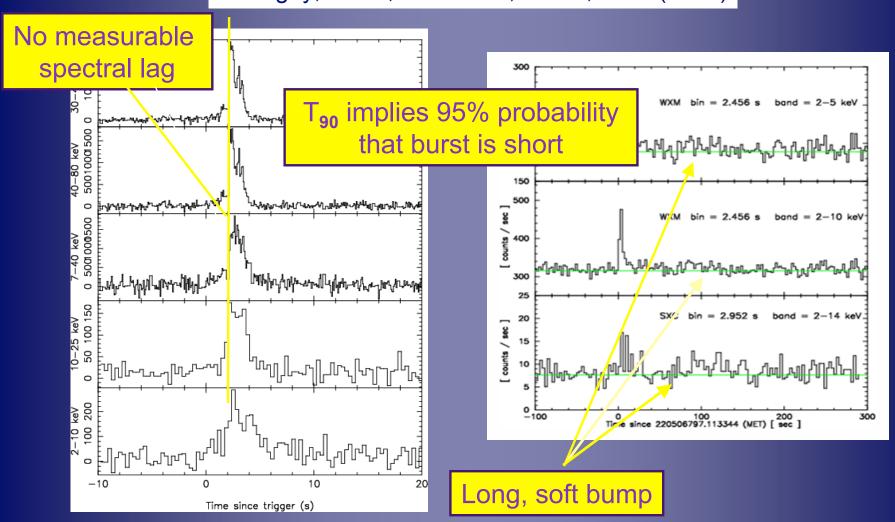
HST Images at 4 Epochs



Fox et al., Nature (6 October 2005)

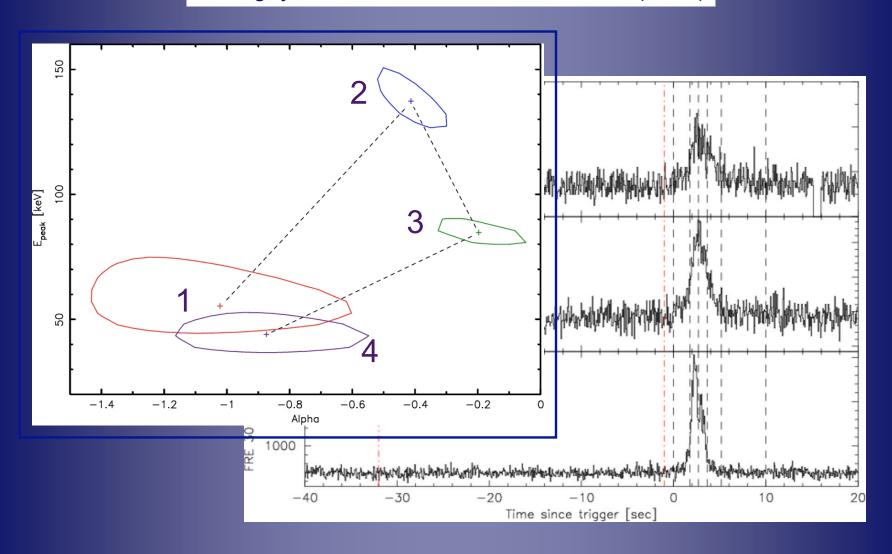

Redshift z=0.160

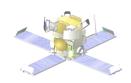
Short GRB Mystery Largely Solved


- GRB 050709, a classic short GRB, played a key role in solution (as did the Swift bursts GRB 050509B & GRB 050724)
- GRB 050709 occurred in outskirts of host galaxy - not in star-forming region - unlike all long GRBs
- L and E_{iso} is 1000 times smaller than those of long GRBs
- Delay of ~ 100 s in peak of afterglow seen by HETE-2 implies burst occurred in low-density environment - unlike long GRBs
- All of these properties are exactly those expected for merging compact binaries

HETE-2 Short Burst GRB 060121

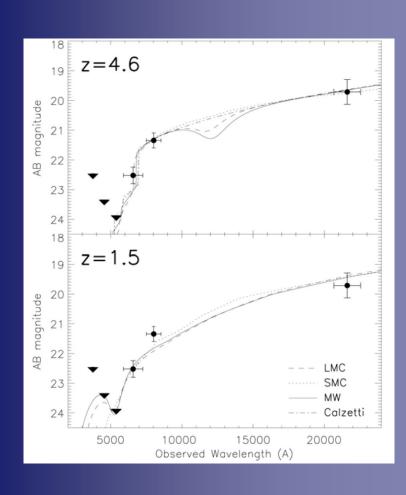
Donaghy, Lamb, Sakamoto, Norris, et al. (2006)

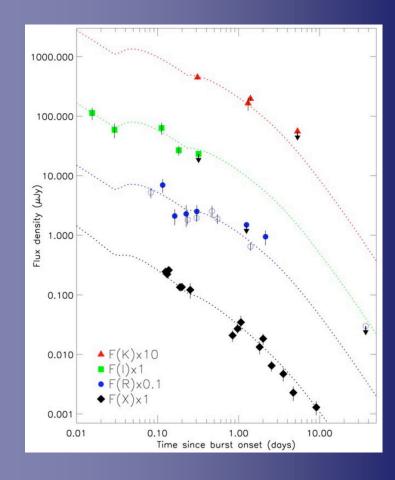




HETE-2 Short Burst GRB 060121: Time-Resolved Spectroscopy

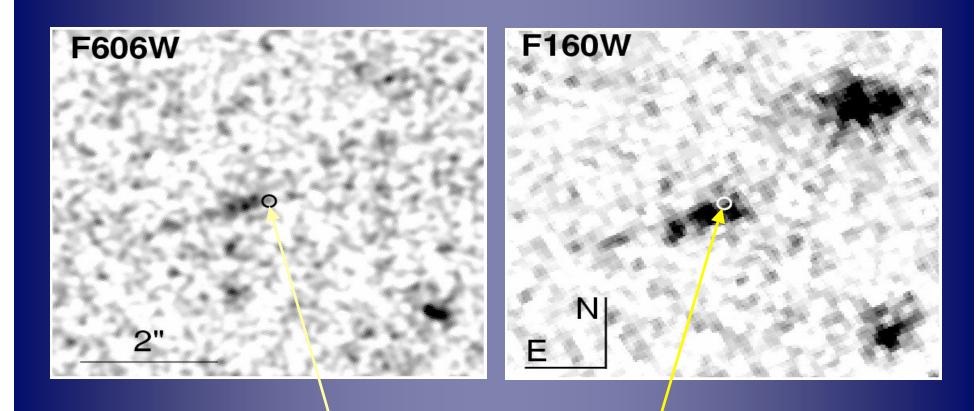
Donaghy, Lamb, Sakamoto, Norris, et al. (2006)





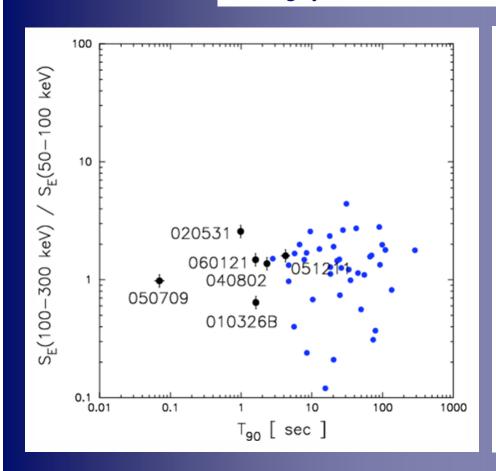
HETE-2 Short Burst GRB 060121: Photometric Redshift

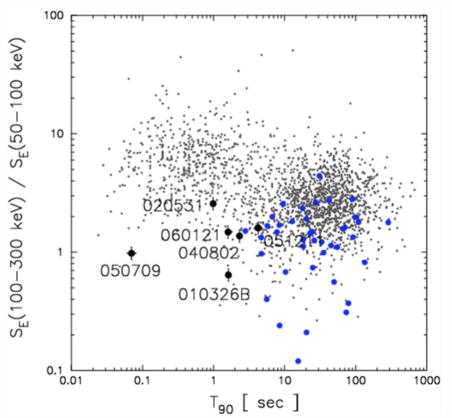
Ugarte de Postigo et al. (2006)



HETE-2 Short Burst GRB 060121: Host Galaxy

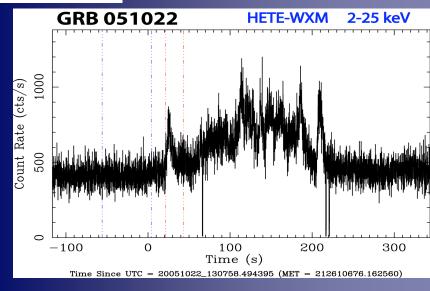
Levan et al. (2006)

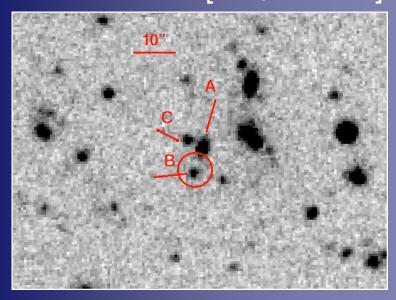

Burst occurred outside bright star-forming regions



Locations of HETE-2 Short- and Long-Duration Bursts in (T₉₀,S_E)-Plane

Donaghy, Lamb, Sakamoto, Norris, et al. (2006)

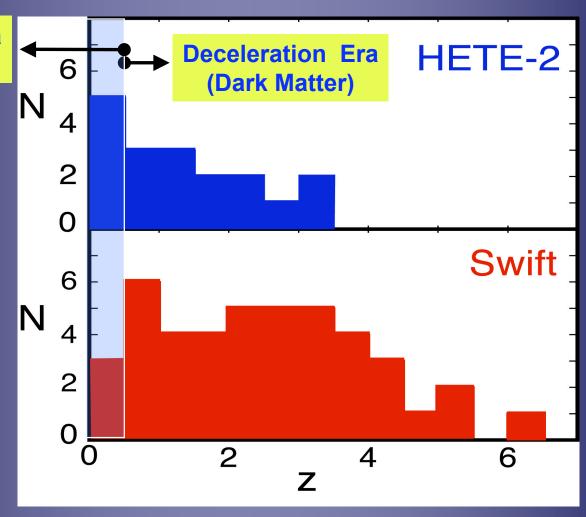


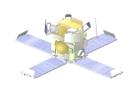

GRB 05 | 022: "Darkest of Dark Bursts"



- HETE-2 SXC prompt localization
 - Highest Fluence GRB in 5 years
 - \Rightarrow 1.6 x 10⁻⁴ ergs cm⁻²
 - Large column density:
 - \Rightarrow n_H ~ 1.5 x 10²² cm⁻²
 - ⇒ Swift XRT follow-up in 3.5 hrs
- Chandra TOO

[Cool, GCN4149]


- Optical/IR Counterpart
 - J, Ks (GCN4133)
 - R~21.5 host
- Bright Radio Counterpart
 - -0.6 mJy
 - -Redshift z= 0.8
- High extinction (A_v~ 41 mag!)


Redshift Distributions: HETE and Swift Long GRBs

Acceleration Era (Dark Energy

Current z < 0.5 GRBs: 3 of 43 from Swift BAT; 5 of 18 from HETE

Summary

- HETE-2 localized 95 GRBs in 5 yrs of operation, including 26 XRFS
- 34 of these localizations have led to the detection of X-ray, optical, or radio afterglows
- Redshifts have been established for 22 of these so far
- HETE-2 solved nature of XRFs (same phenomenon as hard GRBs; progenitors are Type Ic SNe at modest redshifts)
- HÉTE-2 decisively confirmed GRB-Type Ic SN connection
- HETE-2 made key contribution to solving mystery of short GRBs
- HETE-2 GRB catalog will be released soon