The redshift distribution of Gamma-Ray Bursts : Evidence for evolution

> <u>Frédéric Daigne (IAP)</u> Elena Rossi (JILA) Robert Mochkovitch (IAP)

Gamma Ray Burst - Astro PF Workshop - October 4-6, 2006, Warsaw.

1. Long GRBs can be detected up to very large distances

As pointed out by several authors (e.g. Lamb & Reichart 2000)

•Long GRBs are intrinsically very bright;

•Gamma-rays are un-absorbed;

The brightest GRB could be detected up to z > 10.

•With appropriate instruments, it is possible to detect the optical/IR afterglow and measure the distance.

Bright afterglows could be detected up to z~8-10.

2. GRBs are expected to be produced even at very large distance.

2. GRBs are expected to be produced even at very large distance.

3. How to detect the afterglow of a high redshift GRB ?

GRB : image mode (cf. GRB 050904) ; X-ray band, ...

Afterglow : (Near-)Infrared Rapid follow-up

Bonus (e.g. Lamb & Reichart 2001) :

You observe ...

This means in the source frame ...

cf. Nousek's talk on SWIFT cf. Schanne's talk on ECLAIRs

cf. Goldoni's talk on X-SHOOTER

10 min after the burst

5 min after the burst @ z = 155 s after the burst @ z = 10

The afterglow is intrinsically brighter so that the decrease of the flux due to the larger luminosity distance is partially compensated.

•Spectrum : intergalactic medium (cf. QSOs) host galaxy (interstellar medium)

•Tracing the SFR up to high z : knowing the intrinsic properties of GRBs and understanding the progenitors is needed.

•Spectrum : intergalactic medium (cf. QSOs) host galaxy (interstellar medium)

•Tracing the SFR up to high z : knowing the intrinsic properties of GRBs and understanding the progenitors is needed.

•Learning something on pop. III stars, on the reionization epoch, ... : OK if pop. III stars can produce GRBs...

•Spectrum : intergalactic medium (cf. QSOs) host galaxy (interstellar medium)

•Tracing the SFR up to high z : knowing the intrinsic properties of GRBs and understanding the progenitors is needed.

•Learning something on pop. III stars, on the reionization epoch, ... : OK if pop. III stars can produce GRBs...

•Measuring cosmological parameters : OK if Amati/Ghirlanda/... relations are understood and if one can measure all required quantities (peak energy, break time).

•Spectrum : intergalactic medium (cf. QSOs) host galaxy (interstellar medium)

•Tracing the SFR up to high z : knowing the intrinsic properties of GRBs and understanding the progenitors is needed.

•Learning something on pop. III stars, on the reionization epoch, ... : OK if pop. III stars can produce GRBs...

•Measuring cosmological parameters : OK if Amati/Ghirlanda/... relations are understood and if one can measure all required quantities (peak energy, break time).

•Etc.

How many GRBs can be expected for such studies ?

The redshift distribution of long GRBs

Daigne, Rossi & Mochkovitch (astroph/0607618, to appear in MNRAS).

Motivation:

Do long GRB trace the star formation rate ?

What is the expected rate of GRBs at high redshift ?

Method : we use Monte-Carlo simulations. This allows :

- **a** « realistic » parametrization of the spectrum (α , β , E_p have dispersion).
- a « realistic » treatment of detection criteria by several instruments.
- a study of the impact of the incertainities in the GRB instrinsic properties on the predicted GRB rate.

Three different observational constraints :

constraints

- BATSE Log(N)-Log(P) diagram (Kommers et al. 2000; Stern et al. 2001,2002).
- Observed Epeak distribution of long bright bursts (Preece et al. 2001).
- Observed fraction of XRF+XRR by HETE-2 (Sakamoto et al. 2004).

Detection							
<u>Three instruments :</u>							
 BATSE : 50 keV – 300 keV ; same sensitivity as in Kommers et al. 2000; Stern et al. 2001,02. Bright bursts (for comparison with Preece et al. 2001) : P > 5 ph/cm²/s (i.e. ~ 5-10 % brightest) 							
HETE-2 / WXM : 2-10 keV ; P > 1 ph/cm ² /s 30-400 keV ; P > 1 ph/cm2/s							
SWIFT: 15 - 150 keV ; P > 0.2 ph/cm ² /s bright SWIFT GRBs : P > 1 ph/cm ² /s							

Results

\mathbf{SFR}	$\log L_{\min}$	$\log L_{\max}$	δ	$\log k$
	Amati	i-like relatio	on $E_{\rm p} \propto L^{0.43}$	
1	49.9 ± 0.5	53.7 ± 0.4		-5.4 ± 0.3
2	50.0 ± 0.5	53.7 ± 0.5	1.68 ± 0.10	-5.5 ± 0.3
3	50.3 ± 0.7	53.5 ± 0.4	1.54 ± 0.18	-6.0 ± 0.2

Rate	All	SWIFT	Bright SWIFT
А	.mati-l	ike relatio	n $E_{\rm p} \propto L^{0.43}$
SFR1 SFR2	$\begin{array}{c} 3.1 \\ 8.0 \end{array}$	1.6 1.9	1.3 1.5
SFR3	10.5	3.3	2.1

5 parameters : L_{min} , L_{max} , p, k and E_{p0}

Results						
SFR	$\log L_{\min}$	$\log L_{\max}$	δ	$\log k$		
log-1	normal dist	ribution pea	ak energy dis	tribution		
1	50.2 ± 0.9	53.6 ± 0.8	1.62 ± 0.18	-5.6 ± 0.3		
2	50.2 ± 1.1	53.6 ± 0.9	1.62 ± 0.27	-5.7 ± 0.3		
3	50.5 ± 1.3	53.7 ± 0.9	1.52 ± 0.48	-6.2 ± 0.2		
arr	1 12					
SFR	$\log E_{\rm p,0}$					
1						
log-no	ormal distr	ibution peak	k energy dist	ribution		
log-no	2.74 ± 0.03	ibution peak	c energy dist	ribution		
10g-no 1 2	2.74 ± 0.03 2.73 ± 0.03	ibution peak	c energy dist	ribution		
1 2 3	$\begin{array}{c} 2.74 \pm 0.03 \\ 2.73 \pm 0.03 \\ 2.79 \pm 0.03 \end{array}$	ibution peak	c energy dist	ribution		
1 2 3 — –	2.74 ± 0.03 2.73 ± 0.03 2.79 ± 0.03 Rate Al	SWIFT	c energy dist Bright SW	ribution		
1 2 3 -	2.74 ± 0.03 2.73 ± 0.03 2.79 ± 0.03 Rate Al log-norm	ibution peak Solution peak Solution peak Solution peak ener	c energy dist Bright SW	TIFT		
1 2 3 -	2.74 ± 0.03 2.73 ± 0.03 2.79 ± 0.03 2.79 ± 0.03 Rate All log-norm SFR1 3.7	1 SWIFT al peak ener	c energy dist Bright SW rgy distribut	ribution /IFT ion		
1 2 3 -	2.74 ± 0.03 2.73 ± 0.03 2.79 ± 0.03 2.79 ± 0.03 Rate All Iog-norm SFR1 3.3 SFR2 8.0	1 SWIFT al peak ener 1 1.9 2.4	c energy dist Bright SW rgy distribut 1.6 1.8	ribution /IFT ion		

Summary

Luminosity function :

- Slope very well constrained : p ~ 1.5-1.7
- Minimum and maximum luminosity less constrained : $L_{min} \sim 2 \times 10^{49} - 2 \times 10^{50} \text{ erg/s}$; $L_{max} \sim 2 \times 10^{53} - 4 \times 10^{53} \text{ erg/s}$

Intrinsic E_{peak} distribution:

- AMATI : Peaks at low energy (a few keV) \Rightarrow many un-detected XRRs/XRFs.
- EPCST : Peaks at E_{peak} ~ 100 keV (Amati relation is not reproduced).

