Compact Object Mergers as Short-hard Gamma-ray Burst Progenitors

Chris Belczynski^{1,2}

R.Perna, T.Bulik, V.Kalogera N.Ivanova & D.Lamb

¹NMSU, Tombaugh Fellow

²LIGO Scientific Collaboration

イロト イ理ト イヨト イヨト

GRB mini-Workshop, Warsaw: October 4-6, 2006

Galactic NS-NS Binaries

Phone No.	P _{orb} /hr	е	t _{mrg} /Gyr	Comment
				<u> </u>
1) B1913+16	7.75	0.617	0.33	field
2) B1534+12	10.1	0.274	2.7	filed
3) J0737-3039	2.45	0.088	0.09	field
4) J1756-2251	7.67	0.181	1.7	field
5) B2127+11C	8.04	0.681	0.22	cluster
6) (J1906+0746)	3.98	0.085	0.30	??? (field)
7) J1811-1736	451	0.828		field
8) J1518+4904	207	0.25		field
9) J1829+2456	28	0.139		field

- relatively short merger times: \sim 0.1 3 Gyr
- young pulsars in close NS-NS: 0.1-0.4 Gyr

▲ @ ▶ ▲ 三 ▶ ▲

ъ

The Method The StarTrack Code

Population Synthesis: The Method

Population synthesis is a Monte Carlo method which allows to evolve large stellar ensembles (both single and binary stars):

- start with initial conditions
- follow single and binary evolution
- calibrate results
- extract given population

In the end synthetic populations are generated:

- statistical analysis
- comparisons with observations
- finally, specific predictions

The Method The StarTrack Code

StarTrack: Single Star Evolution

Stars are evolved from the onset of nuclear burning.

Evolution depends on:

- initial mass (M_{init})
- chemical composition
- mixing (overshooting)
- stellar winds

... and in the end stars form compact remnants:

- white dwarfs ($M_{
 m init} \lesssim 8 {
 m M}_{\odot}$)
- neutron stars (8 $\lesssim M_{
 m init} \lesssim 20 {
 m M}_{\odot}$)
- black holes ($M_{
 m init}\gtrsim 20 {
 m M}_{\odot}$)

The Method The StarTrack Code

StarTrack: Binary Evolution

Evolution of binary systems is complex and some processes are still not fully understood. The input physics key ingredients are:

- tidal interactions
- mass transfer phases
 - rejuvenation
 - orbit evolution
 - common envelope
- supernova explosions
 - mass loss/natal kicks
 - full orbital solution
- ang. momentum losses
 - systemic mass loss
 - magnetic braking
 - gravitational radiation

Double Neutron Star Formation Double Neutron Star Evolution Connection to Short-hard GRBs

NS Star Masses

Modeling:

- ~ 1.35 M_{\odot} : $M_{zams} < 18 M_{\odot}$
- ~ 1.8 M_{\odot} : $M_{\rm zams}$ > 18 M_{\odot}
- $\sim 1.26 M_{\odot}$: ECS NS $(M_{\rm zams} \sim 8 M_{\odot})$

Observations:

- $\sim 1.2 1.4 M_{\odot}$: double pulsars
- $\sim 1.9 M_{\odot}$: Vela X-1 pulsar
- ~ 2.1*M*_☉: PSR J0751+1807

What is maximum NS mass? (accretion, collapse to BH?)

イロト イポト イヨト イヨト

Double Neutron Star Formation Double Neutron Star Evolution Connection to Short-hard GRBs

NS-NS Formation Channels

Reanalysis of compact object formation led to a prediction of new NS-NS population:

- Iate evolutionary stages ->
- helium star expansion ->
- extra mass transfer episode ->
- if stable RLOF: Classical || if CE: New

New (versus Classical) NS-NS binaries:

- orbital periods: $< 2 \text{ hr} (\sim 2 100 \text{ hr})$
- merger times: < 1 Myr (~ 1 Gyr)
- merger sites: birth place (further out)

Belczynski, & Kalogera 2001 Belczynski, Bulik & Kalogera 2002 Belczynski, Bulik & Rudak 2002 Perna & Belczynski 2002 Ivanova, Belczynski, Kalogera, Rasio & Taam 2003 Belczynski, Perna, Bulik, Kalogera, Ivanova & Lamb 2006

Chris Belczynski

Compact Object Mergers as Short-hard GRB Progenitors

Double Neutron Star Formation Double Neutron Star Evolution Connection to Short-hard GRBs

NS-NS: Formation -> Present

- Systems evolve only due to emission of gravitational radiation:
 - orbital decay
 - circularization

Present population contains only:

- $ho~\sim 10\%$ of systems that have formed
- the long-lived systems (short-lived systems have merged)

Models are consistent with observations:

- observed merger rates: 3 300 Myr⁻¹
- modeling: 30 50*Myr*⁻¹

Double Neutron Star Formation Double Neutron Star Evolution Connection to Short-hard GRBs

Short Gamma-ray Bursts: Observations

Short-hard GRBs:

- several found within z<0.5-1 (?)
- in old ellipticals
- in young (star-forming) galaxies
- both low- and high-mass hosts

Localized within and outside hosts Long delay times estimated $\sim 3-6~\text{Gyr}$

What are their progenitors?

- NS-NS/BH-NS mergers
- NS/quark star transition
- accretion induced collapse

homogeneous progenitor population?

if NS-NS progenitor then ->

くロト (過) (目) (日)

Double Neutron Star Formation Double Neutron Star Evolution Connection to Short-hard GRBs

Short Gamma-ray Bursts: Modeling I

GRB locations:

- start with NS-NS population
- put them in GRB host galaxies
- follow their trajectories (birth SNe kicks)
- calculate NS-NS merger locations

Depending on a host:

- old galaxies (ellipticals) -> long-lived (old) NS-NS
- young hosts (star-forming) -> short-lived (young) NS-NS

Double Neutron Star Formation Double Neutron Star Evolution Connection to Short-hard GRBs

Short Gamma-ray Bursts: Modeling II

- New NS-NS || Classical NS-NS:
 - in starbursts || in ellipticals
 - inside/outskirt || outskirt/outside
 - all redshifts || low-intermediate
- Open questions:
 - if more GRB found in small ellipt. lower natal kicks in binaries?
 - if no GRB found at z ~ 3 5 no New NS-NS: no CE survival?
 - if no GRB found at z ∼ 1 − 2 how do we explain Galactic NS-NS?!

Summary

- Compact object mergers can explain
 - presence of GRBs in both: old and young galaxies
 - their locations with respect to hosts (lower kicks?)
- Potential problem with the lack of higher redshift GRBs
 - unless some are already observed (e.g., GRB 060121 , $z \sim 1.7 4.6$)
 - any bias against detecting them at higher z?
 - or some process preventing NS-NS formation at high z?

or if nothing of the above works, NS-NS is not a GRB progenitor.....

- Currently, we work on
 - formation at high z
 - redshift distribution

・ 戸 ・ ・ 三 ・ ・