High resolution X-ray spectroscopy of the narrow line Seyfert 1 galaxy NGC 4051

Marian Feňovčík¹, Jelle S. Kaastra¹, Elisa Costantini^{1,2} & Katrien Steenbrugge³

> ¹High–Energy Astrophysics Division SRON National Institute for Space Research

> > ²Astronomical Institute Utrecht University

³Harvard–Smithsonian Center for Astrophysics

Physics of Warm Absorber in AGN 2005

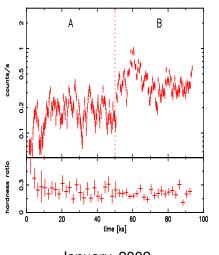
Outline

Introduction

Warm absorber

Broad emission lines

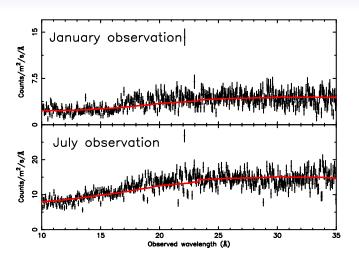
Narrow emission features


Summary

Introduction: properties of NGC 4051

- nearby at z=0.0023 (10 Mpc)
- bright in optical (V≈ 13^m) and in X-rays (F≈ 2 × 10⁻¹⁴W m⁻²)
- flux variability
- continuum = power law + modified black body or relativistic lines
- well studied in X-rays

Introduction: Chandra LETGS light curves



counts/s nardness ratio 80 time [ks]

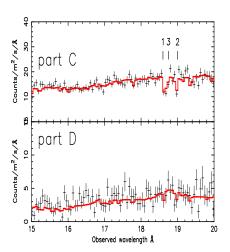
January, 2002

July, 2003

Introduction: continuum

Data and continuum model

Warm absorber: July observation

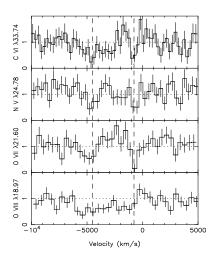

C part – three different outflow components

$\overline{\mathbf{C}}$	N_{H}	$\log \xi$	$\mathbf{v}_{\mathrm{out}}$
	$(\times 10^{25} \ \mathrm{m}^{-2})$	$(\times 10^{-9} \mathrm{\ Wm})$	(km/s)
1	0.41 ± 0.04	$\boldsymbol{0.74 \pm 0.06}$	$\mathbf{-420} \pm 20$
2	$\boldsymbol{1.9 \pm 1.0}$	2.44 ± 0.08	$\mathbf{-820} \pm 40$
3	${\bf 15^{+10}_{-6}}$	3.2 ± 0.1	$\mathbf{-4810} \pm 120$

D part – only one outflow component detected

$\overline{\mathbf{C}}$	N_{H}	$\log \xi$	$\mathbf{v}_{\mathrm{out}}$
	$(\times 10^{25} \text{ m}^{-2})$	$(\times 10^{-9} \mathrm{\ Wm})$	(km/s)
2	3.5 ± 1.0	1.54 ± 0.10	-790 ± 40

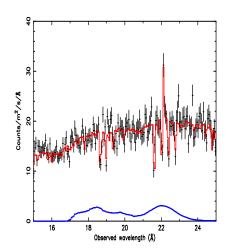
 non-detection of component 1&3 in the D part


Warm absorber: January observation

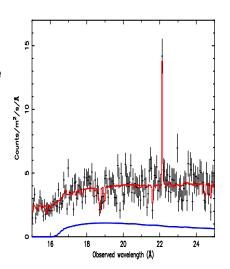
 A part – two components detected

$\overline{\mathbf{C}}$	N_{H}	$\log \xi$	$\mathbf{v}_{\mathrm{out}}$
	$(\times 10^{25} \ \mathrm{m}^{-2})$	$(\times 10^{-9} \mathrm{\ Wm})$	(km/s)
1	$1.95^{+22.0}_{-1.39}$	2.37 ± 0.26	-675_{+190}^{-630}
3	74^{+74}_{-51}	$3.4^{+0.7}_{-0.1}$	$-4310^{+720}_{-520}\;\;$

 B part – two components detected


$\overline{\mathbf{C}}$	N_{H}	$\log \xi$	$\mathbf{v}_{\mathrm{out}}$
	$(\times 10^{25} \text{ m}^{-2})$	$(\times 10^{-9} \text{ W m})$	(km/s)
1	$\boldsymbol{0.63 \pm 0.23}$	$\boldsymbol{1.40 \pm 0.18}$	-570 ± 80
3	14 ± 8	3.0 ± 0.1	-4570 ± 120

Broad emission: July observation


High state

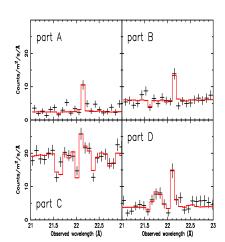
- three broad lines (O VIII Lyα, C VI Lyα and O VII triplet)
- O VIII Lyα relativistic profile (Y~r^{-Γ}) ⇒ close to BH
- C VI Lyα and O VII triplet gaussian profiles ⇒ further from BH

Broad emission: January observation

- only O VIII Ly α line present in the spectrum
- constant during whole observation
- relativistic profile
- similar behaviour found for Fe K line (lwasawa et al. 1996)

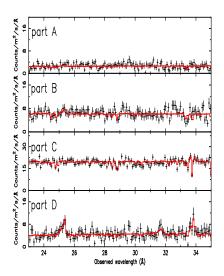
Broad emission: soft excess

Previous explanation:


 series of relativistic emission lines and RRCs (Ogle et al. 2004)

New results:

sufficeently explained by modified black body


Narrow emission features: O VII forbidden line

- no response of the O VII forbidden line to the flux change
- no association with the warm absorber

Narrow emission features: RRC

- strong C VI and C V RRC
- weak O VIII, OVII, N VII & N VI RRC
- fast response
- temperature ~ 5 eV
- redshift ~ 1000 km/s

Narrow emission features: Interpretation of the RRC

- connection between RRC and warm absorber?
- O VIII RRC weak: low ionization
- O VII RRC weak: blend with Fe-M absorption
- N VII & N VI RRC weak: low abundance
- $\Delta t < 10^4 \text{s} \Rightarrow r = \frac{1}{2} \text{c} \Delta t \le 1.5 \times 10^{12} \text{m}$
- $M = 3 \times 10^5 M_{\odot} \Rightarrow v_{Kepler} \ge 5200 \text{ km/s}$

Narrow emission features: Interpretation of the RRC

$$\left. \begin{array}{l} Y = n^2 V \\ V = \Omega \, r^2 \cdot \mathrm{d} \, r \\ \\ \Omega \leq 4\pi \\ \\ \xi = L/n \, r^2 \end{array} \right\} N_H = n_\mathrm{H} \cdot \mathrm{d} \, r \geq 10^{26} \mathrm{m}^{-2}$$

Summary

- · different flux and variablity states
- warm absorber
- broad emission lines
- narrow emission features

THANK YOU FOR YOUR ATTENTION