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Strange quark stars
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Static strange stars

First numerical models computed by Haensel, Zdunik & Schaeffer [A&A 160, 121 (1986)] and
Alcock, Fahri & Olinto [ApJ 310, 261 (1986)] by integration of the
Tolman-Oppenheimer-Volkoff equations with MIT bag-model EOS.

Basic features :

• finite density at the surface (zero pressure)

• for small mass (weak gravity) : almost constant density profile

[from Glendenning (1997)]

http://adsabs.harvard.edu/
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1986ApJ...310..261A&db_key=AST&high=3c678ae01305073
http://www.springer.de/cgi/svcat/search_book.pl?isbn=0-387-98977-3
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Comparison with neutron stars

neutron stars = gravitationally bound objects

strange quark stars ∼ self-bound objects

Gravitational mass as a function
of the areal radius for nonrotating
neutron stars (BBB1, BBB2, Hyp
and K−) and nonrotating strange
stars in the MIT bag model (B90)
and Dey et al model (SS1 and
SS2) [from Bombaci (2002)]

http://arXiv.org/abs/astro-ph/0201369
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Quasiequilibrium sequences

• Evolution of binary systems entirely driven by the emission of gravitational waves.

We consider sequences of circular orbits with smaller and smaller radius, keeping the
baryon mass constant, imitating the inspiral phase.

• The innermost stable circulat orbit (ISCO) is defined as the minimum of the binding
energy of the system. It could be observed by laser interferometers in the gravitational
waveforms.

2.5-PN Effective One Body computation

[Buonanno & Damour, PRD 62, 064015 (2000)]
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http://publish.aps.org/abstract/PRD/v62/e064015
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Methods

• Resolution of Einstein equations using 3+1 formalism :

gµν dxµ dxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt)

We assume that the spatial part of the metric is conformally flat ( Isenberg-Wilson-
Mathews approximation).

Numerical methods :

• Multi-domain spectral methods

• The entire space (R3) is covered : compactification of
the external domain

• Adaptatives coordinates

• Numerical implementation based on LORENE

[Taniguchi, Gourgoulhon & Bonazzola, Phys. Rev.

D 64, 064012 (2001) ]

Coordinates adapted to the
surface of the stars

http://publish.aps.org/abstract/PRD/v64/e064012
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Equation of state

We compute sequences of binary systems for :

• three differents equation of state of MIT bag model :

? SQS0 - the standard MIT bag model: msc
2 = 200 MeV, α = 0.2, B =

56 MeV/fm3,
? SQS1 - the simplified MIT bag model : ms = 0, α = 0, B = 60 MeV/fm3,
? SQS2 - the ”extreme” MIT bag model (relatively low strange quark mass and B

but high α) : msc
2 = 100 MeV, α = 0.6, B = 40 MeV/fm3.

• one equation of state of Dey et al. (derived from microscopic QCD calculations).
Stars computes within this model are much more compact.

For all these EOS, we can approximate with a very well approximation :

P (ρ) = a(ρ− ρ0).
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Comparison with a polytropic EOS

• Computation of quasiequilibrium sequences for corotational and irrotational case with
equal mass M = 1.35M¯, R = 10.7 km and M/R = 0.187 at infinite separation.

• We compare our results for the simplified MIT bag model (SQS1) with neutron stars.

• We choose for the neutron stars a polytropic equation of state P = κnΓ with Γ = 2.5
and κ chosen so that the compacity and the radius of the star at infinite separation
is the same as for SQS1.
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Corotational case

Rigid rotation is not realistic, the viscosity of the star is far too low to ensure
synchronisation between the spin of the star and its orbital motion
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Gravitational mass at infinity : M0 = 1.35 M¯
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• An ISCO is found for both NS and SS,
but it appears for different frequencies.

• SS lose less energy than NS.

• Both agrees with 3PN results for large
distances.
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Irrotational case
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Gravitational mass at infinity : M0 = 1.35 M¯
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• An ISCO is found for SS around 1400 Hz.

• Sequence of NS terminates by the mass-
shedding limit (exchange of matter).

• For the same distance, SS are less
deformed than NS. Due to the additional
strong interaction between quarks.
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Velocity field

Velocity field in the reference frame and in the corotating frame for irrotational stange stars (SQS1)

binaries at the ISCO.

The fluid velocity at the surface of the star has no components orthogonal to this
surface in the corotating frame.

No cusp (angular point) appears before dynamical instability.
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Influence of the equation of state

• An ISCO is found for the 3 different MIT bag model EOS.

• The frequency of the ISCO depends strongly on the EOS. The higher the
compaction parameter is, the higher the frequency at the ISCO.

• For Dey et al., frequency higher than 2kHz.

800 1000 1200 1400
f
GW

[Hz]

-0.04

-0.038

-0.036

-0.034

-0.032

E
bi

nd
 [

M
so

l]

SQS0  M/R= 0.165
SQS1  M/R= 0.187
SQS2  M/R= 0.193
3PN (Blanchet 2002)

800 1000 1200 1400 1600 1800 2000
f
GW

[Hz]

-0.05

-0.045

-0.04

-0.035

-0.03

E
bi

nd
 [

M
so

l]

SQS0  M/R= 0.165
SQS1  M/R= 0.187
SQS2  M/R= 0.193
Dey et al. M/R = 0.272
3PN (Blanchet 2002)

Gravitational mass at infinity : M0 = 1.35 M¯



12

Influence of the mass

Computation of sequences for SQS0 EOS with mass
0.5, 0.7, 1.0, 1.2, 1.35, 1.5 and 1.65 M¯.

The GW frequency of the ISCO increase with
the mass, and is quasi-linear in this range of mass.
Behavior very similar for the compaction parameter. 0.5 1 1.5 2
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Conclusion

• In each of the rotation states, corotational or irrotational, the sequence of
quasiequilibrium configurations for strange stars terminate with an ISCO, contrary to
irrotational neutron stars.

• Depending of the equation of state for the strange quark matter, for the same
gravitational mass at infinity, we obtain different frequency for the ISCO.

• The frequency of the ISCO increase with the mass of the stars. And is strongly
dependant on the compaction parameter.

• The observation of gravitational waves by laser interferometers (LIGO, VIRGO...)
could lead to the determination of the frequency of the ISCO. Impose constraints on
the EOS of neutron stars.


