

Spectral analysis in VHE γ-ray astronomy Santiago Pita (CNRS/APC)

Warsaw, November 20th – 2007

Spectra at Very High Energies

Main features

- Typical spectra
- Ideal case : ideal instrument
- Instrument response
- Spectrum determination
 - Classical approach
 - Maximum likelihood approach
- Spectral variations
 - Spatial variations
 - Time variations (shape, flux)
 - Santiago Pita Warsaw November 20th 2007

Spectrum determination : ideal case

Instrument response

Santiago Pita – Warsaw - November 20th 2007

Instrument response : energy resolution

- See Mathieu's presentation for different methods
 - ► Hillas : $Q_{\text{meas}} = f(R, \theta_{\text{zen}}, \delta, \epsilon)$
 - Hilla \mathfrak{F}_{meas} Hilla

ୢ୵ୄ

Instrument response : energy resolution

See Mathieu's presentation for different methods

► Hillas : $Q_{\text{meas}} = f(R, \theta_{\text{zen}}, \delta, \epsilon)$

Hillage improve ments at AP, \mathcal{C} , multiplicity, H_{max})

- No bias, even at threshold
- Model 2D
 - Energy comes directly from fit
 - No bias, even at threshold
- Model 3D
 - N_{photosphere} comes from fit

Energy determined with calibration tables
 Santiago Pita – Warsaw - November 20th 2007
 No bias, even at threshold

Two approaches

Used by French groups (independently of reconstruction/discrimination methods)
 Santiago Pita – Warsaw - November 20th 2007

Classical approach

Used by German groups

Based on
$$n(\overline{E}) = n_{on}(\overline{E}) - \alpha \cdot n_{off}(\overline{E})$$

$$\phi(E) = \frac{n_{\rm on}(\bar{E}) - \alpha \cdot n_{\rm off}(\bar{E})}{T \cdot A(\bar{E})}$$

- Area determined at measured energies
 - Based on simulated spectrum : power-law
 - \succ a priori MC index Γ
 - Need iterative procedure
 - Possible bias when "true" spectrum \neq pwl
- Method works very well if :
 - Iterative process convergent
 - Santia lo kias_invasalution function 2007

Maximum likelihood approach

- Maximun likelihood, based on
 - $n_{on}(\bar{E})$ and $n_{off}(\bar{E})$ and their Poisson probabilities
 - A spectral hypothesis : {A}
 - power-law
 - power-law + exp. cutoff
 - log-parabolic
 - other

 $\phi(E) = \phi_o E^{-\Gamma}$ $\phi(E) = \phi_o E^{-\Gamma} \exp(-E/E_{cut})$ $\phi(E) = \phi_o E^{-(\Gamma + \beta \log_{10}(E))}$ $\phi(E) = \dots$

- Instrument functions A(E), R(E, \overline{E})
- Derived from fixed energies MC The best set of $\{\Lambda\}$ is derived from maximisation of :

- Minimisation of
- Likelihood ratio

Santiago Pita – Warsaw - November 20th 2007

Example : an AGN flare

$$\phi_o = 7.67 \pm 0.12 \ [10^{-11} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}]$$

 $\Gamma = 3.66 \pm 0.04$
 $\beta = 0.76 \pm 0.05$
+ covariance matrix

Space-dependent spectra

Some extended sources show space-dependent spectra

- Effective area : full containement
- Wedge to wedge contamination (due to PSF) could imply :
 - Systematics on the flux level determination

Systematics on the spectrum shape (usually pwl index) determination Santiago Pita – Warsaw - November 20th 2007

Time-dependent spectra (1)

- Typical case of variable sources
 - Try to determine spectral shape variations with time (or flux)
 - Try to determine how integral flux varies with time (light-curves)
- Example of the second flare of PKS 2155-304 in July 2006
 - The "Chandra night"
 - 15 consecutive runs
 - Strong zenith angle variation
 - Strong energy threshold variation
 - Indication of energy cut-off at ~ 2 TeV

Time-dependent spectra (2)

Time-dependent spectra (3)

- Integral flux variability : light-curves
 - Allow the use of statistics much lower than those necessary for a spectrum fit
 - Based on a spectrum shape hypothesis

$$\int_{E_{\min}}^{\infty} \phi(E) dE = \phi_o \int_{E_{\min}}^{\infty} E^{-\Gamma} dE$$

- Unknown 🔫

$$n_{\exp}(\bar{\mathrm{E}} > \mathrm{E}_{\min}) = T \int_{E_{\min}}^{\infty} \int_{0}^{\infty} \phi_{o} \mathrm{E}^{-\Gamma} A(\mathrm{E}) R(\mathrm{E}, \bar{\mathrm{E}}) d \mathrm{E} d \bar{\mathrm{E}}$$

Spectral variations with time

Conclusions

- Spectra strongly decrease with energy
- Necessary to take into account :
 - The energy resolution function
 - Effective areas
 - PSF effects (for extended sources)
- Two approaches available
 - Classical
 - Maximum likelihood
- Maximum likelihood is used by all french groups
 - Available in the parisanalysis and HAP frameworks