Synchrotron self-Compton models and VHE emission of extragalactic sources

Krzysztof Katarzyński

Toruń Centre for Astronomy, Nicolaus Copernicus University – Poland

Outline

basic assumptions for SSC emission: simple homogeneous source particle energy spectrum synchrotrnon and IC spectra an example of the modeling - Mrk 501 time dependent modeling: evolution of the particle energy spectrum light crossing time effect variability of PKS 2155-304

blazar structure

TCfA

synchrotron emission

Spherical blob filled up by tangled magnetic field and relativistic electrons , where the electrons spinning around the magnetic field lines are producing synchrotron emission .

basic assumptions

spherical homogeneous source (R [cm])
uniform electron density (K [cm⁻³])
uniform magnetic field intensity (B [G])
power law electron energy distribution:

 $N(\gamma) = K\gamma^{-n}$ for $\gamma_{\min} \leq \gamma \leq \gamma_{\max}$,

or double (broken) power law distribution:

synchrotron spectrum

 $N(\gamma) \sim \gamma^{-n} \rightarrow \alpha = (n-1)/2 \rightarrow F(\nu) \sim \nu^{-\alpha}$

synchrotron self-Compton emission

A blob filled up by tangled magnetic field and relativistic electrons . The electrons generate synchrotron emission and up-scatter the synchrotron radiation field . (inverse-Compton radiation).

synch & inv Compton spectra $\nu \to F(\nu)$

synch & IC spectra $\nu \rightarrow \nu F(\nu)$

double power law spectrum

transformation to the observer's frame

frequency transformation:

$$\nu_{s/c} = \frac{\delta}{1+z}\nu'_{s/c}$$

flux transformation:

$$F_{s/c} \propto \delta^{\mathbf{3}}(1+z)I'_{s/c}$$

where:

$$\mathbf{\delta} = [\Gamma(1 - (v/c)\cos\theta)]^{-1}$$

is the Doppler factor.

Mrk 501 – multifrequency emission

(NED, Pian et al. 1998, Djannati-Atai et al. 1999 – observations, Katarzyński et al. 2001 – modeling) ssc models... – p.12/30

TCfA

evolution of particle energy spectrum

 $\frac{\partial N(\gamma,t)}{\partial t}$

$$\frac{\partial}{\partial \gamma} \left\{ \begin{bmatrix} C_{\text{acc}}(\gamma, t) - C_{\text{adia}}(\gamma, t) - C_{\text{rad}}(\gamma, t) \end{bmatrix} N(\gamma, t) \right\}$$
$$\frac{N(\gamma, t)}{t_{\text{esc}}} = Q(\gamma, t) \leftarrow \text{kinetic equation}$$

- acceleration by a shock wave $\overline{C_{\rm acc}} = \frac{\gamma}{t_{
 m acc}}$
- cooling due to adiabatic 3D expansion $C_{\text{adia}} = \frac{\gamma}{t}$
- radiative cooling $C_{\text{rad}} = \frac{4}{3} \frac{\sigma_{\text{T}}}{m_e c} \gamma^2 \left[U_{\text{B}} + U_{\text{rad}}(\gamma, t) \right],$ where $U_{\text{rad}} = \frac{4\pi}{c} \int_{\nu_{\min}}^{\nu_{\max}(\gamma, t)} I_{\text{syn}}(\nu, t) d\nu$

■ particle injection $Q(\gamma, t) = Q_0 \gamma^{-n}$ for $0 < t < t_{inj}$

problems with the evolution

- To solve kinetic equation $(N(\gamma, t) =?)$ we have to describe radiative cooling that depends on the synchrotron radiation filed (U_{rad}) that in turn is directly connected with the particle energy spectrum $(N(\gamma, t))!$
- It's quite difficult to get double power law particle energy distribution, where n₁ ≃ 2 and n₂ > 3. The radiative cooling is increasing the index only by factor one (n + 1). Injecting for example power law spectrum Q ~ γ⁻² that gives n₁ = 2 we may obtain n₂ = 3. On the other hand to explain most of the observations it's necessary to use n₁ ≃ 2 and n₂ = 4 → 5!

different approaches

Particle acceleration all over a source with the same efficiency $\frac{\partial N}{\partial t} + \frac{\partial}{\partial \gamma} \{ [C_{acc} - C_{rad}] N \} = 0, N(t = 0) \neq 0$ (e.g. Katarzyński et al. 2006).

One side injection into box like source, the injection is mimicking shock wave $\frac{\partial N}{\partial t} + \frac{\partial}{\partial \gamma} \{C_{\text{rad}}N\} = Q, N(t = 0) = 0$ (e.g. Chiaberge & Ghisellini 1999).

Precise description of the acceleration inside a shock wave and the spectrum evolution inside downstream region of the shock. Two different kinetic equations are required (e.g. Kirk, Rieger & Mastichiadis 1998).

light crossing time effects (LCTE)

External LCTE - external observer receives at given time emission produced by different parts of a source at different times.

Internal LCTE - radiation field at given position and time inside a source is a sum of local emission and contributions from other parts of the source created at different times.

selected models

- How to describe in relatively easy way external LCTE was shown for the first time in the model proposed by Chiaberge & Ghisellini (1999). They assumed a box like source created by relativistically moving shock wave, however, they do not describe particle acceleration inside the shock.
- Internal LCTE for the first time was taken into account in the model developed by Sokolov, Marscher and McHardy (2004). However, they assume $U_B \gg U_{rad}$ therefore synchrotron radiation field has no impact for the evolution of the particle energy spectrum.

PKS 2155-304 - H.E.S.S. & Chandra observations in 2006

PKS 2155-304 - H.E.S.S. & Chandra observations in 2006

PKS 2155-304 - H.E.S.S. & Chandra observations in 2006

PKS 2155-304 - H.E.S.S. & Swift observations in 2006

Summary

- There is no scenario that is able to precise describe SSC emission taking into account light crossing time effect and the particle evolution!
- Simple models are able to well explain observed spectra, however, some of the assumptions made in such modeling seems to be not realistic.
- More complex scenarios are able to explain not only the spectra but also observed light curves. However, as stated above such models are not precise.

References

Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2007, ApJ, 664, 71 Chiaberge, M., & Ghisellini, G., 1999, MNRAS, 306, 551 Djannati-Atai, A., Piron, F., Barrau, A., et al., 1999, A&A, 350, 17 Foschini, L., Ghisellini, G., Tavecchio, F., et al. 2007, ApJ, 657, 81 Katarzyński, K., Sol, H., & Kus, A., 2001, A&A, 367, 809 Katarzyński, K., Ghisellini, G., Mastichiadis, A., et al. 2006, A&A 453, 47

Kirk, J. G., Rieger, F. M., & Mastichiadis, A., 1998, A&A, 333, 452
Pian, E., Vacanti, G., Tagliaferri, G., et al., 1998, ApJ , 492, L17
Sokolov, A., Marscher, A. P., McHardy, I. M., 2004, ApJ, 613, 725