Studing the hardness maps in HESS data

Michał Dyrda MPIK, Heidelberg IFJ PAN, Kraków

Heidelberg HESS analysis

- wobble_chain main program to analysis
- Searching for data coordinates or name
- Choice hard and/or standard cuts
- Software C++ i ROOT
- Results maps, spectrum, lightcurves

Standard vs. hard cuts

- Crab Nebula "standard candle" of VHE gamma astronomy
- "selection cuts" maximum σ for sources
- Optimalization simulations + real background data
- With background σ growths proportionally to $\int t_{obs}$
- Standard cuts for sources with flux 10% Crab Nebula, with simillar spectrum maximum σ/Jt_{obs}
- Hard cuts 1% of Crab Nebula flux, hard spectrum (Γ =2)
- Hard cuts better for faint sources with rather hard spectrum
- Hard cuts give higher significance at the expense of energy threshold and cuts efficiency
- Hard cuts useful because of the reduction of systematic uncertainties -> background reduction relative to signal

Pulsar Wind Nebulae

- Pulsars sources of powerful winds of highly relativistic particles
- Strong shocks places of particle acceleration
- Inverse Compton scattering results in VHE gamma rays

HESSJ1809-193

- Observations ~25 hours, 3600 gamma events
- Analysis standard and hard cuts
- Pulsar PSR J1809-1917, P=83 ms (Vela type)
- Offset of the VHE emission from pulsar due to pulsar proper motion ?
- Energy flux 1-10 TeV: 1.3•10⁻¹¹ erg/s•cm²
- Hardness map to study structure of the source in high and low energies
- Also difference in photon hardness in the middle and near boundary
- HESS J1809-193 PWN candidate

$$\varepsilon_{\gamma} \equiv L_{\gamma} / \dot{E} = 1.2$$

Hard cuts

Standard cuts

Hard cuts

SkyMap

Standard cuts

Spectrum - hard cuts

Spectrum - standard cuts

Hardness map – non standard approach

$$HR = \frac{standard}{hard}$$

1 TeV threshold

Below 1 TeV

Above 1 TeV

Maps smoothed with ASMOOTH algorithm with parameter sigmin=4

HR map – 1 TeV

HR = hard/soft

1 TeV Threshold

Below 1 TeV

Above 1 TeV

Maps smoothed with ASMOOTH algorithm with parameter sigmin=2

HR map – 1 TeV

Sources identification

HR map with radio intensity contours

SNR RX J1713.7-3946 and HESS J1718-385

- RX J1713.7-3946 supernovae remnant, shell type, shock place of particle acceleration
- Observations: ~63 h, 6702 events
- 1.6^o in the direction South–West -> HESS J1718-385 PWN candidate
- Observations: ~82 h. First only for RX J1713.7-3946
- Gamma ray source: ~0.14^o on south from pulsar PSR J1718-3825 – type Vela, τ=90 kyr, P=75 ms
- Energy flux of HESSJ1718-385: (1-10) TeV = 2.9•10⁻¹² erg s⁻¹ cm⁻²
- PSR J1718-3825: d~4 kpc, $\dot{E}=1.3\cdot10^{36} erg s^{-1}$

$$\varepsilon_{\gamma} \equiv L_{\gamma} / \dot{E} = 0.5$$

RX J1713.7-3946, HESSJ1713-385

SkyMap

RX J1713.7-3946, HESSJ1713-385

1 TeV threshold

Maps smoothed with ASMOOTH algorithm with parameter sigmin=4

Hardness map – 1 TeV

Different wavelength HESS J1718-385

Radio emission colerated with IRAS Sky Survey, which suggests termal source

> Radio map from Molonglo Galactic Plane Survey at 843 MHz

Conclusions

- HR maps can be additional useful tool in analyzing gamma ray observations
- Basic difficulty small photon statistics
- All effects on HR maps must be always verified with respect to original data