

Run Quality and Run Selection

B. Khélifi

Laboratoire Leprince-Ringuet, Ecole Polytechnique IN2P3/CNRS

Run quality

1) Atmospheric quality

- Stability
- Absolute transparency

2) Telescope accuracy

- Pointing accuracy
- 3) Camera
 - Working channels
 - Individual trigger rate
- 4) Array trigger rate

Main variables

- Telescope trigger rate
- Central trigger rate
- Number of b roken pixels" (temporary non-usable pixels)

Criteria

Secondary (optional) variables

- Dead time fraction
- Tracking accuracy
- Data from radiometers, LIDAR, weather station
- Level of night sky background (NSB)

Trigger data

Stability of the trigger rate per run

Straight line fit on:

- Acquisition rate
- "True" rate
- Relative slope or Variation: p1/<rate>*100.
- Dispersion: RMS around this line

Trigger data (2)

B. Khélifi, LLR

Trigger data (3)

Relative Dead Time mos

Trigger data (4)

Mean value of the trigger rate

Dependency with:

- Dead time
- Zenith angle
- Time (ageing, PMT gain)
- ⇒ Needed to be "c orrected"
 - Meteo issues
 - Hardware issues (trigger, cameras, ...)
- ⇒ There have to be identified

• An example of selection:

B. Khélifi, LLR

B. Khélifi, LLR

Use of meteo data (humidity, LIDAR, IR radiometer) is difficult

- No clear correlation between the current meteo data and the trigger rate after the 6 byious" cuts on the trigger stability
- No clear correlation between the current meteo data and the integral flux variations
 - Ex: Light curve of the Crab

Meteo data (2)

Nov. 19th 2007, Warsaw

Meteo data (3)

Nov. 19th 2007, Warsaw

Meteo data (3)

Meteo Data (4)

B. Khélifi, LLR

Meteo Data (5)

Nov. 19th 2007, Warsaw

• LIDAR data: backscatter vs Muon efficiency

B. Khélifi, LLR

- Main criteria are well identified and well known
- Three (four?) methods for the run selection:
 - APC (contact: Emma De Ona-Wilhelmi)
 - Berlin ??
 - Heidelberg (contact: Karl Kosack to check)
 - Jussieu (contact: Mathieu de Naurois)

Jussieu interface

B. Khélifi, LLR

- Main criteria are well identified and well known
- Three (four?) methods for the run selection:
 - APC (contact: Emma De Ona-Wilhelmi)
 - Berlin ??
 - Heidelberg (contact: Karl Kosack to check)
 - Jussieu (contact: Mathieu de Naurois)
- However, the meteo informations seem to be not sufficient to reduce our systematic errors on flux measurement