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Synopsis

• Super-Eddington objects in nature 

• How can it be? 

• What do super-Eddington systems look like? 

• Implications to Accretion Systems



The Eddington Limit

• The Eddington luminosity is the luminosity 
for which the radiative force balances 
the gravitational pull
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• Note: For accretion disks effective area is 
larger, giving higher Ledd:
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Why spherical objects first?

• Accretion disks are super-Interesting but more 
complicated than spherical objects 

• We therefore study spherical objects first -    
Learn how super-Eddington systems behave 

• Then apply to Accretion disks



Smith & Frew 
 2010

Ledd(M=150Msun X=0.55) 
Light Curve of Eta Car 5

Figure 2. The historical light curve for η Carinae. Panel (a) shows the full historical light curve from Frew (2004) in blue, with limits in
gray. Panel (b) zooms in on the Great Eruption during 1822–1864. During this time interval, the previous light curve from Frew (2004)
is in blue (points and dotted lines), while the revised light curve with new archival data that we discuss in this paper appears as black
dots with error bars. Notes about the apparent color are listed above the light curve. The orange vertical dashes show predicted times of
periastron passage if one simply extrapolates back from the currently-observed orbital cycle with a stable 2022.7 day period (Damineli
et al. 2008), whereas the red hash marks are similar but with a shorter (95%) period before 1848. The dashed red horizontal line shows
the quiescent magnitude of η Car as it would appear with zero bolometric correction.

Nearly all contemporary reports during the Great Erup-
tion describe η Car as ‘reddish’ or ‘ruddy’ (e.g. Mackay 1843;
Smyth 1845; Jacob 1847; Moesta 1856; Gilliss 1856; Abbott
1861; Tebbutt 1866), these observers sometimes making di-
rect comparison of its colour with other stars, or even Mars.
We have estimated an approximate B−V colour index from
the these direct comparisons, as summarised in Table 2. The
nominal uncertainties on these visually estimated colours
are approximately ±0.3 mag, following Schaefer (1996a). We
stress that these values should not be taken as indictive of
the true continuum temperature, as η Car probably had very
intense Hα emission that would make it appear considerably
redder to the naked eye than its actual (and unknown) B−V
colour index would otherwise indicate. Nevertheless, the val-
ues in Table 2 can be used as a relative indicator to show
that Eta tended to redder colours during the laters stages of
the Great Eruption. This was partly due to a changing Hα

equivalent width, but possibly also due to increasing circum-
stellar reddening due to dust condensation during the erup-
tion (note that the grain condensation timescale is roughly
5–10 yr; see Smith 2010).

The gap in the light curve between 1838 and 1841 is
unfortunate. Is it possible that other brief outbursts oc-
curred during this period? While Maclear and Smyth were at
the Cape of Good Hope after Herschel’s departure in 1838,
they were occupied by other astronomical pursuits. How-
ever, it is likely they would have noticed if Eta had bright-
ened beyond zero magnitude, even though they were not to
specifically monitor its brightness until 1842. Interestingly,
the brief outburst in Mar/Apr 1843 was noticed by three
non-professional observers, specifically Maclean, Leps and
Mackay (see Leps 1843; Baily 1843; Mackay 1843). Appar-
ently once η Car appeared brighter than mag 1, even casual
observers noticed it (see also Spreckley 1850). In this con-

Ledd(M=150Msun X=0.55) 

η-Carinae - An LBV



Classical Novae

• When enough hydrogen 
is accreted on a white 
dwarf, it ignites.  

• Theory: It should shine 
close to the Eddington 
limit (Paczynski 1970) 

• Reality: Can be up to 
20 times the LEdd!

Core
(WD)

Burning Shell (H)

Envelope



Specific Novae Are Super-Eddington  
for a long time if observed in U V

Extreme Ledd

“upper limit”
(M=1.4Msun, X=0) 

Reasonable Ledd 
“upper limit”

(M=1.2Msun, X=0.3) 

Schwarz et al. 1998
Nova LMC 1988#1



Photospheric radius << v t

Schwarz et al. 1998
Nova LMC 1988#1

at 1280 and 1310 Å depend on the CNO abundances in the model
atmosphere. In addition, the IUE spectrum shows strong emission
lines from CNO elements that are either not present or are weakly
present in the synthetic spectrum (see Table 3). These lines are low-
ionization (< 50 eV) permitted or semiforbidden transitions of CNO
to ground or metastable states. Most of these semiforbidden transi-
tions are currently not in the NLTE line lists, but will be included in
future versions of PHOENIX. In Section 4.3 we describe how this

combination of CNO absorption features and emission lines can be
used to constrain the CNO abundances.

In Fig. 7(a) we show the May 5 IUE spectra (solid line) as an
example of the late ‘pre-nebular’ phase. The best-fitting synthetic
spectrum (dotted line) has a model temperature of 40 000 K. The
synthetic spectrum fits the pseudo-continuum and the weaker
features seen in the IUE spectra, but does not fit many of the
emission lines. As stated before, these semiforbidden emission lines
are not in the current PHOENIX NLTE line list. The synthetic spectrum
exhibits extremely strong emission lines at 1397 and 1856 Å. The
1397-Å line is Si iv and is not currently treated in NLTE. The only
ions of silicon that are treated in NLTE are Si ii-iii. This situation is
analogous to our model atmosphere calculations with multiple
species of iron treated in NLTE. In Paper I we showed that treating
Fe ii in NLTE (all other species in NLTE except for Fe i and Fe iii)
resulted in an over-ionization of Fe ii. When Fe i and Fe iii were
included in NLTE, the NLTE over-ionization of Fe ii was reduced
which in turn increased the concentration of Fe ii in the line-
forming regions. We believe that a similar effect is causing the
anomalous high strength of the Si iv line at 1397 Å. Since only Si ii-
iii is treated in NLTE, Si iii is over-ionized, resulting in an increase
in the concentration of Si iv. A model atmosphere with Si ii-v in
NLTE would therefore produce a more realistic synthetic spectrum
with weaker Si iv lines. The line at 1856 Å is the strongest
resonance transition of Al iii but, currently, none of the ions of
aluminium are treated in NLTE and the strength of this line is
probably due to NLTE effects.

Evolution of the classical nova LMC 1988 1 939

q 1998 RAS, MNRAS 300, 931–944

Figure 9. Top plot: model radius at the outermost point in the model atmosphere (defined as the point where the gas pressure is 10¹3 dyn cm¹2) as a function of
time after Vmax. The line represents the radius of material ejected during the initial outburst (set at 8 d prior to Vmax) at a velocity of 2000 km s¹1. Middle plot:
electron density of the model atmosphere at a radius of 1013 cm as a function of time. Bottom plot: electron temperature of the model atmosphere at a radius of
1013 cm as a function of time.

Figure 8. Evolution of the model temperature in the synthetic spectra that
best fit the observed spectra. The error bars represent 6500 K in the first
eight observations, and 62500 K in the last three observations.
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Novae have steady state winds with photospheres at   rsonic ≪ rph ≪ v t (Bath & Shaviv 1976) 

Novae have steady state have steady super-Eddington continuum driven winds (Shaviv 2001) 



Peak Luminosity of Classical Novae is super-Eddington

Ledd(M=1.0Msun 

Ledd(M=1.4Msun 

Novae�in�M31�

Capaccioli et al. 1989(vd = rate of decline in mags/days  = 2 / t2)



	 iPTF14hls  
• A supernova?

Arcavi et al. 2017



	 iPTF14hls  
• Not a supernova, it has a steady state wind  rph ≪ v t 

Arcavi et al. 2017
241

Figure 4 The photospheric radius of iPTF14hls (filled symbols) estimated in two dif-242

ferent ways: (1) Using blackbody fits to the broad-band BVgi photometry (blue) and (2)243

using the derived expansion velocities of Fe II 5169 Å (Fig. 3) times the elapsed rest-244

frame time since discovery (red). The same quantities are shown for the prototypical245

Type II-P SN 1999em (empty symbols; after correcting for the blackbody dilution factor)22.246

Error bars denote 1� uncertainties and are sometimes smaller than the marker size. For247

SN 1999em the radii overlap as expected, but for iPTF14hls they diverge, indicating that248

the line-forming region may be detached from the photosphere (if the explosion occurred249

before discovery the divergence is even more extreme).250
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	 iPTF14hls  
• Not a supernova, it is also episodic

Arcavi et al. 2017

Mv ~ -15.5

2014

Mv ~ -18.5
500 Ledd of 100 Msun!



super-Edd in Nature

• LBV Giant Eruptions 

• Classical Nova eruptions 

• Type IIn (and Ibn) precursors  

• Post failed-SN Iax winds from WD remnant  

• ULXs (which are not IMBH…)



How can objects be super-Eddington?

• Secret: Atmospheres are porous 

Hot

Cold

Rarified 

Dense

On average, the radiation “sees” a smaller 
opacity (per unit volume)

(Shaviv 1998)

NJS 1998



Instabilities close to Ledd

• There are many radiative 
hydrodynamic instabilities 
under various conditions  

• Radiation + Hydro + 
stratification (NJS, 2001) 

• Radiation + B-field (Arons 
‘92, Hsu et al. ‘97, Gammie 
‘98, Blaes & Socrates ‘01, 
Begelman ’01) 

• s-mode instability under 
special opacity laws (Glatzel 
1994; Papaloizou et al. 
1997) 

middle of the range expected over the region based on the
linear analysis.

7. SHOCK TRAINS

Begelman (2001) showed that a radiation-supported atmo-
sphere with a strong magnetic field can sustain a train of prop-
agating shocks. A one-dimensional analytic solution was found
by neglecting the change in background quantities from one
shock to the next so that the flow is periodic and assuming rapid
photon diffusion so that the gas is isothermal. In the solution,
Lagrangean fluid elements move back and forth along inclined
magnetic field lines. Where the density is low, the gas transmits
a large radiative flux and is driven up field lines by the radiation
force. On striking high-densitymaterial it shocks, is compressed,
and slides back down the field under gravity. The solution relates
the inclination and spacing of the fronts, the density jump across
the shocks, and the overall flux of radiation through the atmo-
sphere. Given any two of these four quantities, the other two can
be calculated.

The shock train, like the photon bubble instability, is a
propagating disturbance that requires a magnetic field and is
driven by radiative flux changes associated with density per-
turbations. In this section we show that photon bubbles reach-
ing nonlinear amplitudes become shock trains. To spatially
resolve the fast-growing linear modes with wavenumbers near
the inverse gas pressure scale height, we use calculations of the
disk surface layers. A fiducial calculation is described in x 7.1
and compared with the nonlinear analytic solution in x 7.2. The
stability of the shocks is discussed in x 7.3 and the dependence
on magnetic field strength and orientation in x 7.4. Limits on
growth near the disk photosphere are examined in x 7.5. The
wavelengths of disturbances reaching order unity generally
increase with time. Calculations extending through the whole
thickness of the disk have lower resolution, but allow the shocks
to becomemore widely spaced and better show the effects of the
vertical gradients in background quantities. They are described
in x 7.6.

7.1. Fiducial Calculation

A fiducial calculation of the growth of shocks in the disk
surface layers is made using conditions identical to those in

x 6.1, except that the field is tilted 3! from horizontal and the
random initial density perturbations have amplitude 0.1%. The
domain is divided into 128 ;128 zones. The calculation passes
through three main phases: exponential growth, merging shocks,
and a steady shock pattern (Fig. 14). During an initial transient
lasting 0.1 orbits, the density perturbations lead to disturbances
in the flux and to gas motions. Photon bubble modes then be-
come established and grow exponentially. Modes with wave
fronts tilted to the same side as the magnetic field grow fastest.
The most unstable has 3 wavelengths in the domain width and
7 in the height and grows at 1.89!. Velocities exceed 10% of
the isothermal gas sound speed at 0.72 orbits and the wave
pattern steepens into a train of traveling shocks, with the same
orientation as the wave fronts of the fastest linear mode. Growth
slows at 0.9 orbits, when densities range from half to twice their
initial values. During the second phase, shocks merge because
gas accelerated through the low-density regions reaches lower
speeds if the fronts are closer together. A trailing shock prop-
agates faster into the slow-moving upstream gas, eventually
overtaking the shock ahead. The merged fronts are more and
more widely spaced and the density contrast and mean radiation
flux increase. Mergers continue until at 1.6 orbits there is just
one front in the domain width and two in the height. The hor-
izontal spacing of fronts is then constant during the third phase.
Propagation is fastest near the bottom edge where the local flux
is greatest due to the fixed temperature of the boundary. The
fronts are sheared and become more nearly horizontal over time.
The mean flux through the top boundary and the gas speeds
increase until at 1.74 orbits ram pressure exceeds magnetic
pressure at some locations, the fields buckle, the pattern is dis-
rupted, and material is lost through the top boundary.

7.2. Comparison with Analytic Solution

We compare the results of the fiducial calculation against an
improved version of the Begelman (2001) shock train solution.
Because the flux is proportional to the radiation energy gradient
divided by the density, the curl of !F ought to be zero. This is
ensured by choosing a form for the flux

F ¼ F0 #
cg

"F

! # !0
!

! "
sin #f f̂ þ 4Ev0"F

3cg
k̂

! "
; ð12Þ

Fig. 14.—Time sequence showing shock train development in the fiducial calculation of the disk surface layers. The magnetic field is initially 3! from horizontal
and has pressure 25% of the radiation pressure at domain center. Results are shown at 0.7, 1.1, 1.5, and 1.77 orbits (left to right) with densities marked by colors on a
common logarithmic scale and velocities by arrows. The longest arrows correspond to speeds of 4 ;105, 1 ;107, 2 ; 107, and 6 ;107 cm s# 1 (left to right). The first
panel falls at the end of the linear phase, the second in the shock merger phase, the third near the final shock merger, and the fourth at the start of strong outflow
through the top boundary.

PHOTON BUBBLES IN RADIATION-DOMINATED DISKS 279No. 1, 2005

Turner�et�al.�2005�

�Takahashi�et�al.�2013�



Instabilities close to Ledd

Jiang et al. 2015 



Full Picture

Atmospheres are unstable as they approach 
the Eddington Luminosity

Atmospheres become Inhomogeneous

Effective Opacity is Reduced

Effective Eddington Luminosity is 
Increased

What do these atmospheres look like?
“...The answer my friends, is blowing in the wind, 

the answer is blowing in the wind…”



Wind from super-Edd Atmospheres

• Theory predicts wind from region where structure 
becomes optically thin (transparent)

ṁ = W (L� LEdd)

vsc

κeff = κeff,min < κ0 κeff  →  κ0

deep outside

NJS (2002)



Structure of Porous atmospheres

• Prediction:

NJS (2000)

Shaviv & Dotan: Super Eddington Systems 351

WD

WD

90% of CNO Burning

 Convective

 “Porous”
Atmosphere

 Super-sonic wind

1.41 RWD7.9x107 K

10.5x107 K

5700 K
8x1012 cm

2.5x104 Lsun

8200 K
1.2x1013 cm

1.5x105 Lsun

1.13 RWD

1.01 RWD

5x1010 cm 2x1011 cm

Fig. 1. The structure of a CNO shell burning 1M�
white dwarf with a 10�4 M� envelope. Unlike the top
panel which is described by the classical CMLR,
the bottom panel describes an atmosphere in which
the radiative instability is taken into account, such
that it can become porous. This allows the occur-
rence of a super-Eddington steady state. A convec-
tion zone arises and its inner boundary is well within
the nuclear burning zone. A continuum driven wind
is launched such that the photosphere is in a wind.

mogeneities (“blobs”) become optically thin,
the atmosphere becomes SED, and a wind
is driven. Shaviv (2001b) has shown that all
steady state SED atmospheres will drive a wind
with a mass loss of Ṁ = W(L � LEdd)/cvs,
where W is a dimensionless wind constant,
which can be a weak “function” of L/LEdd, and
vs is the speed of sound at the base of the wind.
This mass loss formula correctly predicts the
mass loss observed in novae and in ⌘-Car.

When combining the above understand-
ing, we can explain di↵erent SED objects—
novae and ⌘-Car, and correctly predict several
of their main characteristics. We can then ap-
ply this understanding to other systems which
are not observationally constrained—Super-
Massive Objects (SMO’s) and high accretion
rate disks.

2. Classical nova eruptions

It was for long believed that once the ther-
monuclear runaway of classical novae stabi-
lizes, the nova should be described by the clas-
sical Core Mass Luminosity Relation (CMLR,
Paczyński 1970), that is, an inert core, a shell
burning nuclear material, and an envelope
which saturates at the Eddington luminosity.

However, classical novae exhibit long du-
ration SED luminosities while in their eruptive
state. At least, this is the conclusion that should

Fig. 2. The structure of a super-Eddington star.
(A) Deep inside the star where the density is suf-
ficiently high, any excess flux above the Eddington
luminosity is carried by convection. Thus, we have
a bound interior with Lrad < LEdd < Ltot. (B) Farther
out, where convection is ine�cient, radiative insta-
bilities cause the atmosphere to become inhomoge-
neous. This reduces the e↵ective opacity and thus
increases the e↵ective Eddington luminosity Le↵

Edd.
As such, this layer is bound, not because the radi-
ation flux is lowered (as occurs in the convective re-
gion), but because the e↵ective opacity is reduced.
Thus in this layer, LEdd < Lrad < Le↵

Edd. (C) Opacity
reduction can operate only if the inhomogeneity
clumps are optically thick. Farther out, at lower den-
sities, where the clumps become transparent, the ef-
fective opacity returns to the microscopic value and
Le↵

Edd ⇡ LEdd. A sonic or critical point in the mass
outflow will be located where L = Le↵

Edd & LEdd.
(D) Since the mass loss rate is large, the wind is op-
tically thick and the photosphere resides in the wind
itself.

be reached when combining that the peak lu-
minosity of novae (with MWD >⇠ 0.5M�, Livio
1992) is always SED and that in all cases where
the bolometric evolution was recovered (us-
ing UV observations), it was shown to decay
slowly (e.g., Friedjung 1987, Schwarz et al.
2001, Shaviv 2001b).

To understand their behavior, we solved for
the steady state shell burning. When porosity
is not included, the classical CMLR is recov-
ered. However, once we introduce a modified
opacity law of the form  = 0 if � < �crit and
 = 0(�/�crit)�↵ for � > �crit, together with
a SED mass loss described above, we obtain a



Structure of Porous atmospheres

• 18 years later + 7000 CPU years (!)

Jiang et al. (2018)



Note: Winds are also unstable

Sundqvist, Owocki & Puls (2018)

A&A 611, A17 (2018)

Fig. 2. Spatial and temporal variations of log density relative to the initial, smooth CAK steady state at t = 0, with color ranging from densities a
decade below the t = 0 value (blue) to a decade above (red). The vertical variation extends from the subsonic wind base at the stellar surface R⇤
to a height of one R⇤ above. For clarity, the lateral variation is displayed over twice the horizontal box length 0.1R⇤. The upper row shows time
evolution over the initial 100 ks after the CAK initial condition in steps of 10 ks; the bottom row uses the same step size of 10 ks to show the
evolution between 300 and 400 ks, long after the initial condition has developed into a statistically steady turbulent flow.

Fig. 3. As in Fig. 2, spatial and temporal variations of log density relative to the initial, smooth CAK steady state at t = 0 are shown, with color
ranging from densities a decade below the t = 0 value (blue) to a decade above (red). Here the vertical variation only extends between 1.9R⇤ and
2.0R⇤ and the lateral variation is displayed over one horizontal box of 0.1R⇤; there are thus 100 ⇥ 100 discrete mesh points in each of the displayed
squares. From left to right are shown a 2 ks time evolution long after the initial condition, in steps of 0.5 ks.

snapshots during the first 100 ks of the simulation, illustrating
how already after a few dynamical flow times tdyn ⇡ R⇤/h3maxi ⇡
11 ks the characteristic shells, seen in all 1D LDI simulations,
break up in what initially seem to resemble Rayleigh–Taylor
structures. The lower panel then shows how over time the struc-
tures eventually develop into a complex but statistically quite
steady flow, characterized now by localized density enhance-
ments (clumps) of very small spatial scales embedded in larger
regions of much lower density.

Figure 3 zooms in on the same log density in a small 0.1R⇤
square box over a short time sequence long after the initial condi-
tion. This illustrates in greater detail the quite complex 2D den-
sity structure showing a range of scales, as well as high-density
clumps with different shapes. The figure also demonstrates that
although the structures are small, they are clearly resolved by our
numerical grid.

Figure 4 displays temporal and spatial variations in radial
velocity, illustrating essentially the same kind of outer wind
shock structure and high-velocity streams as in corresponding
1D simulations; however, the velocity now also exhibits exten-
sive lateral variation, reflecting again the breakup of 1D shells
into small-scale 2D clumps.

Figure 5 emphasizes some similarities between these 2D
simulations and the corresponding 1D simulations by show-
ing a radial cut through the simulation box at a time snapshot
(again taken long after the simulation has developed into a
statistically steady flow). The figure demonstrates how such
radial cuts indeed still show the characteristic structure of the
nonlinear growth of the LDI, namely high-speed rarefactions
that steepen into strong shocks and wind plasma compressed
into spatially narrow clumps separated by rather large regions
of rarefied gas. There are some differences though; in addition

A17, page 4 of 10

J. O. Sundqvist et al. : 2D wind clumping

Fig. 7. Spatial and temporal variations of log density, radial velocity, and lateral velocity for a model with stellar rotation at the surface 3y =
300 km s�1 (see text), with color-coding as in Figs. 2 and 4. The vertical variation in this simulation extends only from 1.0 to 1.5 R⇤, but the lateral
variation is displayed as before over twice the horizontal box length 0.1R⇤. From left to right are shown the time evolution over 350 ks after the
CAK initial condition, in steps of 50 ks.

simulate the 2D nonlinear evolution of the strong LDI that causes
clumping in the stellar winds from hot, massive stars. Account-
ing fully for both the direct and diffuse radiation components in
the calculations of both the radial and lateral radiative accelera-
tions, we examine in detail the small-scale clumpy wind structure
resulting from our simulations.

Overall, the 2D simulations show that the LDI first manifests
itself by mimicking the typical shell structure seen in 1D simu-
lations, but these shells then quickly break up because of basic
hydrodynamic instabilities (e.g., Rayleigh–Taylor) and the influ-
ence of the oblique radiation rays. This results in a quite complex
2D density and velocity structure, characterized by small-scale
density clumps embedded in larger regions of fast and rarefied
gas.

While inspection of radial cuts through the 2D simulation
box confirms that the typical radial structure of the LDI is intact,
quantitatively the lateral filling in of gas leads to lower values
of the clumping factor than for corresponding 1D models. A
correlation-length analysis also shows that, statistically, density
variations in the well-developed wind are quite isotropic;
identifying then the computed autocorrelation length with a
typical clump size gives `cl/R⇤ ⇠ 0.01 at 2R⇤, and thus also
quite low typical clump masses mcl ⇠ 1017 g. This agrees well

with the theoretical expectation that the important length scale
for LDI generated wind structure is on the order of the Sobolev
length `Sob.

4.2. Influence of rotation and topology

As noted in Sects. 2 and 3.1, the level of structure in near photo-
spheric layers is likely underestimated in the simulation analyzed
above because we chose to stabilize the wind base. To demon-
strate this further, Fig. 7 shows a test run with the same 2D
setup as before, but now introducing stellar rotation with a fixed
3rot = 300 km s�1 at the surface, and an initial condition set by
steady-state angular momentum conservation, 3y(r) = 3rotR⇤/r.
The figure shows that once the simulation has adjusted to its new
force conditions, radial streaks of high density now appear at the
surface; in other test runs, we have found that such structures are
typical for simulations with an unstable base and nodal topology.
The radial streaks in this rotating model migrate along with the
surface rotation; embedded in the larger scale structures are the
typical small-scale clumps discussed previously. As speculated
previously in Sundqvist & Owocki (2015), these tentative first
results thus suggest that rotating LDI models may quite naturally
lead to the type of combined large- and small-scale structures

A17, page 7 of 10



photospheres

• In optically thick winds, the photosphere resides in the wind. (Bath & Shaviv 1976)  

• For m-dots seen in η Car: One expects Teff ∼ 5000K 

• This is seen in the light echo (Rest et a. 2012).

Owocki & NS 2016

4 Owocki and Shaviv

Figure 2. For the AF94 opacity tables, plots of log(/e) vs. tempera-
ture T for selected densities over the logarithmic range log ⇢ = -16 to
-12 (g/cm3). The sharp drop for T < 6500K shows the “opacity cliff”,
which has a major effect in clustering wind effective temperatures around
Te↵ ⇡ 5500K for a wide range of luminosity and mass-loss-rate (see fig-
ure 3).
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Figure 3. For the AF94 opacities applied to an LTE blackbody model of an
optically thick wind, self-consistent solution for effective temperature Te↵

(in K) plotted vs. mass-loss-to-velocity ratio Ṁ/V8 (on a log scale), for
selected luminosities log(L/L�) = 6, 7 and 8. The dashed lines highlight
the narrow range of solutions with Te↵ = 5000�5500K over a 1 dex range
in Ṁ/V8. This clustering of Te↵ around 5500 K is a direct consequence of
the sharp “opacity cliff” for temperatures T < 6500K, as shown in figure
2, and discussed in the text.

M�/yr), for luminosities log(L/L�) = 6, 7, and 8. For low val-
ues of the ratio Ṁ/V8, we find high temperatures, Te↵ > 6000K,
for which the  ⇡ e, so that the solutions closely follow analytic
scaling form of equation (5).

But for increasing Ṁ/V8, for which the effective temperature
drops below 6000 K, the sharp reduction in opacity means that the
effective radius becomes nearly fixed, leading then to an effective
temperature in the narrow range Te↵ = 5500± 500K for all three
luminosities and over more than an order magnitude range in mass-
loss-to-speed ratio Ṁ/V8.

For this BB wind model with AF94 opacities, figure 4 plots
contours of log(Ṁ/V8) vs. log(L/L�) and Te↵ . The steep vertical

Figure 4. Contours of log Ṁ/V8 vs. log(L/L�) and Te↵ for the BB-wind
model with AF94 opacities. The steep vertical contours for Te↵ = 5000�
6000K show the effect of the opacity cliff in this temperature range. Thus,
the temperature is not a good diagnostic of mass loss around the opacity
cliff, but it is useful at higher temperatures, Te↵ & 6500K.

contours for Te↵ = 5000 � 6000K again show the effect of the
opacity cliff in this temperature range.

The upshot here is that, because of the abrupt opacity cliff
associated with the recombination of electrons at low temperature,
the effective temperature of this BB wind tends to become fixed in
the 5000-6000 K range, thus corresponding quite naturally to the
temperature inferred from light echo spectra of the giant eruption
of ⌘ Carinae.

5 EXTENDING THE D87 ANALYSIS

5.1 Method and original results

In one of the first attempts to estimate the spectral temperature of
LBV eruptions, Davidson (1987, D87) used escape probability ar-
guments to derive scaling equations for the temperature To at a
surface radius ro. To account for sphericity, this again assumes the
photon mean-free-path scales as a simple power-law in radius, viz.,
` ⌘ 1/⇢ ⇠ r

n. The analysis is likewise based on a mean, effec-
tively gray opacity; but instead of assuming radiative equilibrium,
it invokes a true-absorption opacity – defined as a fraction ↵o of
the total opacity o – that reduces the local luminosity (see D87
equation A2). As we discuss in section 5.3, this represents a key
difference from the gray, radiative equilibrium model given in sec-
tion 3 above.

Through an effective optical depth integral, equation (2) of
D87 relates the opacity o and density ⇢o at the reference radius
ro,

↵
1/2
o o⇢oro = An , (9)

where the coefficient An depends on the power index n. D87 equa-
tion (3) then relates the luminosity to the temperature To at this
radius ro,

L = 4Bn 4⇡r2o�T
4
o , (10)
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The Winds

• Given photospheric conditions (L, v, m-dot or Tph, M) we can 
integrate down until we reach the sonic radius.

Super-Eddington winds 3

For 1D spherical symmetry with variations only in radius r,
the above then reduce to:

Ṁ = 4⇡⇢vr2 (5)

v
dv

dr
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dr
(6)

d

dr
[Ṁ(v2

/2 + hg �GM/r) + L] = 4⇡r2
q̇ (7)

dPrad
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= �

⇢
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4⇡r2
� 4vPrad

◆
, (8)

where Ṁ is the mass loss rate, and the gas specific enthalpy hg ⌘

(5/2)kT/µ = (5/2)P/⇢ = (5/2)c2sg, with csg the isothermal gas
sound speed.

In both the momentum equation (6) and diffusion equation
(8), F = L/4⇡r2 is the radiative flux in the stellar (observer) rest
frame, while the full term in parentheses represents the diffusive
flux in the flow’s co-moving frame, which accounts for the reduc-
tion from the advective flux 4vPrad. We can thus write the associ-
ated luminosities as

L = Ldi↵ +Ladv = Ldi↵ +4⇡r2 4vPrad = Ldi↵ +Ṁhrad , (9)

where the last equality introduces the specific radiative enthalpy,
hrad ⌘ 4Prad/⇢. The various super-Eddington wind models in the
literature differ primarily in how they treat the energy transport in
equation (9). Quataert et al. (2016) included only Ladv, neglecting
Ldi↵ , while the photon tiring analyses by Owocki & Gayley (1997)
and Owocki et al. (2004) included Ldi↵ , but neglected Ladv.

In the unified models below, we show that Ladv represents a
drag on the initial acceleration by the diffusive luminosity Ldi↵ ,
but that the associated conversion of Ldi↵ to advection of radiative
enthalpy Ladv then powers and sustains the outer wind acceleration
(see, e.g., figure 6). This dual role of the advective luminosity Ladv

as both an initial drag then eventual driver of the flow acceleration
is one of the key, novel insights from our unified models.

2.2 Neglect of gas enthalpy, pressure, and sound speed

Using the mass conservation equation (5), we can recast the gas
pressure term in the momentum equation (6) to give,
✓
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2c2sg
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dc

2
sg
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.

(10)
For hot stars with mass-to-radius ratios comparable to the sun, the
surface escape speed, vesc ⇡ 600 km s�1 is much larger than the
surface sound speed, csg ⇡ 20 km s�1, giving then a sonic energy
ratio wsg ⌘ c

2
sg/v

2
esc ⇡ 10�3. At the base of a wind outflow with

optical depth ⌧ � 1, this increases as wsg ⇠ T ⇠ ⌧
1/4, implying

that for a very large optical depth ⌧ ⇠ 104, one can have a scaled
sonic energy as high as wsg ⇡ 10�2 compared to the gravitational
binding energy v

2
esc/2 = GM/R at the sonic/heating radius R.

Within the context here of initiating a radiatively driven wind
outflow from the subsurface layers of a hot, luminous star, one can
thus quite generally neglect the gas specific enthalpy hg in the en-
ergy equation (7), as well as the sound-speed terms on the right-
hand-side of the momentum equation (10), as these have little dy-
namical importance in driving the wind.

If we wish to account for a smooth transition to a subsonic,

nearly hydrostatic layer below the heating radius, we could option-
ally retain a finite value for the sound speed on the left-hand-side of
(10). Appendix §B presents results for models that include a small,
but finite sonic energy wsg = 10�3

� 10�2, for a case in which
the energy deposition is taken to be spread over narrow, but finite
extent, of order the gravitational scale height in the pre-heating re-
gion.

But for the idealized model below with an arbitrarily narrow
heating region, we simply take the zero-sound-speed limit even for
this left-hand-side term, and use this to derive wind solutions that
start from an initial speed v(R) = csg ! 0.

2.3 Energy and momentum requirements for outflow

For this model of heating concentrated in a very narrow region cen-
tered on a radius R, i.e., 4⇡r2

q̇ = �Ė �(r � R), the total net
heating

�Ė(r) ⌘

Z
r

R

4⇡r02
q̇ dr

0 (11)

is a constant for r > R. The integral of the energy equation (7) can
then be solved for the luminosity for all r > R,

L(r) = �Ė(r) + L⇤ � Ṁ

✓
v(r)2

2
�

GM

r
+

GM

R

◆
, (12)

where L⇤ represents the underlying stellar luminosity below this
heating radius; for convenience below, we define Lo = �Ė + L⇤
as the constant, total energy rate input at the lower-boundary radius
r = R of the induced wind outflow.

In equation (12) we have again neglected the kinetic energy
associated with the initial sonic-point flow speed, since as noted
above this is small compared to the gravitational binding energy
GM/R.

The terms in (12) proportional to the mass loss rate Ṁ rep-
resent the photon tiring effect, i.e. the loss of radiative luminos-
ity due to the work done to accelerate the flow and lift it out of
the gravitational potential. Note that to ensure that the luminosity
remains positive even in the case with vanishing terminal speed
v1 ⌘ v(r ! 1) = 0, we require that the mass loss rate must be
below a maximal value given by

Ṁmax ⌘
Lo

GM/R
= 0.032

M�

yr
Lo

106L�

R/R�

M/M�
. (13)

Defining a photon-tiring parameter,

m ⌘
Ṁ

Ṁmax

=
ṀGM

RLo
, (14)

we see that requiring m 6 1 represents a fundamental energy con-
dition that there is sufficient luminosity to drive the wind to full
escape from the gravitational potential.

In terms of momentum, a further fundamental requirement is
that the radiative acceleration exceed gravity, which requires that
the base luminosity Lo exceed the Eddington luminosity LEdd ⌘

4⇡GMc/. Defining an Eddington parameter

�o ⌘
Lo

LEdd
=

Lo

4⇡GMc
, (15)

this momentum condition takes the form �o > 1. For a core lu-
minosity that is sub-Eddington, L⇤ < LEdd, the heating radius
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ṁ = W (L� LEdd)

vsc

• W is expected to be O(1), and slowly falling with 𝚪 (higher 
𝚪, more nonlinear structure, lower effective opacity).

Empirically obtaining W(𝚪)



ṁ = W (L� LEdd)

vsc

• W is expected to be O(1), and slowly falling with 𝚪 (higher 
𝚪, more nonlinear structure, lower effective opacity).

Empirically obtaining W(𝚪)

W ~ 3 𝚪-1/6



Slim disks with a vertical wind
Application to Accretion Disks



Radial Structure: Equations

• Mass conservation,

 

• Radial momentum, 

 

• Pseudo-Newtonian potential

Super Eddington Accretion Disks 3

where zatm is the vertical height of the critical point, ρcrit is
the density at this point and vs is the local speed of sound.

Based on the fact that instbilities develop structure with
a typical size comparable to the density scale height in the
atmosphere, it is possible to estimate the average density at
the sonic point (Shaviv 2001b). Using this density the mass
loss can be estimated to be

Φ̇ = W F − FEdd

cvs
. (6)

where W is a dimensionless wind “function”. In principle, W
can be calculated from first principles only after the nonlin-
ear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simula-
tions of the nonlinear steady state.

Nevertheless, deriving W can be achieved in several phe-
nomenological models which depend on geometrical param-
eters such as the average size of the inhomogeneities in units
of the scale height (β ≡ d/lp), the average ratio between the
surface area and volume of the blobs in units of the blob
size (Ξ), and the volume filling factor α of the dense blobs.
For example, in the limit in which the blobs are optically
thick, one can show that W ≈ 3Ξ/32

√
ναβ(1 − α)2 (Shaviv

2001b), with ν being the ratio between the effective speed
of sound in the atmosphere to the adiabatic one. Thus, W
depends only on geometrical factors. It does not depend ex-
plicitly on the Eddington parameter Γ ≡ L/LEdd as long as
the blobs have a single length scale. Once this assumption al-
leviated, W can become a weak function of Γ (Owocki et al.
2004). Comparison to observations yields typical values of
W ∼ 1 − 10 Shaviv (2001b).

2.3 Photon-Tired Winds

An interesting modification to the above continuum driven
winds arises when the predicted mass loss is too high for the
available luminosity to push to r → ∞. This happens when
vesc ∼>

√

vsc/W , and gives rise to “photon-tired winds”
(Owocki & Gayley 1997). A wind solution with a mono-
tonically decreasing velocity is then not possible, because
the wind stagnates at a finite radius.

The behavior of photon tired winds was studied by van
Marle et al. 2009. It was found that shocks form between in-
falling material and the outflowing wind. This forms a layer
of shocks in which there is a large kinetic flux, but without
the associated mass flux. When photon tired winds arise,
the mass loss from the top of the layer of shocks is reduced
to less than the photon tired limit, and the luminosity to
less than the Eddington luminosity.

3 THE MODEL

Our goal is to construct Super-Eddington accretion disks,
namely, disks which radiate with fluxes that can locally ex-
ceed the Eddington limit. We look for solutions which are
heuristically described in fig. 1. That is, a slim disk solution.
More specifically, we have to consider the following points.

• Geometry: Although in principle, one could envision
super-Eddington accretion solutions with different geome-
tries, we look for disk like solutions. We shall assume that

the vertical length scale is sufficiently smaller than the ra-
dius, such that we can deconstruct the problem into vertical
and radial components. As we shall see below, the hydro-
static part of the disk satisfies this conditions except for
the highest accretion rates. Note that because the vertical
structure is not much smaller, the geometry is not that of a
thin disk, but that of a slim disk. This also implies that we
cannot Keplerian velocities.

• Porosity: As mentioned above, high radiative fluxes give
rise to porosity which reduces the effective opacity, thereby
allowing the existence of super-Eddington fluxes in the hy-
drostatic atmospheres. Thus, a necessary component of our
model, is an opacity law of the form κ(Γ), which takes the
porosity into account.

• Convection: Joss et al. (1973) have shown that high
radiative fluxes give rise to convection as the radiative fluxes
approach the Eddington limit. The dense inner parts of the
SED disk, near the equatorial plane are therefore expected
to be convective.

• Wind: Since a porous atmosphere can reduce the opac-
ity only as long as the inhomogeneities comprising it are op-
tically thick, a necessary outcome of SED atmospheres is the
acceleration of continuum driven winds where the average
density is low enough. Because this mass loss can be signifi-
cant, it has two interesting ramifications. First, because the
wind is generally optically thick, the photosphere is going
to reside in the wind, which has various observational con-
sequences. Second, the mass accretion rate decreases with
radius.

3.1 Radial Structure

As mentioned above, the small thickness of the disk enables
the separation between the radial structure and the vertical
one. The equations describing the radial structure are ob-
tained from the radial conservation of mass, radial momen-
tum, energy, and angular momentum. An additional equa-
tion is the closure relation for the stress tensor.

Radial mass conservation gives:

dṁ
dr

= 4πrΦ̇wind, (7)

where

ṁ = 4πrvr

∫ H

0

ρdz (8)

is the mass accretion rate.
Conservation of radial momentum gives

vr
dvr

dr
+

1
ρ

dP
dr

= −∂Ψ
∂r

(9)

where Ψ is a pseudo-Newtonian potential given by Paczyn-
sky & Wiita (1980) as

Ψ = −GMBH

R − rg
(10)

and R =
√

r2 + z2. For the radial structure, we assume z =
0.

The equation for angular momentum conservation is

ρvr
d
dr

(

r2ω
)

= −1
r

d
dr

(

r2τrφ

)

, (11)

where τrφ is the tangential stress, and is given by
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where zatm is the vertical height of the critical point, ρcrit is
the density at this point and vs is the local speed of sound.

Based on the fact that instbilities develop structure with
a typical size comparable to the density scale height in the
atmosphere, it is possible to estimate the average density at
the sonic point (Shaviv 2001b). Using this density the mass
loss can be estimated to be

Φ̇ = W F − FEdd

cvs
. (6)

where W is a dimensionless wind “function”. In principle, W
can be calculated from first principles only after the nonlin-
ear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simula-
tions of the nonlinear steady state.

Nevertheless, deriving W can be achieved in several phe-
nomenological models which depend on geometrical param-
eters such as the average size of the inhomogeneities in units
of the scale height (β ≡ d/lp), the average ratio between the
surface area and volume of the blobs in units of the blob
size (Ξ), and the volume filling factor α of the dense blobs.
For example, in the limit in which the blobs are optically
thick, one can show that W ≈ 3Ξ/32

√
ναβ(1 − α)2 (Shaviv

2001b), with ν being the ratio between the effective speed
of sound in the atmosphere to the adiabatic one. Thus, W
depends only on geometrical factors. It does not depend ex-
plicitly on the Eddington parameter Γ ≡ L/LEdd as long as
the blobs have a single length scale. Once this assumption al-
leviated, W can become a weak function of Γ (Owocki et al.
2004). Comparison to observations yields typical values of
W ∼ 1 − 10 Shaviv (2001b).

2.3 Photon-Tired Winds

An interesting modification to the above continuum driven
winds arises when the predicted mass loss is too high for the
available luminosity to push to r → ∞. This happens when
vesc ∼>

√

vsc/W , and gives rise to “photon-tired winds”
(Owocki & Gayley 1997). A wind solution with a mono-
tonically decreasing velocity is then not possible, because
the wind stagnates at a finite radius.

The behavior of photon tired winds was studied by van
Marle et al. 2009. It was found that shocks form between in-
falling material and the outflowing wind. This forms a layer
of shocks in which there is a large kinetic flux, but without
the associated mass flux. When photon tired winds arise,
the mass loss from the top of the layer of shocks is reduced
to less than the photon tired limit, and the luminosity to
less than the Eddington luminosity.

3 THE MODEL

Our goal is to construct Super-Eddington accretion disks,
namely, disks which radiate with fluxes that can locally ex-
ceed the Eddington limit. We look for solutions which are
heuristically described in fig. 1. That is, a slim disk solution.
More specifically, we have to consider the following points.

• Geometry: Although in principle, one could envision
super-Eddington accretion solutions with different geome-
tries, we look for disk like solutions. We shall assume that

the vertical length scale is sufficiently smaller than the ra-
dius, such that we can deconstruct the problem into vertical
and radial components. As we shall see below, the hydro-
static part of the disk satisfies this conditions except for
the highest accretion rates. Note that because the vertical
structure is not much smaller, the geometry is not that of a
thin disk, but that of a slim disk. This also implies that we
cannot Keplerian velocities.

• Porosity: As mentioned above, high radiative fluxes give
rise to porosity which reduces the effective opacity, thereby
allowing the existence of super-Eddington fluxes in the hy-
drostatic atmospheres. Thus, a necessary component of our
model, is an opacity law of the form κ(Γ), which takes the
porosity into account.

• Convection: Joss et al. (1973) have shown that high
radiative fluxes give rise to convection as the radiative fluxes
approach the Eddington limit. The dense inner parts of the
SED disk, near the equatorial plane are therefore expected
to be convective.

• Wind: Since a porous atmosphere can reduce the opac-
ity only as long as the inhomogeneities comprising it are op-
tically thick, a necessary outcome of SED atmospheres is the
acceleration of continuum driven winds where the average
density is low enough. Because this mass loss can be signifi-
cant, it has two interesting ramifications. First, because the
wind is generally optically thick, the photosphere is going
to reside in the wind, which has various observational con-
sequences. Second, the mass accretion rate decreases with
radius.

3.1 Radial Structure

As mentioned above, the small thickness of the disk enables
the separation between the radial structure and the vertical
one. The equations describing the radial structure are ob-
tained from the radial conservation of mass, radial momen-
tum, energy, and angular momentum. An additional equa-
tion is the closure relation for the stress tensor.

Radial mass conservation gives:

dṁ
dr

= 4πrΦ̇wind, (7)

where

ṁ = 4πrvr

∫ H

0

ρdz (8)

is the mass accretion rate.
Conservation of radial momentum gives
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+
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= −∂Ψ
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where Ψ is a pseudo-Newtonian potential given by Paczyn-
sky & Wiita (1980) as
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(10)

and R =
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where τrφ is the tangential stress, and is given by
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where zatm is the vertical height of the critical point, ρcrit is
the density at this point and vs is the local speed of sound.

Based on the fact that instbilities develop structure with
a typical size comparable to the density scale height in the
atmosphere, it is possible to estimate the average density at
the sonic point (Shaviv 2001b). Using this density the mass
loss can be estimated to be

Φ̇ = W F − FEdd

cvs
. (6)

where W is a dimensionless wind “function”. In principle, W
can be calculated from first principles only after the nonlin-
ear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simula-
tions of the nonlinear steady state.

Nevertheless, deriving W can be achieved in several phe-
nomenological models which depend on geometrical param-
eters such as the average size of the inhomogeneities in units
of the scale height (β ≡ d/lp), the average ratio between the
surface area and volume of the blobs in units of the blob
size (Ξ), and the volume filling factor α of the dense blobs.
For example, in the limit in which the blobs are optically
thick, one can show that W ≈ 3Ξ/32

√
ναβ(1 − α)2 (Shaviv

2001b), with ν being the ratio between the effective speed
of sound in the atmosphere to the adiabatic one. Thus, W
depends only on geometrical factors. It does not depend ex-
plicitly on the Eddington parameter Γ ≡ L/LEdd as long as
the blobs have a single length scale. Once this assumption al-
leviated, W can become a weak function of Γ (Owocki et al.
2004). Comparison to observations yields typical values of
W ∼ 1 − 10 Shaviv (2001b).

2.3 Photon-Tired Winds

An interesting modification to the above continuum driven
winds arises when the predicted mass loss is too high for the
available luminosity to push to r → ∞. This happens when
vesc ∼>

√

vsc/W , and gives rise to “photon-tired winds”
(Owocki & Gayley 1997). A wind solution with a mono-
tonically decreasing velocity is then not possible, because
the wind stagnates at a finite radius.

The behavior of photon tired winds was studied by van
Marle et al. 2009. It was found that shocks form between in-
falling material and the outflowing wind. This forms a layer
of shocks in which there is a large kinetic flux, but without
the associated mass flux. When photon tired winds arise,
the mass loss from the top of the layer of shocks is reduced
to less than the photon tired limit, and the luminosity to
less than the Eddington luminosity.

3 THE MODEL

Our goal is to construct Super-Eddington accretion disks,
namely, disks which radiate with fluxes that can locally ex-
ceed the Eddington limit. We look for solutions which are
heuristically described in fig. 1. That is, a slim disk solution.
More specifically, we have to consider the following points.

• Geometry: Although in principle, one could envision
super-Eddington accretion solutions with different geome-
tries, we look for disk like solutions. We shall assume that

the vertical length scale is sufficiently smaller than the ra-
dius, such that we can deconstruct the problem into vertical
and radial components. As we shall see below, the hydro-
static part of the disk satisfies this conditions except for
the highest accretion rates. Note that because the vertical
structure is not much smaller, the geometry is not that of a
thin disk, but that of a slim disk. This also implies that we
cannot Keplerian velocities.

• Porosity: As mentioned above, high radiative fluxes give
rise to porosity which reduces the effective opacity, thereby
allowing the existence of super-Eddington fluxes in the hy-
drostatic atmospheres. Thus, a necessary component of our
model, is an opacity law of the form κ(Γ), which takes the
porosity into account.

• Convection: Joss et al. (1973) have shown that high
radiative fluxes give rise to convection as the radiative fluxes
approach the Eddington limit. The dense inner parts of the
SED disk, near the equatorial plane are therefore expected
to be convective.

• Wind: Since a porous atmosphere can reduce the opac-
ity only as long as the inhomogeneities comprising it are op-
tically thick, a necessary outcome of SED atmospheres is the
acceleration of continuum driven winds where the average
density is low enough. Because this mass loss can be signifi-
cant, it has two interesting ramifications. First, because the
wind is generally optically thick, the photosphere is going
to reside in the wind, which has various observational con-
sequences. Second, the mass accretion rate decreases with
radius.

3.1 Radial Structure

As mentioned above, the small thickness of the disk enables
the separation between the radial structure and the vertical
one. The equations describing the radial structure are ob-
tained from the radial conservation of mass, radial momen-
tum, energy, and angular momentum. An additional equa-
tion is the closure relation for the stress tensor.

Radial mass conservation gives:

dṁ
dr

= 4πrΦ̇wind, (7)

where

ṁ = 4πrvr

∫ H
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is the mass accretion rate.
Conservation of radial momentum gives
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where zatm is the vertical height of the critical point, ρcrit is
the density at this point and vs is the local speed of sound.

Based on the fact that instbilities develop structure with
a typical size comparable to the density scale height in the
atmosphere, it is possible to estimate the average density at
the sonic point (Shaviv 2001b). Using this density the mass
loss can be estimated to be

Φ̇ = W F − FEdd

cvs
. (6)

where W is a dimensionless wind “function”. In principle, W
can be calculated from first principles only after the nonlin-
ear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simula-
tions of the nonlinear steady state.

Nevertheless, deriving W can be achieved in several phe-
nomenological models which depend on geometrical param-
eters such as the average size of the inhomogeneities in units
of the scale height (β ≡ d/lp), the average ratio between the
surface area and volume of the blobs in units of the blob
size (Ξ), and the volume filling factor α of the dense blobs.
For example, in the limit in which the blobs are optically
thick, one can show that W ≈ 3Ξ/32

√
ναβ(1 − α)2 (Shaviv

2001b), with ν being the ratio between the effective speed
of sound in the atmosphere to the adiabatic one. Thus, W
depends only on geometrical factors. It does not depend ex-
plicitly on the Eddington parameter Γ ≡ L/LEdd as long as
the blobs have a single length scale. Once this assumption al-
leviated, W can become a weak function of Γ (Owocki et al.
2004). Comparison to observations yields typical values of
W ∼ 1 − 10 Shaviv (2001b).

2.3 Photon-Tired Winds

An interesting modification to the above continuum driven
winds arises when the predicted mass loss is too high for the
available luminosity to push to r → ∞. This happens when
vesc ∼>

√

vsc/W , and gives rise to “photon-tired winds”
(Owocki & Gayley 1997). A wind solution with a mono-
tonically decreasing velocity is then not possible, because
the wind stagnates at a finite radius.

The behavior of photon tired winds was studied by van
Marle et al. 2009. It was found that shocks form between in-
falling material and the outflowing wind. This forms a layer
of shocks in which there is a large kinetic flux, but without
the associated mass flux. When photon tired winds arise,
the mass loss from the top of the layer of shocks is reduced
to less than the photon tired limit, and the luminosity to
less than the Eddington luminosity.

3 THE MODEL

Our goal is to construct Super-Eddington accretion disks,
namely, disks which radiate with fluxes that can locally ex-
ceed the Eddington limit. We look for solutions which are
heuristically described in fig. 1. That is, a slim disk solution.
More specifically, we have to consider the following points.

• Geometry: Although in principle, one could envision
super-Eddington accretion solutions with different geome-
tries, we look for disk like solutions. We shall assume that

the vertical length scale is sufficiently smaller than the ra-
dius, such that we can deconstruct the problem into vertical
and radial components. As we shall see below, the hydro-
static part of the disk satisfies this conditions except for
the highest accretion rates. Note that because the vertical
structure is not much smaller, the geometry is not that of a
thin disk, but that of a slim disk. This also implies that we
cannot Keplerian velocities.

• Porosity: As mentioned above, high radiative fluxes give
rise to porosity which reduces the effective opacity, thereby
allowing the existence of super-Eddington fluxes in the hy-
drostatic atmospheres. Thus, a necessary component of our
model, is an opacity law of the form κ(Γ), which takes the
porosity into account.

• Convection: Joss et al. (1973) have shown that high
radiative fluxes give rise to convection as the radiative fluxes
approach the Eddington limit. The dense inner parts of the
SED disk, near the equatorial plane are therefore expected
to be convective.

• Wind: Since a porous atmosphere can reduce the opac-
ity only as long as the inhomogeneities comprising it are op-
tically thick, a necessary outcome of SED atmospheres is the
acceleration of continuum driven winds where the average
density is low enough. Because this mass loss can be signifi-
cant, it has two interesting ramifications. First, because the
wind is generally optically thick, the photosphere is going
to reside in the wind, which has various observational con-
sequences. Second, the mass accretion rate decreases with
radius.

3.1 Radial Structure

As mentioned above, the small thickness of the disk enables
the separation between the radial structure and the vertical
one. The equations describing the radial structure are ob-
tained from the radial conservation of mass, radial momen-
tum, energy, and angular momentum. An additional equa-
tion is the closure relation for the stress tensor.

Radial mass conservation gives:

dṁ
dr

= 4πrΦ̇wind, (7)

where

ṁ = 4πrvr

∫ H

0

ρdz (8)

is the mass accretion rate.
Conservation of radial momentum gives

vr
dvr

dr
+

1
ρ

dP
dr

= −∂Ψ
∂r

(9)

where Ψ is a pseudo-Newtonian potential given by Paczyn-
sky & Wiita (1980) as

Ψ = −GMBH

R − rg
(10)

and R =
√

r2 + z2. For the radial structure, we assume z =
0.

The equation for angular momentum conservation is

ρvr
d
dr

(

r2ω
)

= −1
r

d
dr

(

r2τrφ

)

, (11)

where τrφ is the tangential stress, and is given by
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where zatm is the vertical height of the critical point, ρcrit is
the density at this point and vs is the local speed of sound.

Based on the fact that instbilities develop structure with
a typical size comparable to the density scale height in the
atmosphere, it is possible to estimate the average density at
the sonic point (Shaviv 2001b). Using this density the mass
loss can be estimated to be

Φ̇ = W F − FEdd

cvs
. (6)

where W is a dimensionless wind “function”. In principle, W
can be calculated from first principles only after the nonlin-
ear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simula-
tions of the nonlinear steady state.

Nevertheless, deriving W can be achieved in several phe-
nomenological models which depend on geometrical param-
eters such as the average size of the inhomogeneities in units
of the scale height (β ≡ d/lp), the average ratio between the
surface area and volume of the blobs in units of the blob
size (Ξ), and the volume filling factor α of the dense blobs.
For example, in the limit in which the blobs are optically
thick, one can show that W ≈ 3Ξ/32

√
ναβ(1 − α)2 (Shaviv

2001b), with ν being the ratio between the effective speed
of sound in the atmosphere to the adiabatic one. Thus, W
depends only on geometrical factors. It does not depend ex-
plicitly on the Eddington parameter Γ ≡ L/LEdd as long as
the blobs have a single length scale. Once this assumption al-
leviated, W can become a weak function of Γ (Owocki et al.
2004). Comparison to observations yields typical values of
W ∼ 1 − 10 Shaviv (2001b).

2.3 Photon-Tired Winds

An interesting modification to the above continuum driven
winds arises when the predicted mass loss is too high for the
available luminosity to push to r → ∞. This happens when
vesc ∼>

√

vsc/W , and gives rise to “photon-tired winds”
(Owocki & Gayley 1997). A wind solution with a mono-
tonically decreasing velocity is then not possible, because
the wind stagnates at a finite radius.

The behavior of photon tired winds was studied by van
Marle et al. 2009. It was found that shocks form between in-
falling material and the outflowing wind. This forms a layer
of shocks in which there is a large kinetic flux, but without
the associated mass flux. When photon tired winds arise,
the mass loss from the top of the layer of shocks is reduced
to less than the photon tired limit, and the luminosity to
less than the Eddington luminosity.

3 THE MODEL

Our goal is to construct Super-Eddington accretion disks,
namely, disks which radiate with fluxes that can locally ex-
ceed the Eddington limit. We look for solutions which are
heuristically described in fig. 1. That is, a slim disk solution.
More specifically, we have to consider the following points.

• Geometry: Although in principle, one could envision
super-Eddington accretion solutions with different geome-
tries, we look for disk like solutions. We shall assume that

the vertical length scale is sufficiently smaller than the ra-
dius, such that we can deconstruct the problem into vertical
and radial components. As we shall see below, the hydro-
static part of the disk satisfies this conditions except for
the highest accretion rates. Note that because the vertical
structure is not much smaller, the geometry is not that of a
thin disk, but that of a slim disk. This also implies that we
cannot Keplerian velocities.

• Porosity: As mentioned above, high radiative fluxes give
rise to porosity which reduces the effective opacity, thereby
allowing the existence of super-Eddington fluxes in the hy-
drostatic atmospheres. Thus, a necessary component of our
model, is an opacity law of the form κ(Γ), which takes the
porosity into account.

• Convection: Joss et al. (1973) have shown that high
radiative fluxes give rise to convection as the radiative fluxes
approach the Eddington limit. The dense inner parts of the
SED disk, near the equatorial plane are therefore expected
to be convective.

• Wind: Since a porous atmosphere can reduce the opac-
ity only as long as the inhomogeneities comprising it are op-
tically thick, a necessary outcome of SED atmospheres is the
acceleration of continuum driven winds where the average
density is low enough. Because this mass loss can be signifi-
cant, it has two interesting ramifications. First, because the
wind is generally optically thick, the photosphere is going
to reside in the wind, which has various observational con-
sequences. Second, the mass accretion rate decreases with
radius.

3.1 Radial Structure

As mentioned above, the small thickness of the disk enables
the separation between the radial structure and the vertical
one. The equations describing the radial structure are ob-
tained from the radial conservation of mass, radial momen-
tum, energy, and angular momentum. An additional equa-
tion is the closure relation for the stress tensor.

Radial mass conservation gives:

dṁ
dr

= 4πrΦ̇wind, (7)

where

ṁ = 4πrvr

∫ H

0

ρdz (8)

is the mass accretion rate.
Conservation of radial momentum gives

vr
dvr

dr
+

1
ρ

dP
dr

= −∂Ψ
∂r

(9)

where Ψ is a pseudo-Newtonian potential given by Paczyn-
sky & Wiita (1980) as

Ψ = −GMBH

R − rg
(10)

and R =
√

r2 + z2. For the radial structure, we assume z =
0.

The equation for angular momentum conservation is

ρvr
d
dr

(

r2ω
)

= −1
r

d
dr

(

r2τrφ

)

, (11)

where τrφ is the tangential stress, and is given by
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1
ρ

dP
dz

= −dΨ
dz

. (19)

The temperature gradient is determined according to
the energy transfer mechanism. It is given by

dT
dz

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ − 1
γ

dP
dz

T
P

, in the convective zone,

−3κeffρF
4acT 3

, in the radiative zone,

(20)

where ρ is the density, F is the vertical radiative flux and γ
is the adiabatic index. Convection is present if the standard
Schwarzschild criterion is satisfied. But for convection to
be efficient, the convective flux must be smaller than the
maximum possible which is given by

Fconv,max = ρv3
s , (21)

and vs is the adiabaitc speed of sound. The opacity in the
radiative zone is taken to be the Thomson opacity, as long as
the radiative flux is smaller than the critical flux above which
the atmosphere develops inhomogeneities. As described in
§??, the gas becomes inhomogeneous above the critical flux,
such that the radiative force exerted on the gas is reduced.

We assume that the relation between the effective Ed-
dington factor Γeff ≡ F/Feff and the classical Eddington
factor Γ ≡ F/FEdd is empirically given by

Γeff = 1 − A
ΓB

for Γ > Γcrit,

Γeff = Γ for Γ < Γcrit. (22)

Γcrit is the critical Γ above which inhomogeneities are ex-
cited, so the effective opacity for Γ > Γcrit is given by

κeff = κTh

(

1 − A
ΓB

)

/Γ. (23)

Since we expect a continuous Γeff , A, B and Γcrit satisfy the
equation Γcrit = 1 − A/ΓB

crit.
From theoretical considerations, we take Γcrit ∼ 0.8

(Shaviv 2001a). This implies a relation between the nor-
malization constant A and the power law B, that is given
by

A = (1 − Γcrit)Γ
B
crit. (24)

3.2.2 Continuum Driven Winds

As described in §??, a continuum driven wind is acceler-
ated from the region where the density is low enough, such
that the inhomogeneity based opacity reduction becomes in-
efficient. In this region, the effective opacity approaches the
microscopic value, such that the radiative flux is again super-
Eddington.

The primary equations describing the wind structure
are the equation of motion

ρvz
dvz

dz
= −dP

dz
− ρgz, (25)

where gz = −∂Ψ/∂z, and the energy conservation equation

F (z) = Fatm − Φ̇wind

(

v2
z

2
+

GMBH

Ratm
− GMBH

R

)

. (26)

From these two equations, and the assumption κ = const.,
we derive the radiative flux and wind velocity as a function
of z:

F (z) = Fatm exp

(

κΦ̇wind(zatm − z)

c

)

, (27)

v2
z

2
=

GMBH

Ratm

[

1
m

(

1 − F (z)

Fatm

)

+
(

Ratm

R
− 1

)

]

+
v2

s

2
, (28)

where

m ≡ Φ̇windGMBH/Ratm

Fatm
. (29)

m is the ratio between the energy flux needed to accelerate
the wind out of the gravitational potential well, and the
radiation flux provided to the wind by the system.

Another aspect of this thick wind is the location of the
photosphere. While in the slim and thin disk models the
photosphere resides where the gas becomes optically thin,
in our case, the photosphere resides much higher, where the
wind becomes optically thin. The optical depth of the wind
is given by

τ =

∫

∞

zatm

κρdz. (30)

Note also that the change in the location of the pho-
tosphere is accompanied by a decrease in the radiative flux
emitted from the disk (as energy is used to accelerate the
wind), hence, a decrease in the effective temperature.

As described in §5, the typical ratio we obtain between
the height of the photosphere and the radius is small, that
is, zph(r)/r ∼< 1, as long as the accretion rates are not too
large, i.e., ṁ ∼< 20ṁcrit. For higher accretion rates, the wind
geometry ceases to be disk-like, and the solution described
here breaks down.

3.2.3 Photon Tired Winds

As elaborated upon in §??, when the available radiative flux
at the sonic point is insufficient to drive the wind accelerated
at the sonic point out of the gravitational potential well,
photon tired winds are formed(see Owocki & Gayley 1997).
Under such conditions, a layer of shocks forms in which the
effective sonic point moves upwards, and reduces the actual
mass loss. Using the results from van Marle et al. 2009, we
empirically model the maximal Φ̇wind to be,

Φ̇wind

Φ̇tiring

≃ max

(

0.2
(

F
FEdd

)0.6

, 0.9

)

, (31)

where Φ̇tiring≡F/(GMBH/Ratm).

3.2.4 Boundary Conditions

The vertical structure of the disk is determined by the local
equatorial conditions, i.e., the total pressure P (r, z = 0) and
the density ρ(r, z = 0), and the free variable at each radius
is the radiative flux, F (r, z). The value chosen should agree
with surface conditions on the radiation field, which should
satisfy the blackbody radiation law,

F (r, z0) = σT 4
eff . (32)

Here Teff is the temperature at optical depth τ = 2/3.
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1
ρ

dP
dz

= −dΨ
dz

. (19)

The temperature gradient is determined according to
the energy transfer mechanism. It is given by

dT
dz

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ − 1
γ

dP
dz

T
P

, in the convective zone,

−3κeffρF
4acT 3

, in the radiative zone,

(20)

where ρ is the density, F is the vertical radiative flux and γ
is the adiabatic index. Convection is present if the standard
Schwarzschild criterion is satisfied. But for convection to
be efficient, the convective flux must be smaller than the
maximum possible which is given by

Fconv,max = ρv3
s , (21)

and vs is the adiabaitc speed of sound. The opacity in the
radiative zone is taken to be the Thomson opacity, as long as
the radiative flux is smaller than the critical flux above which
the atmosphere develops inhomogeneities. As described in
§??, the gas becomes inhomogeneous above the critical flux,
such that the radiative force exerted on the gas is reduced.

We assume that the relation between the effective Ed-
dington factor Γeff ≡ F/Feff and the classical Eddington
factor Γ ≡ F/FEdd is empirically given by

Γeff = 1 − A
ΓB

for Γ > Γcrit,

Γeff = Γ for Γ < Γcrit. (22)

Γcrit is the critical Γ above which inhomogeneities are ex-
cited, so the effective opacity for Γ > Γcrit is given by

κeff = κTh

(

1 − A
ΓB

)

/Γ. (23)

Since we expect a continuous Γeff , A, B and Γcrit satisfy the
equation Γcrit = 1 − A/ΓB

crit.
From theoretical considerations, we take Γcrit ∼ 0.8

(Shaviv 2001a). This implies a relation between the nor-
malization constant A and the power law B, that is given
by

A = (1 − Γcrit)Γ
B
crit. (24)

3.2.2 Continuum Driven Winds

As described in §??, a continuum driven wind is acceler-
ated from the region where the density is low enough, such
that the inhomogeneity based opacity reduction becomes in-
efficient. In this region, the effective opacity approaches the
microscopic value, such that the radiative flux is again super-
Eddington.

The primary equations describing the wind structure
are the equation of motion

ρvz
dvz

dz
= −dP

dz
− ρgz, (25)

where gz = −∂Ψ/∂z, and the energy conservation equation

F (z) = Fatm − Φ̇wind

(

v2
z

2
+

GMBH

Ratm
− GMBH

R

)

. (26)

From these two equations, and the assumption κ = const.,
we derive the radiative flux and wind velocity as a function
of z:

F (z) = Fatm exp

(

κΦ̇wind(zatm − z)

c

)

, (27)

v2
z

2
=

GMBH

Ratm

[

1
m

(

1 − F (z)

Fatm

)

+
(

Ratm

R
− 1

)

]

+
v2

s

2
, (28)

where

m ≡ Φ̇windGMBH/Ratm

Fatm
. (29)

m is the ratio between the energy flux needed to accelerate
the wind out of the gravitational potential well, and the
radiation flux provided to the wind by the system.

Another aspect of this thick wind is the location of the
photosphere. While in the slim and thin disk models the
photosphere resides where the gas becomes optically thin,
in our case, the photosphere resides much higher, where the
wind becomes optically thin. The optical depth of the wind
is given by

τ =

∫

∞

zatm

κρdz. (30)

Note also that the change in the location of the pho-
tosphere is accompanied by a decrease in the radiative flux
emitted from the disk (as energy is used to accelerate the
wind), hence, a decrease in the effective temperature.

As described in §5, the typical ratio we obtain between
the height of the photosphere and the radius is small, that
is, zph(r)/r ∼< 1, as long as the accretion rates are not too
large, i.e., ṁ ∼< 20ṁcrit. For higher accretion rates, the wind
geometry ceases to be disk-like, and the solution described
here breaks down.

3.2.3 Photon Tired Winds

As elaborated upon in §??, when the available radiative flux
at the sonic point is insufficient to drive the wind accelerated
at the sonic point out of the gravitational potential well,
photon tired winds are formed(see Owocki & Gayley 1997).
Under such conditions, a layer of shocks forms in which the
effective sonic point moves upwards, and reduces the actual
mass loss. Using the results from van Marle et al. 2009, we
empirically model the maximal Φ̇wind to be,

Φ̇wind

Φ̇tiring

≃ max

(

0.2
(

F
FEdd

)0.6

, 0.9

)

, (31)

where Φ̇tiring≡F/(GMBH/Ratm).

3.2.4 Boundary Conditions

The vertical structure of the disk is determined by the local
equatorial conditions, i.e., the total pressure P (r, z = 0) and
the density ρ(r, z = 0), and the free variable at each radius
is the radiative flux, F (r, z). The value chosen should agree
with surface conditions on the radiation field, which should
satisfy the blackbody radiation law,

F (r, z0) = σT 4
eff . (32)

Here Teff is the temperature at optical depth τ = 2/3.
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1
ρ

dP
dz

= −dΨ
dz

. (19)

The temperature gradient is determined according to
the energy transfer mechanism. It is given by

dT
dz

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ − 1
γ

dP
dz

T
P

, in the convective zone,

−3κeffρF
4acT 3

, in the radiative zone,

(20)

where ρ is the density, F is the vertical radiative flux and γ
is the adiabatic index. Convection is present if the standard
Schwarzschild criterion is satisfied. But for convection to
be efficient, the convective flux must be smaller than the
maximum possible which is given by

Fconv,max = ρv3
s , (21)

and vs is the adiabaitc speed of sound. The opacity in the
radiative zone is taken to be the Thomson opacity, as long as
the radiative flux is smaller than the critical flux above which
the atmosphere develops inhomogeneities. As described in
§??, the gas becomes inhomogeneous above the critical flux,
such that the radiative force exerted on the gas is reduced.

We assume that the relation between the effective Ed-
dington factor Γeff ≡ F/Feff and the classical Eddington
factor Γ ≡ F/FEdd is empirically given by

Γeff = 1 − A
ΓB

for Γ > Γcrit,

Γeff = Γ for Γ < Γcrit. (22)

Γcrit is the critical Γ above which inhomogeneities are ex-
cited, so the effective opacity for Γ > Γcrit is given by

κeff = κTh

(

1 − A
ΓB

)

/Γ. (23)

Since we expect a continuous Γeff , A, B and Γcrit satisfy the
equation Γcrit = 1 − A/ΓB

crit.
From theoretical considerations, we take Γcrit ∼ 0.8

(Shaviv 2001a). This implies a relation between the nor-
malization constant A and the power law B, that is given
by

A = (1 − Γcrit)Γ
B
crit. (24)

3.2.2 Continuum Driven Winds

As described in §??, a continuum driven wind is acceler-
ated from the region where the density is low enough, such
that the inhomogeneity based opacity reduction becomes in-
efficient. In this region, the effective opacity approaches the
microscopic value, such that the radiative flux is again super-
Eddington.

The primary equations describing the wind structure
are the equation of motion

ρvz
dvz

dz
= −dP

dz
− ρgz, (25)

where gz = −∂Ψ/∂z, and the energy conservation equation

F (z) = Fatm − Φ̇wind

(

v2
z

2
+

GMBH

Ratm
− GMBH

R

)

. (26)

From these two equations, and the assumption κ = const.,
we derive the radiative flux and wind velocity as a function
of z:

F (z) = Fatm exp

(

κΦ̇wind(zatm − z)

c

)

, (27)

v2
z

2
=

GMBH

Ratm

[

1
m

(

1 − F (z)

Fatm

)

+
(

Ratm

R
− 1

)

]

+
v2

s

2
, (28)

where

m ≡ Φ̇windGMBH/Ratm

Fatm
. (29)

m is the ratio between the energy flux needed to accelerate
the wind out of the gravitational potential well, and the
radiation flux provided to the wind by the system.

Another aspect of this thick wind is the location of the
photosphere. While in the slim and thin disk models the
photosphere resides where the gas becomes optically thin,
in our case, the photosphere resides much higher, where the
wind becomes optically thin. The optical depth of the wind
is given by

τ =

∫

∞

zatm

κρdz. (30)

Note also that the change in the location of the pho-
tosphere is accompanied by a decrease in the radiative flux
emitted from the disk (as energy is used to accelerate the
wind), hence, a decrease in the effective temperature.

As described in §5, the typical ratio we obtain between
the height of the photosphere and the radius is small, that
is, zph(r)/r ∼< 1, as long as the accretion rates are not too
large, i.e., ṁ ∼< 20ṁcrit. For higher accretion rates, the wind
geometry ceases to be disk-like, and the solution described
here breaks down.

3.2.3 Photon Tired Winds

As elaborated upon in §??, when the available radiative flux
at the sonic point is insufficient to drive the wind accelerated
at the sonic point out of the gravitational potential well,
photon tired winds are formed(see Owocki & Gayley 1997).
Under such conditions, a layer of shocks forms in which the
effective sonic point moves upwards, and reduces the actual
mass loss. Using the results from van Marle et al. 2009, we
empirically model the maximal Φ̇wind to be,

Φ̇wind

Φ̇tiring

≃ max

(

0.2
(

F
FEdd

)0.6

, 0.9

)

, (31)

where Φ̇tiring≡F/(GMBH/Ratm).

3.2.4 Boundary Conditions

The vertical structure of the disk is determined by the local
equatorial conditions, i.e., the total pressure P (r, z = 0) and
the density ρ(r, z = 0), and the free variable at each radius
is the radiative flux, F (r, z). The value chosen should agree
with surface conditions on the radiation field, which should
satisfy the blackbody radiation law,

F (r, z0) = σT 4
eff . (32)

Here Teff is the temperature at optical depth τ = 2/3.
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1
ρ

dP
dz

= −dΨ
dz

. (19)

The temperature gradient is determined according to
the energy transfer mechanism. It is given by

dT
dz

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ − 1
γ

dP
dz

T
P

, in the convective zone,

−3κeffρF
4acT 3

, in the radiative zone,

(20)

where ρ is the density, F is the vertical radiative flux and γ
is the adiabatic index. Convection is present if the standard
Schwarzschild criterion is satisfied. But for convection to
be efficient, the convective flux must be smaller than the
maximum possible which is given by

Fconv,max = ρv3
s , (21)

and vs is the adiabaitc speed of sound. The opacity in the
radiative zone is taken to be the Thomson opacity, as long as
the radiative flux is smaller than the critical flux above which
the atmosphere develops inhomogeneities. As described in
§??, the gas becomes inhomogeneous above the critical flux,
such that the radiative force exerted on the gas is reduced.

We assume that the relation between the effective Ed-
dington factor Γeff ≡ F/Feff and the classical Eddington
factor Γ ≡ F/FEdd is empirically given by

Γeff = 1 − A
ΓB

for Γ > Γcrit,

Γeff = Γ for Γ < Γcrit. (22)

Γcrit is the critical Γ above which inhomogeneities are ex-
cited, so the effective opacity for Γ > Γcrit is given by

κeff = κTh

(

1 − A
ΓB

)

/Γ. (23)

Since we expect a continuous Γeff , A, B and Γcrit satisfy the
equation Γcrit = 1 − A/ΓB

crit.
From theoretical considerations, we take Γcrit ∼ 0.8

(Shaviv 2001a). This implies a relation between the nor-
malization constant A and the power law B, that is given
by

A = (1 − Γcrit)Γ
B
crit. (24)

3.2.2 Continuum Driven Winds

As described in §??, a continuum driven wind is acceler-
ated from the region where the density is low enough, such
that the inhomogeneity based opacity reduction becomes in-
efficient. In this region, the effective opacity approaches the
microscopic value, such that the radiative flux is again super-
Eddington.

The primary equations describing the wind structure
are the equation of motion

ρvz
dvz

dz
= −dP

dz
− ρgz, (25)

where gz = −∂Ψ/∂z, and the energy conservation equation

F (z) = Fatm − Φ̇wind

(

v2
z

2
+

GMBH

Ratm
− GMBH

R

)

. (26)

From these two equations, and the assumption κ = const.,
we derive the radiative flux and wind velocity as a function
of z:

F (z) = Fatm exp

(

κΦ̇wind(zatm − z)

c

)

, (27)

v2
z

2
=

GMBH

Ratm

[

1
m

(

1 − F (z)

Fatm

)

+
(

Ratm

R
− 1

)

]

+
v2

s

2
, (28)

where

m ≡ Φ̇windGMBH/Ratm

Fatm
. (29)

m is the ratio between the energy flux needed to accelerate
the wind out of the gravitational potential well, and the
radiation flux provided to the wind by the system.

Another aspect of this thick wind is the location of the
photosphere. While in the slim and thin disk models the
photosphere resides where the gas becomes optically thin,
in our case, the photosphere resides much higher, where the
wind becomes optically thin. The optical depth of the wind
is given by

τ =

∫

∞

zatm

κρdz. (30)

Note also that the change in the location of the pho-
tosphere is accompanied by a decrease in the radiative flux
emitted from the disk (as energy is used to accelerate the
wind), hence, a decrease in the effective temperature.

As described in §5, the typical ratio we obtain between
the height of the photosphere and the radius is small, that
is, zph(r)/r ∼< 1, as long as the accretion rates are not too
large, i.e., ṁ ∼< 20ṁcrit. For higher accretion rates, the wind
geometry ceases to be disk-like, and the solution described
here breaks down.

3.2.3 Photon Tired Winds

As elaborated upon in §??, when the available radiative flux
at the sonic point is insufficient to drive the wind accelerated
at the sonic point out of the gravitational potential well,
photon tired winds are formed(see Owocki & Gayley 1997).
Under such conditions, a layer of shocks forms in which the
effective sonic point moves upwards, and reduces the actual
mass loss. Using the results from van Marle et al. 2009, we
empirically model the maximal Φ̇wind to be,

Φ̇wind

Φ̇tiring

≃ max

(

0.2
(

F
FEdd

)0.6

, 0.9

)

, (31)

where Φ̇tiring≡F/(GMBH/Ratm).

3.2.4 Boundary Conditions

The vertical structure of the disk is determined by the local
equatorial conditions, i.e., the total pressure P (r, z = 0) and
the density ρ(r, z = 0), and the free variable at each radius
is the radiative flux, F (r, z). The value chosen should agree
with surface conditions on the radiation field, which should
satisfy the blackbody radiation law,

F (r, z0) = σT 4
eff . (32)

Here Teff is the temperature at optical depth τ = 2/3.
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where zatm is the vertical height of the critical point, ρcrit is
the density at this point and vs is the local speed of sound.

Based on the fact that instbilities develop structure with
a typical size comparable to the density scale height in the
atmosphere, it is possible to estimate the average density at
the sonic point (Shaviv 2001b). Using this density the mass
loss can be estimated to be

Φ̇ = W F − FEdd

cvs
. (6)

where W is a dimensionless wind “function”. In principle, W
can be calculated from first principles only after the nonlin-
ear state of the inhomogeneities is understood. This however
is still lacking as it requires elaborate 3D numerical simula-
tions of the nonlinear steady state.

Nevertheless, deriving W can be achieved in several phe-
nomenological models which depend on geometrical param-
eters such as the average size of the inhomogeneities in units
of the scale height (β ≡ d/lp), the average ratio between the
surface area and volume of the blobs in units of the blob
size (Ξ), and the volume filling factor α of the dense blobs.
For example, in the limit in which the blobs are optically
thick, one can show that W ≈ 3Ξ/32

√
ναβ(1 − α)2 (Shaviv

2001b), with ν being the ratio between the effective speed
of sound in the atmosphere to the adiabatic one. Thus, W
depends only on geometrical factors. It does not depend ex-
plicitly on the Eddington parameter Γ ≡ L/LEdd as long as
the blobs have a single length scale. Once this assumption al-
leviated, W can become a weak function of Γ (Owocki et al.
2004). Comparison to observations yields typical values of
W ∼ 1 − 10 Shaviv (2001b).

2.3 Photon-Tired Winds

An interesting modification to the above continuum driven
winds arises when the predicted mass loss is too high for the
available luminosity to push to r → ∞. This happens when
vesc ∼>

√

vsc/W , and gives rise to “photon-tired winds”
(Owocki & Gayley 1997). A wind solution with a mono-
tonically decreasing velocity is then not possible, because
the wind stagnates at a finite radius.

The behavior of photon tired winds was studied by van
Marle et al. 2009. It was found that shocks form between in-
falling material and the outflowing wind. This forms a layer
of shocks in which there is a large kinetic flux, but without
the associated mass flux. When photon tired winds arise,
the mass loss from the top of the layer of shocks is reduced
to less than the photon tired limit, and the luminosity to
less than the Eddington luminosity.

3 THE MODEL

Our goal is to construct Super-Eddington accretion disks,
namely, disks which radiate with fluxes that can locally ex-
ceed the Eddington limit. We look for solutions which are
heuristically described in fig. 1. That is, a slim disk solution.
More specifically, we have to consider the following points.

• Geometry: Although in principle, one could envision
super-Eddington accretion solutions with different geome-
tries, we look for disk like solutions. We shall assume that

the vertical length scale is sufficiently smaller than the ra-
dius, such that we can deconstruct the problem into vertical
and radial components. As we shall see below, the hydro-
static part of the disk satisfies this conditions except for
the highest accretion rates. Note that because the vertical
structure is not much smaller, the geometry is not that of a
thin disk, but that of a slim disk. This also implies that we
cannot Keplerian velocities.

• Porosity: As mentioned above, high radiative fluxes give
rise to porosity which reduces the effective opacity, thereby
allowing the existence of super-Eddington fluxes in the hy-
drostatic atmospheres. Thus, a necessary component of our
model, is an opacity law of the form κ(Γ), which takes the
porosity into account.

• Convection: Joss et al. (1973) have shown that high
radiative fluxes give rise to convection as the radiative fluxes
approach the Eddington limit. The dense inner parts of the
SED disk, near the equatorial plane are therefore expected
to be convective.

• Wind: Since a porous atmosphere can reduce the opac-
ity only as long as the inhomogeneities comprising it are op-
tically thick, a necessary outcome of SED atmospheres is the
acceleration of continuum driven winds where the average
density is low enough. Because this mass loss can be signifi-
cant, it has two interesting ramifications. First, because the
wind is generally optically thick, the photosphere is going
to reside in the wind, which has various observational con-
sequences. Second, the mass accretion rate decreases with
radius.

3.1 Radial Structure

As mentioned above, the small thickness of the disk enables
the separation between the radial structure and the vertical
one. The equations describing the radial structure are ob-
tained from the radial conservation of mass, radial momen-
tum, energy, and angular momentum. An additional equa-
tion is the closure relation for the stress tensor.

Radial mass conservation gives:

dṁ
dr

= 4πrΦ̇wind, (7)

where

ṁ = 4πrvr

∫ H

0

ρdz (8)

is the mass accretion rate.
Conservation of radial momentum gives

vr
dvr

dr
+

1
ρ

dP
dr

= −∂Ψ
∂r

(9)

where Ψ is a pseudo-Newtonian potential given by Paczyn-
sky & Wiita (1980) as

Ψ = −GMBH

R − rg
(10)

and R =
√

r2 + z2. For the radial structure, we assume z =
0.

The equation for angular momentum conservation is

ρvr
d
dr

(

r2ω
)

= −1
r

d
dr

(

r2τrφ

)

, (11)

where τrφ is the tangential stress, and is given by
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Photon Tired winds

• When available radiative flux at the sonic point F0 is 
insufficient, photon tired wind is formed

 

• Actual mass loss is reduced, (van Marle et al. 2009)
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1
ρ

dP
dz

= −dΨ
dz

. (19)

The temperature gradient is determined according to
the energy transfer mechanism. It is given by

dT
dz

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ − 1
γ

dP
dz

T
P

, in the convective zone,

−3κeffρF
4acT 3

, in the radiative zone,

(20)

where ρ is the density, F is the vertical radiative flux and γ
is the adiabatic index. Convection is present if the standard
Schwarzschild criterion is satisfied. But for convection to
be efficient, the convective flux must be smaller than the
maximum possible which is given by

Fconv,max = ρv3
s , (21)

and vs is the adiabaitc speed of sound. The opacity in the
radiative zone is taken to be the Thomson opacity, as long as
the radiative flux is smaller than the critical flux above which
the atmosphere develops inhomogeneities. As described in
§??, the gas becomes inhomogeneous above the critical flux,
such that the radiative force exerted on the gas is reduced.

We assume that the relation between the effective Ed-
dington factor Γeff ≡ F/Feff and the classical Eddington
factor Γ ≡ F/FEdd is empirically given by

Γeff = 1 − A
ΓB

for Γ > Γcrit,

Γeff = Γ for Γ < Γcrit. (22)

Γcrit is the critical Γ above which inhomogeneities are ex-
cited, so the effective opacity for Γ > Γcrit is given by

κeff = κTh

(

1 − A
ΓB

)

/Γ. (23)

Since we expect a continuous Γeff , A, B and Γcrit satisfy the
equation Γcrit = 1 − A/ΓB

crit.
From theoretical considerations, we take Γcrit ∼ 0.8

(Shaviv 2001a). This implies a relation between the nor-
malization constant A and the power law B, that is given
by

A = (1 − Γcrit)Γ
B
crit. (24)

3.2.2 Continuum Driven Winds

As described in §??, a continuum driven wind is acceler-
ated from the region where the density is low enough, such
that the inhomogeneity based opacity reduction becomes in-
efficient. In this region, the effective opacity approaches the
microscopic value, such that the radiative flux is again super-
Eddington.

The primary equations describing the wind structure
are the equation of motion

ρvz
dvz

dz
= −dP

dz
− ρgz, (25)

where gz = −∂Ψ/∂z, and the energy conservation equation

F (z) = Fatm − Φ̇wind

(

v2
z

2
+

GMBH

Ratm
− GMBH

R

)

. (26)

From these two equations, and the assumption κ = const.,
we derive the radiative flux and wind velocity as a function
of z:

F (z) = Fatm exp

(

κΦ̇wind(zatm − z)

c

)

, (27)

v2
z

2
=

GMBH

Ratm

[

1
m

(

1 − F (z)

Fatm

)

+
(

Ratm

R
− 1

)

]

+
v2

s

2
, (28)

where

m ≡ Φ̇windGMBH/Ratm

Fatm
. (29)

m is the ratio between the energy flux needed to accelerate
the wind out of the gravitational potential well, and the
radiation flux provided to the wind by the system.

Another aspect of this thick wind is the location of the
photosphere. While in the slim and thin disk models the
photosphere resides where the gas becomes optically thin,
in our case, the photosphere resides much higher, where the
wind becomes optically thin. The optical depth of the wind
is given by

τ =

∫

∞

zatm

κρdz. (30)

Note also that the change in the location of the pho-
tosphere is accompanied by a decrease in the radiative flux
emitted from the disk (as energy is used to accelerate the
wind), hence, a decrease in the effective temperature.

As described in §5, the typical ratio we obtain between
the height of the photosphere and the radius is small, that
is, zph(r)/r ∼< 1, as long as the accretion rates are not too
large, i.e., ṁ ∼< 20ṁcrit. For higher accretion rates, the wind
geometry ceases to be disk-like, and the solution described
here breaks down.

3.2.3 Photon Tired Winds

As elaborated upon in §??, when the available radiative flux
at the sonic point is insufficient to drive the wind accelerated
at the sonic point out of the gravitational potential well,
photon tired winds are formed(see Owocki & Gayley 1997).
Under such conditions, a layer of shocks forms in which the
effective sonic point moves upwards, and reduces the actual
mass loss. Using the results from van Marle et al. 2009, we
empirically model the maximal Φ̇wind to be,

Φ̇wind

Φ̇tiring

≃ max

(

0.2
(

F
FEdd

)0.6

, 0.9

)

, (31)

where Φ̇tiring≡F/(GMBH/Ratm).

3.2.4 Boundary Conditions

The vertical structure of the disk is determined by the local
equatorial conditions, i.e., the total pressure P (r, z = 0) and
the density ρ(r, z = 0), and the free variable at each radius
is the radiative flux, F (r, z). The value chosen should agree
with surface conditions on the radiation field, which should
satisfy the blackbody radiation law,

F (r, z0) = σT 4
eff . (32)

Here Teff is the temperature at optical depth τ = 2/3.
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1
ρ

dP
dz

= −dΨ
dz

. (19)

The temperature gradient is determined according to
the energy transfer mechanism. It is given by

dT
dz

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ − 1
γ

dP
dz

T
P

, in the convective zone,

−3κeffρF
4acT 3

, in the radiative zone,

(20)

where ρ is the density, F is the vertical radiative flux and γ
is the adiabatic index. Convection is present if the standard
Schwarzschild criterion is satisfied. But for convection to
be efficient, the convective flux must be smaller than the
maximum possible which is given by

Fconv,max = ρv3
s , (21)

and vs is the adiabaitc speed of sound. The opacity in the
radiative zone is taken to be the Thomson opacity, as long as
the radiative flux is smaller than the critical flux above which
the atmosphere develops inhomogeneities. As described in
§??, the gas becomes inhomogeneous above the critical flux,
such that the radiative force exerted on the gas is reduced.

We assume that the relation between the effective Ed-
dington factor Γeff ≡ F/Feff and the classical Eddington
factor Γ ≡ F/FEdd is empirically given by

Γeff = 1 − A
ΓB

for Γ > Γcrit,

Γeff = Γ for Γ < Γcrit. (22)

Γcrit is the critical Γ above which inhomogeneities are ex-
cited, so the effective opacity for Γ > Γcrit is given by

κeff = κTh

(

1 − A
ΓB

)

/Γ. (23)

Since we expect a continuous Γeff , A, B and Γcrit satisfy the
equation Γcrit = 1 − A/ΓB

crit.
From theoretical considerations, we take Γcrit ∼ 0.8

(Shaviv 2001a). This implies a relation between the nor-
malization constant A and the power law B, that is given
by

A = (1 − Γcrit)Γ
B
crit. (24)

3.2.2 Continuum Driven Winds

As described in §??, a continuum driven wind is acceler-
ated from the region where the density is low enough, such
that the inhomogeneity based opacity reduction becomes in-
efficient. In this region, the effective opacity approaches the
microscopic value, such that the radiative flux is again super-
Eddington.

The primary equations describing the wind structure
are the equation of motion

ρvz
dvz

dz
= −dP

dz
− ρgz, (25)

where gz = −∂Ψ/∂z, and the energy conservation equation

F (z) = Fatm − Φ̇wind

(

v2
z

2
+

GMBH

Ratm
− GMBH

R

)

. (26)

From these two equations, and the assumption κ = const.,
we derive the radiative flux and wind velocity as a function
of z:

F (z) = Fatm exp

(

κΦ̇wind(zatm − z)

c

)

, (27)

v2
z

2
=

GMBH

Ratm

[

1
m

(

1 − F (z)

Fatm

)

+
(

Ratm

R
− 1

)

]

+
v2

s

2
, (28)

where

m ≡ Φ̇windGMBH/Ratm

Fatm
. (29)

m is the ratio between the energy flux needed to accelerate
the wind out of the gravitational potential well, and the
radiation flux provided to the wind by the system.

Another aspect of this thick wind is the location of the
photosphere. While in the slim and thin disk models the
photosphere resides where the gas becomes optically thin,
in our case, the photosphere resides much higher, where the
wind becomes optically thin. The optical depth of the wind
is given by

τ =

∫

∞

zatm

κρdz. (30)

Note also that the change in the location of the pho-
tosphere is accompanied by a decrease in the radiative flux
emitted from the disk (as energy is used to accelerate the
wind), hence, a decrease in the effective temperature.

As described in §5, the typical ratio we obtain between
the height of the photosphere and the radius is small, that
is, zph(r)/r ∼< 1, as long as the accretion rates are not too
large, i.e., ṁ ∼< 20ṁcrit. For higher accretion rates, the wind
geometry ceases to be disk-like, and the solution described
here breaks down.

3.2.3 Photon Tired Winds

As elaborated upon in §??, when the available radiative flux
at the sonic point is insufficient to drive the wind accelerated
at the sonic point out of the gravitational potential well,
photon tired winds are formed(see Owocki & Gayley 1997).
Under such conditions, a layer of shocks forms in which the
effective sonic point moves upwards, and reduces the actual
mass loss. Using the results from van Marle et al. 2009, we
empirically model the maximal Φ̇wind to be,

Φ̇wind

Φ̇tiring

≃ max

(

0.2
(

F
FEdd

)0.6

, 0.9

)

, (31)

where Φ̇tiring≡F/(GMBH/Ratm).

3.2.4 Boundary Conditions

The vertical structure of the disk is determined by the local
equatorial conditions, i.e., the total pressure P (r, z = 0) and
the density ρ(r, z = 0), and the free variable at each radius
is the radiative flux, F (r, z). The value chosen should agree
with surface conditions on the radiation field, which should
satisfy the blackbody radiation law,

F (r, z0) = σT 4
eff . (32)

Here Teff is the temperature at optical depth τ = 2/3.
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Super-Eddington Slim Accretion

• Super-Edd states allow for super-Eddington accretion 

• Predicted X-ray spectrum consistent with observations

Dotan & Shaviv 2012

Chapter 3: Super Critical Disk Accretion 68
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Figure 3.11: Observed spectra for IC 342 x-1 (Gladstone et al. 2009, the effect of the
corona was removed from the observed spectrum), compared to spectrum of accretion
disk with ṁ = 20ṁcrit around mBH = 10M⊙ (blue).
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Figure 3.12: Observed spectra for NGC 2403 X-1 compared to two accretion disks around
MBH = 10M⊙, blue is for 20ṁcrit and cyan is for 5ṁcrit.
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Predicts super-Eddington Accretion

Dotan & Shaviv 2012

30 Dotan & Shaviv

Figure 11. The total luminosity emitted as a function of the outer accretion rate. The black points denote the present results. The smaller points
are the results of the sensitivity analysis. From top to bottom they correspond to the p = 3, ↵ = 0.01 and ↵ = 0.1 models. The dashed line
corresponds to the L � ṁ relation of Poutanen et al. (2007), while the open symbols, the results of Ohsuga et al. (2005) – squares with Z = 0,
circles for Z = Z� and triangles for Z = 10Z�. Note that the different ṁ’s obtained by the different authors were scaled to the same ṁcrit used
here, which is LEdd/0.057c

2 (see eq. 2).

c� 2010 RAS, MNRAS 000, 1–??

Super Eddington Accretion Discs 25

Figure 6. The total luminosity log(⌫L⌫) vs. log(⌫), for the same discs as before (top to bottom, the lines denote the 20ṁcrit, 10ṁcrit, 5ṁcrit

and ṁcrit cases respectively). The horizontal lines depict the total radiated luminosity. The additional horizontal line (dot-dashed) is the Eddington
luminosity. Note that the model assumes a Planckian spectrum at each radius, which is likely to be a terrible approximation.

c� 2010 RAS, MNRAS 000, 1–??

Super Eddington Accretion Discs 27

Figure 8. Comparison between the accretion rates of discs with different atmospheric effective opacity parameters and different ↵’s, as labeled in
fig. 7. Overall, the different models have very similar mass losses, even though the opacities and viscosities vary considerably.
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Slim disks with spherical winds

For high accretion rates 

• For Mdot > 30 Mcrit, zph > r  -> inconsistent solution 

• Wind becomes spherical?



For high accretion rates Chapter 5: Discussion 96

Figure 5.2: The total luminosity emit-
ted as a function of the outer accretion
rate. The black points denote the present
results. The smaller points are the re-
sults of the sensitivity analysis. From
top to bottom they correspond to the
p = 3, α = 0.01 and α = 0.1 mod-
els. The dashed line corresponds to the
L−ṁ relation of Poutanen et al. (2007),
while the open symbols, the results of
Ohsuga et al. (2005) – squares with
Z = 0, circles for Z = Z⊙ and trian-
gles for Z = 10Z⊙. Note that the differ-
ent ṁ’s obtained by the different authors
were scaled to the same ṁcrit used here,
which is LEdd/0.057c2 (see eq. 3.2).

• In the present work, the predicted spectra were based on the assumption that each

disk element radiates with a Planckian spectrum corresponding to its effective

temperature. It should be emphasized that additional effects are likely to modify

this outgoing radiation, implying that the blackbody approximation is probably

a bad. For example, there might not be sufficient absorption in the scattering

dominated atmospheres to thermalize the emission at all frequencies (e.g., Davis

et al. , 2005). Likewise, a hot plasma above the disc will Comptonize the spectrum

(e.g. Titarchuk, 1994). Reasonable modeling of the radiated spectra therefore

requires an extended analysis that is beyond the scope of this work.

• We have assumed when solving the problems having a disk-like geometry, that

they can be approximated with a 1+1D geometry. This assumption should be

alleviated. Although it is a reasonable approximation for the disks, as we have

seen that they remain slim, the quasi-spherical winds that the high accretion rate

disks develop should in principle be solved with a full 2D numerical solution.

• The opacity law that we have used roughly gives the correct behavior of other

sub-Eddington objects, with novae in particular. However, this law has not been

“calibrated” yet. This should be done by carrying out a full calculation for the

novae evolution and comparison with their abundant observations. Then, if the

96

?



Quasi-star accretion

• Another 
accretion 
geometry is that 
of “quasi-stars”

Dotan Rossi & Shaviv 2012

8 Dotan et al.

Thus, because the system is limited by the gravitational well,
adiabatic winds are characterized by the similar mass loss rate
Ṁw,max of photon tired winds, albeit in a configuration which is
markably different from before.

3.5 Numerical Methods

Practically, we perform the numerical calculation of a quasistar as
follows.

(i) Choose a black hole mass,MBH.
(ii) Choose an inner total pressure, Pc.
(iii) Guess the gas to total pressure ratio at the inner radius, βc =

Pg/Pc.

With the above values, one can calculate the inner temperature,
density, adiabatic speed of sound, Bondi radius and luminosity by
respectively using

Tc =

[

3(1− βc)Pc

a

]1/4

, (40)

ρc = βcPc
µmH

kTc
, (41)

cc =
√

4Pc/3ρc, (42)

rb =
GMBH

2c2c
. (43)

The luminosity LBH is given by eq. 2 with α = 1. In fact, LBH is
evaluated at 5×rb, to avoid the density cusp generated by the point
mass potential of the BH (see eq. 19).

Using the above values, we integrate the equations of stellar
structure for a convective envelope (eqs. 19 - 22) until LBH =
Lc,max. When LBH > Lc,max, we use the same equations except
that the temperature gradient is instead given by eq. 28. This inte-
gration is carried out up to κeff = 1. This location, where Γeff ≈ 1,
is the wind sonic radius rs in the two-fluid regime (sec. 3.4.1). From
this point outward, we integrate the wind equations (eqs. 33, 32
and 34), with the following initial conditions. At r = rs we take
the value of the gas isothermal sound speed c(rs) and tempera-
ture T (rs) given by the hydrostatic solution and we set the ini-
tial wind sound speed, velocity and temperature to be cw = c(rs),
vw = cw and Tw = T (rs). Assuming mass continuity at rs with
the wind rate given by eq. 32, we derive the initial wind density
ρw = Ṁw/4πr

2
s cw . The way we connect the hydrostatic solution

to the wind uses the fact that the acceleration happens in a very nar-
row radial region, and we approximate it to happen at one radius,
r = rs.

Finally, the wind equations are integrated up to the photo-
sphere r = rph, where the optical depth is τ = 2/3. At rph, the
temperature T (rph) should be such that one recovers consistent
surface conditions for the radiation field:

T (rph) =

(

L(rph)
4πr2phσ

)1/4

. (44)

To enforce it, the value of βc (our only free parameter) is iterated
and, for each successive guess, the quasistar structure is recalcu-
lated until eq. 44 is satisfied.

Since the adiabatic wind conditions are satisfied above the
photon tiring limit (Fig. 2), we do not need to calculate specifi-
cally that solution, since the mass loss rate is going to be similar to
the one of the corresponding photon tired solution.
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Figure 2. The characteristic regions in the M∗ − MBH parameter space.
Separated by black lines are: (1) The region with no hydrostatic solution
(bottom) (2) The evaporation strip, where the envelope evaporation time-
scale is shorter than the black hole growth time-scale (3) The growth region,
where evaporation is less important. The short-dashed black line represents
the threshold quasistar mass above which the winds are photon-tired. The
blue lines represent lines of equal Ṁw [M⊙ yr−1]. The dotted lines are
the horizontal equi-BH accretion rates, in units of M⊙ yr−1. The long-
dashed red lines show the analytical predictions for the threshold-growth
line and the no-solution line. The analytical threshold-growth line assumes
a constant Γ = 10, while the analytical no-solution line assumes constant
Γ = 3, Tmin = 4500 K and the numerical κeff .

4 NUMERICAL RESULTS

In this section, we first discuss the different regions in the M∗ −
MBH parameter space for the structure of a quasistar. Then, we will
follow its temporal evolution towards the formation of massive BH
seeds.

4.1 The “no-solution” region

Using the numerical analysis, we first confirm the existence of a
region in the M∗ − MBH parameter space where no hydrostatic
self-gravitaing envelopes can be found. The region corresponds to
M∗/MBH ! 18, as depicted in Fig 2. In this region, the hydrostatic
layer between rb, where the supersonic accretion begins, and rs,
where a the supersonic wind starts, is simply too thin geometrically
to be stable (with rs/rb ∼

< 2).
The boundary of this “forbidden” region in the M∗ − MBH

parameter space corresponds to envelopes with a photospheric tem-
perature of 4500 ∼

< Tmin ∼
< 6000 K, in agreement with BRA08.

In particular, we find that Tmin increases from 4500 K to 6000 K
between MBH = 50M⊙ andMBH = 104M⊙; then it decreases
down to 5400 K at 105M⊙. For a given MBH, Tmin is the min-
imum photopheric temperature with which a quasistar can shine,
which corresponds to the minimum possible envelope mass, ac-
cording to Tph ∝ M7/20

∗ (eq. 44).
We compare our numerical results with the analytic prediction

given by eq. 12 (lower long-dashed red line). It assumes a constant
Γs = 3 and Tmin = 4500 K. The good agreement reinforces the
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Figure 1. A heuristic description of the system we solve. See detailed description in §2.

Moreover, contrary to classical advection dominated discs, CDAFs
are characterized by a net (and constant) outward flux of en-
ergy, which is possible only if ρ ∝ r−1/2 (Stone et al. 1999;
Quataert & Gruzinov 2000).

These scalings imply that the maximum luminosity that con-
vection can transport within the flow,

Lc,max = 4πr2ρc3s , (1)

is constant with radius. This limit for the carrying capacity of con-
vection is set by the requirement that the convective cell motion
should remain subsonic. That is, the convective velocity can be at
most the local sound speed cs, otherwise shocks will form and dis-
sipate the motion over distances much shorter than the pressure
scale height. Therefore, the energy released at small radii can be
transported by convection up to ≃ rb, if LBH ! Lc,max. We thus
assume

LBH = αLc,max, (2)

with α ! 1. The parameter α not only accounts for convective
transport inefficiency but also for possible leakage of energy (e.g.,
by jets close to the hole) which would decrease the supply of energy
into the envelope.

Since Lc,max is constant in the flow, it can be indeed evaluated
anywhere not too close to the BH. However, for reasons that will
be clear in the next section, it is convenient to express Lc,max at rb,

LBH = α

√

9
4a

π(GMBH)
2ρ3/2c T−2

c , (3)

where we took into consideration that this hot flow is radiation pres-
sure dominated, Pc ≃ aT 4

c /3, where a is the radiation constant.

2.2 The hydrostatic region

In a quasistar, most of the mass and the radial extent are occupied
by a highly convective envelope. The convection efficiently trans-
ports the accretion energy flux to large radii (≈ 100 AU) where
it powers a wind, after having crossed a thin hydrostatic radiative
layer. In the following estimates, we will assume that the mass and

the radius are constant in this radiative layer and equal to those of
the entire convective envelope (M∗ and r∗ respectively).

The structure of a strongly convective hydrostatic envelope
can be described by an n = 3 polytrope (while employing the clas-
sic Lane-Emden solution). These massive stars have a small fixed
ratio between the gas and radiation pressure of

β̄ ≈ 7× 10−3(M∗/10
6M⊙)−1/2 ≪ 1. (4)

Since the central density and pressure profiles are rather flat with
radius, we can use the central polytropic values to estimate the den-
sity and temperature at the Bondi radius, and thus evaluate LBH (as
given by eq. 3).

Scaling the envelope mass asM∗ = m∗ M⊙ and the central
temperature as Tc = T6 106 K, the envelope radius is given by

r∗ = 5.8× 1012m1/2
∗ T−1

6 cm, (5)

while the central density is

ρc = 1.3× 10−4m−1/2
∗ T 3

6 g cm−3 (6)

(e.g., see Hoyle & Fowler 1963).
Furthermore, Joss et al. (1973) have shown that wherever the

density is high enough, the local luminosity can never exceed the
local Eddington limit Ledd,r = 4πcGM(r)/κ(r), as calculated
with the enclosed mass M(r), and the local opacity κ(r). This
is because convection will be excited, and it will advect a large
enough flux to keep the system sub-Eddington. However, there is
an upper limit to the luminosity that can be transported by convec-
tion at each location (eq. 1). Outside the Bondi radius, the density
and temperature are nearly constant such that Lc,max ∝ r2. There-
fore, the convective carrying capacity increases with radius near
the centre. At larger radii however, both ρ and T decrease steeply,
forcing a progressively higher fraction of the luminosity to be trans-
ported by diffusive radiative transfer. Eventually LBH = Lc,max.
This location, which we call the “transition radius” (rtr), marks the
base of the radiative layer. We search for solutions for which this
region is in hydrostatic equilibrium, or in other words, solutions in
which a radiative atmosphere is present.

As atmospheres approach Ledd,r a plethora of instabilities
can set in, whether the atmospheres are only Thomson scattering
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much lower BH mass, the evaporation rate may be lower than the
accretion rate and there may be a dependence on the initial BH
mass, likewise, for much higher accretion rates.

In the second scenario, we assume that the quasistar is formed
through a more gradual accretion process. For the “low accretion
rates”, at least several dozen times the Eddington rate, a bare BH
can handle the accreted mass with a disk like solution, having op-
tically thick winds (Dotan & Shaviv 2011). However, the BH will
not be able to handle higher accretion rates with this configuration.
This will necessarily puff up the system to form a “minimal” qua-
sistar. From this point, we wish to integrate its evolution. We expect
the envelope mass to increase until the wind will compensate for the
accreted matter. That is, it will evolve by increasing the mass of the
cocooned BH, until the system will reach the no-solution line.

Two such tracks are plotted in Fig. 4, and the temporal evolu-
tion is given in Fig. 5. These quasistars are formed in the evapora-
tion strip withMBH,i = 25M⊙. Here we find that the final mass
of the BH is determined by the maximal envelope mass which in
turn depends on the mass accretion rate.

ForMBH,i = 25 M⊙, M∗,i = 1.4 × 104M⊙, we calculate
numerically relations between the accretion rates and the final BH
mass. For accretion rates < 20M⊙ yr−1, which do not allow the
quasistar to leave the evaporation strip, we get the relation

MBH,f ≈ 280

(

Ṁacc

10M⊙/yr

)0.68

M⊙. (48)

For higher accretion rates which place the Quasistar above the
growth line, we get

MBH,f ≈ 550

(

Ṁacc

10M⊙/yr

)0.62

M⊙. (49)

Only in this last case, the final BH can be larger than 103M⊙, but
only for Ṁacc ∼

> 30 M⊙ yr−1. However, it is a weak function
of Ṁacc, and already extremely high accretion rates (> 100 M⊙
yr−1) are needed to counterbalance the envelope evaporation and
growMBH with at least a few 103 M⊙.

In addition, we note that the case of an intial BH with a
few tens of M⊙ is a favourable configuration in which a quasis-
tar formed in the evaporation strip can somewhat grow its BH. As
we move towards the right within the evaporation strip, the winds
become more and more vigorous (see Fig. 2) and the envelope is
stripped off progressively more rapidly, leading eventually to con-
ditions that will not allow any BH growth.

We thus conclude that, for plausible galactic accretion rates
(∼ 1−10M⊙ yr−1), quasistars should be necessary formed above
the evaporation strip with an envelope of at least 106M⊙, in order
to getMBH > 103 M⊙.

4.4 Observational appearance

During the growth of the BH, quasistars are very dim objects, since
most of the radiation energy is converted into kinetic energy for the
wind. The photons that do manage to escape from the photosphere,
make up a modest luminosity which is smaller than the Eddington
(see Γobs in Fig. 3).

When the quasistar enters the evaporation strip, however, the
luminosity starts increasing fast as the envelope is being blown off.
Eventually, Γobs ! 1 beyond the photon tiring limit, but this Super-
Eddington phase is very brief (< 103 yr), where most of the time
is in fact spent at the photon tiring limit.

Another interesting point is the fact that because of the wind,

Figure 4. Quasistar evolutionary tracks. The blue lines describe the evo-
lution of quasistars which accrete from the pre-galactic disc at a rate of
10 M⊙ yr−1. The upper three ones, have an initial BH mass of 100M⊙ ,
and initial envelope masses of 106, 107 and 5 × 107M⊙, respectively.
The quasistar with 106M⊙ spends 1.5× 103 yr in the accretion zone and
a comparable time, 6 × 103 yr, in the evaporation strip. The aforemen-
tioned time-scales for M∗ = 107M⊙ (and M∗ = 6 × 107M⊙) are
1.3 × 103 yr (600 yr) and 1.5 × 103 yr (500 yr) respectively (see Fig. 5).
In all cases, the mass evolution of the envelope is governed by the wind
loses. In the BH growth zone, the quasistars lose only ≈ 25% of their ini-
tial mass, while all of it it is lost in the evaporation strip. The final BH
masses are: 750M⊙ , 1.3 × 104M⊙ and 105M⊙. The lower blue line is
for a quasistar fomed in the evaporation strip withMBH,i = 25 M⊙ and
M∗,i = 5.7× 103M⊙, while the red-line is for the same intial conditions
but with Ṁacc = 300 M⊙yr−1. In these last cases, the final BH mass is
determined by accretion rates. There temporal evolution is shown in Fig. 5.

the objects never have a high effective temperature. As a conse-
quence, any cosmological redshift will imply that the objects can
only be observed in the infrared band. Therefore, we can conclude
that although they were very brief transients, they can in principle
be detected by the forthcoming James Webb Space Telescope.

5 DISCUSSION AND CONCLUSION

In the present work, we considered the state and evolution of qua-
sistars, where a massive envelope enshrouds a black hole. We found
that an important characteristic of these objects is the continuum
driven winds which they accelerate. This gives rise to an evapora-
tion strip in the envelope mass – BH mass parameter space, where
quasistars evaporate. BH growth takes place only for large enough
M∗ for which the wind mass loss is limited by photon tired winds.

We then considered two evolutionary scenarios. In the first
scenario, the quasistar is initially formed above the evaporation
strip, by first having a large gas cloud collapse, then form an in-
ternal black hole, and subsequently evolve. In the second scenario,
a seed BH is first formed, and then it accretes gas at large rates. We
found that only the first scenario can generate large seed BHs. This
is because once a BH is formed, unrealistically high mass accre-
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Summary

• The Eddington luminosity is not a limit! 

• Super-Eddington states exist                     
They have strong winds 

• Super-Eddington states explain a range of 
astrophysical phenomena

Thanks for your 
attention!

ṁ = W (L� LEdd)

vsc
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