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Doktor nauk ścisłych i przyrodniczych w dyscyplinie

ASTRONOMII
Docteur de l’Université Paris Cité Spécialité

ASTRONOMIE ET ASTROPHYSIQUE

Publicly defended on March 31, 2023
at N. Copernicus Astronomical Center

in front of the jury composed of:

Reviewers
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Abstract

Lami SULEIMAN

Dense matter properties and neutron star modelling

Compact stars have a crucial role to play in the understanding of ultra dense and isospin
asymmetric matter. Born in the extremely bright explosion of a massive star at the last stage
of its life, neutron stars can present masses as high as twice the mass of the Sun, in a radius of
around ten kilometers, thus gathering matter in their interior in extreme conditions of den-
sity and gravity. The nuclear physics probed by observing neutron stars is complementary
in terms of density and isospin asymmetry to any terrestrial experiment. Multi-messenger
astronomy is used to extract information on the interior of neutron stars, their structure and
their composition. Connecting the observation of macroscopic parameters to the equation
of state of neutron star matter requires a solid understanding of gravitation theories and
modelling of the star’s interior.

In this thesis, three aspects of dense matter modelling that are essential to understand
neutron star properties and its macroscopic features are discussed.

The first point discussed is the construction of the equation of state of dense matter for
the low and the high density parts of the neutron star interior. A common practice within
the astronuclear physicists community consists in treating the core and the crust of the star
with different nuclear models. However, this non-unified treatment of the equation of state
results in errors on the macroscopic parameter modeling which are not negligible in the face
of current and near future observational precision. In this thesis, the role of non-unified
equations of state on the modeling of the mass, the radius, the moment of inertia, and the
tidal deformability of a cold neutron star is assessed. Moreover, analytical representations
of neutron star’s equation of state based on the piecewise polytropic parametrization are
provided for more than fifty modern and unified nuclear models.

The second subject presented in this thesis concerns the heat sources triggered deep
in the crust of accreting neutron stars. The observed thermal relaxation of a few X-ray
transients suggests that the standard approximation considering that the crust is entirely
made of accreted material may not be valid for neutron stars that have accreted only small
amounts of matter. In this manuscript, the equation of state of an accreting neutron star
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which is partly made of a global equilibrium crust under compression, and partly of ac-
creted material, is calculated. Heat sources in the compressed crust are determined and
compared to the heat sources deposited in the fully accreted crust approximation. The im-
pact of the kinetics of the non-equilibrium reactions leading to the crustal heating, which
has been neglected in previously established calculations, is calculated for a few shells of
the outer layers of accreting crusts. The reaction rate of electron captures leads to the in-
crease of the heat release in the considered shells of the crust.

The final point discussed in this thesis concerns a neutrino emission process in the core
of neutron stars, referred to as Modified Urca. Establishing the neutrino emissivity of Urca
processes is important to understand the cooling of cold neutron stars, temperature depen-
dent proto-neutron stars or binary merger remnants. Modified Urca combines the weak
interaction and the strong interaction. In this thesis, the hadronic part of the Modified Urca
process is derived in the framework of Thermal Quantum Field theory for finite tempera-
ture neutron star matter. A number of common approximations taken for the distribution of
nucleons and the nucleon propagators are alleviated. The suppression of the Modified Urca
process above the threshold of the weak interaction driven Direct Urca process is discussed
for different regimes of temperature and density.
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Własności gęstej materii i gwiazdy neutronowe

Gwiazdy zwarte odgrywają kluczową rolę dla zrozumienia własności ultragęstej ma-
terii. Powstałe w wyniku niezwykle silnej eksplozji masywnej gwiazdy na końcowym
etapie swojego życia, gwiazdy neutronowe mogą mieć masę równą dwukrotności masy
Słońca a promień rzędu 10 kilometrów stanowiąc obiekt o wyjątkowej gęstości i grawitacji.
Fizyka jądrowa dostępna poprzez obserwacje gwiazd neutronowych jest uzupełnieniem
ziemskich eksperymentów jądrowych pod względem gęstości i składu materii. Astronomia
wieloaspektowa służy obecnie do zbierania informacji o wnętrzu gwiazd neutronowych, ich
strukturze i składzie. Powiązanie obserwacji parametrów makroskopowych takich gwiazd
z równaniem stanu ultragęstej materii wymaga obliczania struktury gwiazd neutronowych
w ramach relatywistycznej teorii grawitacji.

W rozprawie dyskutowane są trzy są trzy aspekty badania gęstej materii istotne dla
zrozumienia własności gwiazd neutronowych i ich makroskopowych cech. Pierwszym
omawianym punktem jest konstrukcja równania stanu gęstej materii dla zakresu małej i
dużej gęstości we wnętrzu gwiazdy neutronowej. Powszechne podejście do równania stanu
gwiazdy neutronowej polega na traktowaniu jądra i skorupy gwiazdy za pomocą różnych
modeli jądrowych. Taki traktowanie równania stanu skutkuje jednak błędami w wyznacza-
niu parametrów makroskopowych, które nie są zaniedbywalne biorąc pod uwagę precyzję
obserwacji obecnie i w najbliższej przyszłości. W pracy oceniana jest rola tych efektów przy
określaniu masy, promienia, momentu bezwładności i deformacji pływowej zimnej gwiazdy
neutronowej. Ponadto, dla ponad pięćdziesięciu współczesnych, zunifikowanych modeli
jądrowych podane są analityczne reprezentacje równań stanu gwiazdy neutronowej oparte
na parametryzacji politropowej.

Drugi temat przedstawiony w tej rozprawie dotyczy źródeł ciepła zlokalizowanych
głęboko w skorupie akreujących gwiazd gwiazd neutronowych. Obserwowana ewolucja
termiczna kilku źródeł rentgenowskich sugeruje, że standardowe przybliżenie uznające,
że skorupa jest w całości zbudowana z zaakreowanej materii może nie być słuszne dla
niektórych gwiazd neutronowych, które zaakreowały tylko niewielkie ilości materii. W
rozprawie przedstawiono równanie stanu akreującej gwiazdy neutronowej, która jest częś-
ciowo zbudowana ze skatalizowanej skorupy poddanej kompresji, a częściowo z materi-
ału zaakreowanego, porównując źródła ciepła w tych dwóch obszarach. Wpływ kinetyki
tej reakcji, która była zaniedbywana w poprzednich analizach, jest wyznaczany dla kilku
powłok zewnętrznych skorup akrecyjnych. Pokazano, że tempo reakcji wychwytu elek-
tronów ma wpływ na ciepło wydzielane w skorupie.

Ostatnie zagadnienie przedstawione w rozprawie dotyczy procesu emisji neutrin w ją-
drze gwiazd neutronowych, określanego jako Modified Urca. Ustalenie emisywności neu-
trinowej w procesach Urca jest ważne dla zrozumienia chłodzenia gwiazd neutronowych,
termicznej ewolucji proto-gwiazd neutronowych. W procesie Modified Urca istotne są zarówno
oddziaływania słabe jak i silne. W rozprawie, hadronowa część procesu Modified Urca jest
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wyprowadzona w ramach kwantowej teorii pola dla materii gwiazd neutronowych o skońc-
zonej temperaturze. Tłumienie procesu Modified Urca powyżej progu procesu Direct Urca
jest dyskutowane dla różnych zakresów temperatury i gęstości.
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Propriétés de la matière dense et modélisation d’étoiles à neutron

Les étoiles compactes jouent un rôle crucial dans la compréhension de la matière ultra
dense et asymétrique en isospin. Nées de l’explosion extrêmement lumineuse d’une étoile
massive au dernier stade de sa vie, les étoiles à neutrons peuvent avoir des masses aussi
élevées que deux fois celle du Soleil, dans un rayon d’une dizaine de kilomètres, rassem-
blant ainsi la matière en leur sein dans des conditions extrêmes de densité et de gravité.
La physique nucléaire sondée par l’observation des étoiles à neutrons est complémentaire
en termes de densité et d’asymétrie en isospin aux expériences terrestres. Dans ce contexte,
l’astronomie multi-messagers nous aide à extraire des informations sur l’intérieur des étoiles
à neutrons, sur leur structure et sur leur composition. Relier les observations des paramètres
macroscopiques à l’équation d’état de la matière des étoiles à neutrons nécessite une solide
compréhension des théories de la gravitation et de la modélisation des paramètres macro-
scopiques de l’étoile.

Dans cette thèse, trois aspects de la modélisation de la matière dense qui sont essen-
tiels pour comprendre les propriétés des étoiles à neutrons et leur caractéristiques macro-
scopiques sont discutés.

Le premier point abordé est la construction de l’équation d’état de la matière dense
pour les parties à basse et à haute densité de l’intérieur de l’étoile à neutrons. Une pra-
tique courante au sein de la communauté des astrophysiciens nucléaires consiste à traiter
le cœur et la croûte de l’étoile avec des modèles nucléaires différents. Cependant, ce traite-
ment non-unifié de l’équation d’état entraîne des erreurs sur la modélisation des paramètres
macroscopiques qui ne sont pas négligeables au regard de la précision actuelle et future des
observations. Dans cette thèse, le rôle des équations d’état non-unifiées sur la modélisation
de la masse, du rayon, du moment d’inertie et de la déformabilité de marée d’une étoile à
neutrons froide est évalué. De plus, des représentations analytiques de l’équation d’état de
l’étoile à neutrons basées sur une paramétrisation polytropique par morceaux sont fournies
pour plus de cinquante modèles nucléaires modernes et unifiés.

Le deuxième sujet présenté dans cette thèse concerne les sources de chaleur déclenchées
dans les profondeurs de la croûte des étoiles à neutrons en accrétion. La relaxation ther-
mique observée de quelques astres/objets transitoires en rayons X suggère que l’approximation
standard considérant que la croûte est entièrement constituée de matière accrétée peut ne
pas être valide pour les étoiles à neutrons qui n’ont accrété que de petites quantités de
matière. Dans ce manuscrit, l’équation d’état d’une étoile à neutrons en accrétion qui est
d’une part constituée d’une croûte en équilibre global sous compression, et d’autre part de
matière accrétée, est calculée. Les sources de chaleur dans la croûte comprimée sont dé-
taillées et comparées aux sources de chaleur déposées dans l’approximation de la croûte
entièrement accrétée. Les captures électroniques sont des réactions qui enrichissent en neu-
trons la croûte des étoiles à neutrons en accrétion ; ce processus est important pour modéliser
la relaxation thermique de l’étoile puisque les captures électroniques déposent de la chaleur
dans la croûte. L’impact de la cinétique de cette réaction, qui a été négligé dans les calculs
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établis précédemment, est calculé pour quelques couches externes des croûtes en accrétion.
Le rôle que jouent les taux de réaction de captures électroniques sur la chaleur libérée dans
la croûte est non négligeable pour les couches les plus surfaciques de la croûte.

Le dernier point abordé dans cette thèse concerne un processus d’émission de neutrinos
dans le cœur des étoiles à neutrons, appelé Urca modifié. Etablir l’émissivité des neutrinos
des processus Urca est important pour comprendre le refroidissement des étoiles à neutrons
froides, des proto-étoiles à neutrons qui dépendent de la température, ou des restes de fu-
sion de binaire d’étoiles à neutrons. L’Urca modifié combine interaction faible et interaction
forte. Dans cette thèse, la partie hadronique du processus Urca modifié est dérivée dans
le cadre de la théorie des champs quantiques thermiques pour la matière d’étoile à neu-
trons à température finie. Un certain nombre d’approximations couramment prises pour
la distribution des nucléons et les propagateurs des nucléons sont retirées. La suppression
du processus Urca modifié au-dessus du seuil du processus Urca direct est discutée pour
différents régimes de température et de densité.
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Physical Constants

M⊙ Solar mass = 1.989 × 1033 g
c speed of light = 2.9979 × 1010 cm/s
G gravitational constant = 6.6720 × 10−8 cm3/g/s2

h̄ reduced Planck constant = 6.582 × 10−16 eV/s
h̄c conversion constant = 197.33 MeV
n0 baryon saturation density = 0.16 fm−3

ρ0 saturation mass density = 2.4 × 1014 g/cm4

mB baryon mass-energy = 939 MeV
mn neutron mass-energy = 939.565 MeV
mp baryon mass-energy = 938.272 MeV
me electron mass-energy = 0.511 MeV
kB Boltzmann constant = 1.3807 × 10−16 erg/K
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List of Symbols

ρ mass density g/cm3

P presssure dyn/cm2

ϵ energy density MeV/fm−3

n or nB baryonic density fm−3

Z proton number
N neutron number
A nucleon number
M total mass M⊙
R total radius km
Λ tidal deformanility
I moment of ineria g cm3

C compactness
Γ adiabatic index
MSP milisecond pulsar
GW gravitational wave
EoS equation of state
v tri-dimensional vector v
a · b scalar product of a and b
a · b scalar product of a and b
a ∧ b vector product of a and b
Aµ tensor A with grec indices µ = 0, 1, 2, 3
Ai tensor A with latin indices i = 1, 2, 3
δ(x) Dirac delta function
δµν Krönecker delta function
δ asymmetry parameter



xiv

Contents

Abstract iii

Acknowledgements ix

Physical Constants xi

List of Symbols xiii

1 Outline of the manuscript 1

2 Introduction to neutron stars physics 3
2.1 Historical review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 First theoretical approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 From a strange radio signal to the era of multi-messenger astronomy . 4

2.2 The fate of main sequence stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Structure of an "adult" neutron star . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A laboratory for dense matter: the equation of state mystery 13
3.1 Theoretical framework of strong interaction modelling . . . . . . . . . . . . . 15

3.1.1 Phenomenological models . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Microscopic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 The unknown composition of the core . . . . . . . . . . . . . . . . . . . 24

3.2 Microphysics constraints on the equation of state . . . . . . . . . . . . . . . . . 28
3.2.1 Constraints on the outer crust . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Incorporating constraints at moderate and high density . . . . . . . . . 29

3.3 Astrophysical constraints on dense matter . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Macroscopic parameter modelling and observations . . . . . . . . . . . 34
3.3.2 Astrophysical constraints on the microphysics parameters . . . . . . . 54

3.4 Consequence of non-unified models for dense matter on neutron star modelling 57
3.4.1 Unified vs. non-unified equations of state . . . . . . . . . . . . . . . . . 57
3.4.2 Consequence on macroscopic parameter’s modelling . . . . . . . . . . 63
3.4.3 Role of non-unified constructions in quasi-universal relations . . . . . 70

3.5 Analytical representations of modern and unified equations of state . . . . . . 80
3.5.1 Piecewise polytropic fits . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.2 PPFRead vs. unified equations of state . . . . . . . . . . . . . . . . . . . 81



xv

3.5.3 Revising piecewise polytropic fits from modern and unified equations
of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Crust compression related astrophysical phenomena 93
4.1 Accreting neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 From the donor to the neutron star crust . . . . . . . . . . . . . . . . . . 95
4.1.2 Deep crustal heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Partially accreted crusts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.1 Beyond the fully accreted crust approximation . . . . . . . . . . . . . . 102
4.2.2 Heat sources in a compressed catalyzed crust . . . . . . . . . . . . . . . 105
4.2.3 Onset of the neutron drip . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.4 Applications for rotating neutron stars and magnetars . . . . . . . . . 117
4.2.5 Properties of a compressed crust . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Layers of electron captures in accreting neutron stars . . . . . . . . . . . . . . 126
4.3.1 Electron captures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.2 The linear mixing rule approach to a mixture of nuclei . . . . . . . . . 135
4.3.3 The continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3.4 Stationary solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.5 Solution to the full continuity equation . . . . . . . . . . . . . . . . . . 145

5 Modified Urca neutrino emission at finite temperature 151
5.1 Direct and Modified Urca processes . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1.1 The Direct Urca process . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.2 The Direct Urca threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.1.3 State of the art of Modified Urca derivations . . . . . . . . . . . . . . . 155

5.2 Modified Urca neutrino opacity at finite temperature . . . . . . . . . . . . . . 157
5.3 Hadronic part of the Modified Urca process . . . . . . . . . . . . . . . . . . . . 169

5.3.1 Derivation of the spin and isospin terms . . . . . . . . . . . . . . . . . . 169
5.3.2 The hadronic polarization function treated in the Matsubara formalism 179

5.4 Numerical treatment of the momenta integrations with the Monte-Carlo method182
5.5 Results of the Monte-Carlo integration for the hadronic part of Modified Urca 185

5.5.1 Numerical divergence above the Direct Urca threshold . . . . . . . . . 185
5.5.2 The vector contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.5.3 The role of the denominator of N functions . . . . . . . . . . . . . . . 190
5.5.4 Modified Urca suppression above the Direct Urca threshold . . . . . . 192

6 Conclusion and perspectives 201

A Details for the spin part of the Modified Urca derivation 203
A.1 Self-energy contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.2 Vertex V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.3 Vertex V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B Details on the Matsubara sums 209



xvi

B.1 Use of Residue theorem in sums on the imaginary axis . . . . . . . . . . . . . 209
B.2 Properties of Bose-Einstein and Fermi distributions . . . . . . . . . . . . . . . 210

C Expression for the M functions 211
C.1 Direct and exchange diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.2 Second vertex diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
C.3 Third vertex diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
C.4 Center of mass change in variables . . . . . . . . . . . . . . . . . . . . . . . . . 214

C.4.1 Details for the first self-energy correction . . . . . . . . . . . . . . . . . 214
C.4.2 Expression for the second self-energy correction . . . . . . . . . . . . . 215
C.4.3 Expression for the second vertex . . . . . . . . . . . . . . . . . . . . . . 216
C.4.4 Expression for the third vertex . . . . . . . . . . . . . . . . . . . . . . . 217



1

1 Outline of the manuscript

The extreme conditions of matter inside neutron stars makes them fascinating objects to
study in astronomy, in nuclear physics and in theories of gravitation. As the densest stars
in the Universe, they are observed in all wavelengths of the luminosity spectrum, yet carry
fundamental and intriguing mysteries. The innermost parts of neutron stars are subject to
densities way beyond the limits of nuclear physics laboratories on Earth. Fortunately, the
increase in accuracy of multi-messenger astronomy offers the possibility of exploring ultra
dense matter in "neutron star laboratories" by comparing observations to nuclear models
established by astrononuclear physicists. In this manuscript, we explore the link between
the microphysics of ultra dense matter and the modelling of neutron star’s macroscopic
features. The text is separated in four chapters.

In chapter 2, a brief historical overview of the theoretical and observational discovery of
neutron stars is presented in section 2.1. Multi-messenger observations of neutron stars are
also discussed in this section. The collapse supernova process leading to the birth of neutron
stars is introduced in section 2.2. This chapter ends with the description of the neutron star
structure in section 2.3.

Chapter 3 focuses on the microscopic description of neutron star’s interior. First, the dif-
ferent approaches to the theoretical description of dense matter are presented in section 3.1.
The nuclear physics constraints on the theories of neutron star matter are discussed in sec-
tion 3.2. The modelling of neutron star’s macroscopic parameters, and how measurements
of the mass, the radius, the tidal deformability and the moment of inertia, can help constrain
dense matter are discussed in section 3.3. We study a construction of neutron star’s equa-
tions of state that leads to errors on macroscopic parameter’s modelling in section 3.4, and
propose an analytical representation of modern equations of state for cold matter equations
of state. This chapter discusses studies described in two papers: the first one is entitled
"Influence of the crust on the neutron star macrophysical quantities and universal relations"
[Suleiman et al., 2021] and the second one is entitled "Polytropic fits of modern and unified
equations of state" [Suleiman et al., 2022a].

In chapter 4, the compression of the neutron star’s crust is discussed. The process of
accretion is introduced in section 4.1. We also discuss a heating process deep in the crust
of accreting neutron stars, and how this phenomenon is observed in the thermal relaxation
of neutron stars. In section 4.2, we introduce partially accreted crusts and compute the
catalogue of heat sources and properties of the crust for a neutron star that has accreted
small amounts of matter; this was the subject of a paper entitled "Partially accreted crusts
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of neutron stars" [Suleiman et al., 2022b]. In section 4.3, the common approximation to the
kinetics of exothermic reactions in accreting neutron star’s crusts is revised. The reaction
rate of electron captures is derived, and the impact of layers of electron captures on the heat
deposited in accreting neutron stars is calculated.

The neutrino emission process Modified Urca is discussed in chapter 5. After a brief
introduction on the weak interaction driven Direct Urca process and its threshold in neutron
star’s core, the Modified Urca process is introduced in section 5.1. The framework of the
derivation for the neutrino emissivity of the Modified Urca process at finite temperature is
presented in section 5.2, and we also present the different Modified Urca reactions involving
with electrons, positrons, neutrons and protons. Section 5.3 focuses on the derivation of the
hadronic part of the process; details of this derivation are also given in Appendix A. The
numerical method used to compute the hadronic polarization function of Modified Urca is
presented in section 5.4. Results are presented and discussed in section 5.5.
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2 Introduction to neutron stars
physics

At the crossroads between the fields of nuclear physics, astronomy and theories of gravi-
tation, neutron stars have become extraterrestrial laboratories used to test ultra dense matter,
and the limits of Einstein’s theory of general relativity. In consequence of the development
of multi-messenger astronomy, neutron stars encompass a large variety of fields in physics,
whose nomenclature are introduced in this chapter.

In section 2.1, we present a brief history of the neutron star field of study, starting with
the emergence of neutron star theory and the first detection of neutron star’s electromagnetic
signatures, to today’s multi-messenger astronomy, and the prospects for the next generation
of observers.

In section 2.2, the birth of a neutron star in a core collapse supernova is briefly discussed.

In section 2.3, we present the general structure of a neutron star.
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2.1 Historical review

2.1.1 First theoretical approach

The story of neutron stars may have started with the publication of the paper entitled
Possible Existence of a Neutron by Sir James Chadwick in February 1932 [Chadwick, 1932]. The
discovery of a new elementary particle with no electric charge shifted the world of atomic
physics to the era of nuclear physics. However, this same month of February, Lev Landau
published a paper entitled On the Theory of Stars [Landau, 1932] in which he hypothesized
the existence of a star that would "form one gigantic nucleus". The common knowledge is
that the discovery of neutrons inspired the paper of Lev Landau but, upon closer inspection
of the timeline of the paper, Landau’s theory may have predated the discovery of neutrons,
see Yakovlev et al. [2013] for details.

The first mention of "neutron stars" appeared in 1934 in a series of papers written by
Walter Baade and Fritz Zwicky [Baade and Zwicky, 1934a,b,c], in which the authors who
were attempting to explain observations of supernovae, suggested that neutron stars might
be the result of the explosion of massive stars. They highlighted the role of ultra dense
matter in the compactness of those stars: "Such a star may possess a very small radius and an
extremely high density. As neutrons can be packed much more closely than ordinary nuclei
and electrons [...] A neutron star would therefore represent the most stable configuration of
matter as such.".

A few years later, Richard Tolman as well as J. Robert Oppenheimer and George Volkoff,
separately derived the equations of hydrostatic equilibrium for a spherically symmetric star
[Tolman, 1939, Oppenheimer and Volkoff, 1939], and established the Tolman-Oppenheimer-
Volkoff equations in the framework of Albert Einstein’s theory of general relativity. Al-
though Oppenheimer and Volkoff [1939] established a solution to those equations for a de-
generate gas of relativistic neutrons, they did not take into account the effects of the re-
pulsive nucleon interaction on the maximum mass of a neutron star, only suggested that it
might increase it significantly. Twenty years later, Alastair Cameron [Cameron, 1959] solved
the Tolman-Oppenheimer-Volkoff equations for a star made of a degenerate gas of relativis-
tic neutrons with a repulsive neutron-neutron interaction, and obtained a maximum mass
around twice the mass of the Sun, an approximate limit value still valid today.

In the early 1960s, a boom in the field of dense matter was triggered. Many theories on
the presence in the core of "exotic" particles such as pions and kaons condensates, hyperons,
deconfined quarks were suggested [Ambartsumyan and Saakyan, 1960]. From then on, the
pursuit of the neutron star equation of state was launched for astronuclear physicists.

2.1.2 From a strange radio signal to the era of multi-messenger astronomy

In 1967, Dame Susan Jocelyn Bell Burnell, who was a graduate student at the time,
was actively researching signatures of interplanetary scintillations in the radio wavelength.
During this year, she observed a very regular signal whose periodicity suggested that it
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originated from a compact star, and the paper Observation of a Rapidly Pulsating Radio Source
[Hewish et al., 1968] was published a year later. Its first author, Antony Hewish who was
Jocelyn Bell’s supervisor was awarded the 1974 Nobel prize "for [...] pioneering research
in radio astrophysics: [...] for his decisive role in the discovery of pulsars" [Nobel Prize
Outreach AB, 2022]. At the end of the 1960s, neutron stars were decisively identified as
pulsars when the Vela [Radhakrishnan and Manchester, 1969] and Crab [Boynton et al.,
1969] sources were discovered. White dwarfs were excluded as candidates by Thomas Gold,
who showed that only neutron stars could sustain the centrifugal force of such short rotation
periods (of the order of tens of milliseconds) [Gold, 1968].

It is beyond the scope of this manuscript to present an exhaustive list of instruments
observing neutron stars, but a few are mentioned in the following.

The catalog SIMBAD gathers around 3000 observations of pulsating neutron stars. Neu-
tron stars spin and are magnetized, and the magnetic field is not necessarily aligned with
the rotational axis. Depending on the line of sight of the observer, the rotating star’s dipo-
lar magnetic field produces electromagnetic radiation observed in the radio band, pulsat-
ing with a period directly related to the spin of the star. Pulsating neutron stars are called
Pulsating Radio Sources, oftentimes abbreviated PSR to name observed sources, or sim-
ply pulsars. The physics of pulsar’s emission relies on modelling the complex geometry
of the emitting magnetosphere. The diagram of pulsar’s periods and their time derivative,
showed that pulsars can be categorized between millisecond pulsars and non-millisecond
pulsars. This led to the understanding of the spin recycling from the accretion process in
binaries [Radhakrishnan and Srinivasan, 1982]. Among the telescopes observing pulsars
in radio are the observatories of Parkes (Australia), Green Bank (United States of America)
and Nancay (France). The Arecibo observatory in Porto Rico has been operating for almost
sixty years, although it fell in November 2020. The Five-hundred-meter Aperture Spherical
radio Telescope [Nan et al., 2011] (China) was launched in 2017. The largest worldwide tele-
scope Square Kilometer Array [Watts and et al., 2015] (Australia and South Africa) will be
operational in a few years.

The pulses of neutron stars are precise clocks of our Universe. Pulsar timing is a tech-
nique used to extract the parameters of binary systems. The mass of the neutron star can be
determined from a few of those parameters, and the over-determination of a binary system
allows tests of gravitation laws. Data for the double pulsar PSR binary J0737−3039 has been
collected for more than a decade and a half; the binary parameters were measured with
an unprecedented precision, which showed that general relativity is accurate in the dou-
ble pulsar binary, and allowed to test alternative theories of gravitation [Kramer and et al.,
2021].

Neutron stars are also observed in X-rays. The spatial telescope X-ray Multi Mirror-
Newton (XMM-Newton [Jansen and et al., 2001]) from the European Spatial Agency, and
its American counterpart Chandra [Weisskopf et al., 2000], have been operating for more
than 20 years providing X-ray data for isolated, accreting, and highly magnetized neutron

http://simbad.u-strasbg.fr/simbad/
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stars. The younger Nuclear Spectroscopic Telescope Array [Harrison and et al., 2013], and
Neutron star Interior Composition ExploRer (NICER [Gendreau et al., 2012]) observe re-
spectively in hard, and soft X-ray. The NICER telescope is an instrument that can measure
simultaneously the neutron star mass and its radius. This technology is based on the effects
of general relativity on the exhibited luminosity from hot spots on the surface of a rotating
neutron star. The next generation of X-ray telescopes is in preparation: the Enhanced X-ray
Timing and Polarimetry [Watts and et al., 2019] mission is scheduled to be launched in 2027,
and the highly anticipated Advanced Telescope for High ENergy Astrophysics (ATHENA
[Hauf et al., 2011]) with a state of the art X-ray Integral Field Unit spectrometer will provide
unprecedented spectral resolution for a wider effective area, with a fifteen time increase in
sensitivity compared to XMM-Newton.

There has been a recent expansion of the gravitational wave area for neutron star physics.
The theory of general relativity established by Albert Einstein, predicted that accelerating
objects with a significant mass would perturb spacetime and emit detectable waves propa-
gating at light speed [Einstein, 1916].

After more than a decade of rejected proposals, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) was finally approved: two facilities were built in the United
States of America (in Hanford and Livingston) by the end of the 1990s. The first run of LIGO
started in 2002, and the second one in 2010, but neither detect gravitational waves, which
led to an improvement of the facilities that lasted for four years and to a significant increase
in sensitivity of the detectors. From 2000 to 2003, the Virgo facility located in Italy (near Pisa)
was constructed, and operated in 2007 and 2011, but reported no detection of gravitational
waves either. The Virgo facility was also updated to the Advanced Virgo facility, which in-
creased the sensitivity by a factor of ten. In September 2015, advanced LIGO detected the
merger of two black holes, each of around thirty times the mass of the Sun, providing the
first direct observational proof of gravitational waves [Abbott and et al., 2016].

The detection of gravitational waves is based on a large interferometer. Although the
principle is simple, the technology used in gravitational wave detectors is the state of the
art of noise reduction techniques. The facilities of the LIGO Scientific Collaboration, the
Virgo Collaboration, and the Kamioka Gravitational Wave Detector (KAGRA) which joined
the collaboration in 2019 (referred to as LVK collaboration [Abbott et al., 2020a]), provides
a network of detectors able to triangulate the location of sources in the sky. The different
facilities coordinate their operations with other gravitational wave detectors, but also with
electromagnetic spectrum detectors.

In the catalogues of the LVK collaboration, compact objects of the binary whose mass
is in the range of neutron star masses are considered to be detected neutron stars. The sig-
nature of tidal forces on neutron stars which appears in the late inspiral of the gravitational
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wave signal, or the detection of a corresponding electromagnetic counterpart, can also con-
firm that the progenitor of the merger is a neutron star, and not just a very light black hole1.

From the catalogues of O2 and O3 of the LVK collaboration, the following detections of
compact binary mergers involving neutron stars have been reported:

• GW1708172 [Abbott et al., 2017]: detected on the 17th of August 2017 by both facilities
of LIGO and Virgo, as the merger of two neutron stars of roughly 1.3 and 1.5 solar
mass in the galaxy NGC 4993 (about 140 × 106 light years from the Earth). The upper
limit on the mass of the merger remnant was estimated to be 2.8 solar mass; whether
it is a neutron star or a black hole is unclear, because this mass is located in the upper
limit of neutron stars masses, but the gamma ray burst leads to a black hole signature.
From this detection, the deformation of the two stars by their respective gravitational
field could be extracted from the gravitational wave signal. In the few hours following
the detection, electromagnetic counterparts of the transient denoted AT2017gfo were
observed in various wavelengths and confirmed the transient nature of the merger
remnant.

• GW190425 [Abbott and et al., 2020]: detected on the 25th of April 2019 only from the
LIGO Livingston facility, as the merger of two neutron stars of respectively 2 and 1.4
solar mass, this merger resulted in a compact object of 3.2 solar mass (very likely a
black hole). As the merger was detected by only one detector, no sky localization was
possible, and no electromagnetic counterparts were detected.

• GW190814 [Abbott et al., 2020b]: detected on the 14th of August 2019 by LIGO Liv-
ingston and Virgo, as the merger of a 23 solar mass black hole, and a compact object
of 2.6 solar mass whose nature is unclear. The location of the source was estimated to
be at around 800 × 106 light years from the Earth, and despite tremendous effort, no
electromagnetic counterpart was detected.

• GW200105_162426 Abbott et al. [2021]: detected on the 5th of January 2020 by LIGO
Livingston and Virgo, as the merger of a nine solar mass black hole and a 1.9 solar
mass compact object (likely a neutron star), with no electromagnetic counterpart.

• GW200115_042309 Abbott et al. [2021]: detected on the 15th of January 2020 by both
facilities of LIGO and Virgo, as the merger of a 5.9 solar mass black hole and a 1.4 solar
mass compact object (likely a neutron star), with no electromagnetic counterpart.

Prospects for gravitational wave detections are optimistic. The LVK collaboration shall
continue to operate starting in Spring 2023, with the O4 run. Upgrade of the facilities in-
cludes the reduction of quantum noise (vacuum fluctuations) through squeezing, and of the

1Let us note that the tidal deformability of black holes was recently discussed in the paper entitled "Spinning
Black Holes fall in Love" [Le Tiec and Casals, 2021].

2The nomenclature for gravitational wave detection is GWYearMonthDay_HourMinutesSeconds. The no-
tation of hours, minutes and seconds was introduced in anticipation of the increase in sensitivity of the dec-
tors, which would lead to several detections per day. However, most sources are referred to with the notation
GWYearMonthDay.
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thermal noise through better mirror coatings. These improvements will increase the sensi-
tivity of the Virgo detectors such that the Advanced Virgo facility which was able to detect
binary neutron stars mergers down to a distance of 50 Mpc during O3, will be able to push
it to 120 Mpc for O4. Further improvements for the O5 run of the Virgo detector should
increase this number to 260 Mpc, and to 325 Mpc and 128 Mpc in the LIGO and KAGRA
facilities, see Abbott et al. [2018].

Although the LVK collaboration was scheduled to operate five runs only, there are plans
to push the facilities to their limit until the next generation of gravitational wave detectors
are operational; for example, that is the plan for the Virgo_nExt project scheduled to start
this decade, which will provide an upgrade with increased sensitivity.

The third generation of gravitational waves includes two projects of interest for neutron
stars:

• Einstein telescope [Maggiore and et al., 2020]: a detector with arms of ten kilometers
located in Europe, which includes cryogenic technology and is constructed under-
ground to reduce seismic noise. The sensitivity of this instrument is expected to detect
105 binary neutron star mergers (and 106 binary black hole mergers) per year, with
a significant improvement on the mass measurement, hence the deformability, in the
inspiral signal of a neutron star binary merger. In addition, the detector will allow for
the detection of continuous gravitational waves, for example the waves emitted by a
rotating neutron star with a significantly high mountain. The underground and cryo-
genic characters of the Einstein telescope (which are also the most expensive) would
benefit low frequency gravitational waves. The coalescence stage of a double neutron
star binary merger emits in the kHz frequency, whereas the early stage of the inspi-
ral emits at lower frequencies down to the Hz. Detecting low frequency gravitational
waves is useful for multi-messenger astronomy because the merger signal is sent well
in advance of the coalescence, such that the electromagnetic counterparts can be more
easily searched for.

• Cosmic Explorer [Evans and et al., 2021]: two classic interferometers with forty kilo-
meter and twenty kilometer long arms located in the United States of America.
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2.2 The fate of main sequence stars

Neutron stars are born from the explosion of stars in the last stages of their life. There
are several types of supernovae (for the first mention of the phenomenon, see Baade and
Zwicky [1934a]), but we shall focus on the core-collapse supernovae in the following.

A main sequence star with a mass of at least eight times the mass of the Sun, undergoes
a series of nuclear fusions, first burning Hydrogen, then Helium, Carbon, Oxygen, and con-
tinuing with heavier elements until it burns into Iron. At this stage in its life, the star is a
giant which has exhausted its fuel: Iron presents the highest binding energy per nucleon of
the periodic table, in other words it is an extremely stable nucleus, such that fusion beyond
this element does not produce energy. The star presents an Iron core, and an onion like
structure with the outer shells undergoing fusions, for details see Bethe et al. [1979]. The
end of the fusion chain is crucial in understanding core-collapse supernovae. As thermal fu-
sion is no longer provided in the core made of Iron, the source of pressure counterbalancing
the self-gravitation is purely that of degenerate electrons. At this stage in the life of the star,
its mass can be approximated by the Chandrasekhar mass [Chandrasekhar, 1931]. Once the
Iron core goes beyond the Chandrasekhar mass limit, the pressure from the electron gas is
not sufficient to counterbalance self-gravitation, and the collapse of the star begins.

Supernovae are extreme events, in terms of energy and timescale; we refer to Janka
[2012] for a review of the core-collapse supernova process. The iron core shrinks about
thirty times its size in half a second, and it is transformed into a plasma of neutrons and
protons. Nucleons closely compacted together interact in neutrino emission processes out
of equilibrium, thus neutronizing matter, and emitting neutrinos. A critical density defines
whether neutrinos can escape (taking energy away with them) or are trapped inside the
core [Janka et al., 2007]. The outer layers of the core keep falling to the center with a speed
around one tenth of the light velocity. The collapse of the Iron nuclei on the plasma core
produces a shock wave. This wave propagates outwards until it stagnates because of lack
of energy about 150 km away from the center. The explosion lasts for about two seconds,
but the shock wave takes time to reach the surface of the star (a few hours), contrary to
gravitational waves and the neutrinos emitted. As the shock wave reaches the surface, the
first electromagnetic signal of the explosion is sent.

Supernovae are rare events, estimated to occur in our Galaxy around two times per cen-
tury, [Diehl and et al., 2006]. The ejecta shines very brightly for a few months in the visible
band of the electromagnetic spectrum. The supernova SN 1987A located in the Magellan
constellation is the last observed supernova. To date, no supernova was observed in our
Galaxy with telescopes. There are however written reports of these event, for example of
the supernova SN 1054, whose nebula is well monitored, as well as the famous Crab pulsar
remnant (for details on this extremely bright event, see Li et al. [2015]).

Supernovae are the host of heavy element nucleosynthesis driven by neutrino emission
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[Arcones and Thielemann, 2013]; among the nucleosyntehsis mechanisms, there is the rapid-
neutron capture, also referred to as the r-process. This process is also present in merging
neutron stars, and is the origin of a large number of elements in the periodic table [Woosley
and Janka, 2005].

The remnant of the supernova implosion is the proto-neutron star, which contracts pro-
gressively to a radius of the order of ten kilometers in a few dozens of seconds. For details
on the evolution of proto-neutron stars and the role of neutrinos, we refer to Prakash et al.
[1997], Pascal et al. [2022].
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2.3 Structure of an "adult" neutron star

In the following "adult" neutron stars refer to neutron stars which have cooled down
from their proto-neutron star stage. The structure in layers of adult neutron stars is pre-
sented in Fig. 2.1, and we refer to section 1 of Haensel et al. [2007a] for further details.

Figure 2.1: Layer structure of an adult neutron star, figure extracted from Gen-
dreau et al. [2012].

The outer part of the star is the envelope, and is separated into the atmosphere (gas of
light elements) and the ocean (Coulomb liquid of light elements). The envelope plays an
important role in the luminosity spectrum exhibited by the star, although it is only a few
centimeters thick.

Below the envelope, the crust extends from the bottom of the ocean at a mass density
ρ ∼ 106 g/cm3, to the crust-core transition; it is a few hundred meters thick. The crust is
separated in two parts

• The outer crust: a lattice of ions permeated by a gas of electrons (mostly degenerate,
except for a thin outer layer). The outer crust ends at the mass density ρ ∼ 1011 g/cm3,
defined by the neutron drip density.

• The inner crust: a lattice of neutron rich ions permeated by a gas of electrons and un-
bound neutrons. It is around one kilometer in thickness. Free neutrons are susceptible
to superfluidity; the neutron superfluid in rotating neutrons stars can lead to glitches,
which are irregularities in the rotation frequency of the star [Fuentes et al., 2018].

The transition between the lattice of ions and the homogeneous matter of the core occurs
around the mass density ρ ∼ 1014 g/cm3. In the deepest end of the inner crust, nuclei are
deformed in what is referred to as the pasta phases [Ravenhall et al., 1983, Dinh Thi et al.,
2022].
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The core is also separated into the outer core and the inner core; it concentrates most
of the star’s mass, and can reach densities as high as a few times ρ ∼ 1015 g/cm3. The
outer crust is made of a soup of neutrons, protons, electrons and muons. The inner core
composition is an open question of neutron star’s physics. Aside from the neutrons, pro-
tons, electrons and muons, one hypothesis assumes the appearance of hyperons. Another
hypothesis consists in finding deconfined quarks instead of a hadronic structure.

In conclusion, there are a large number of different ways to detect neutron star’s activ-
ity. Ultra dense matter can be explored from two perspectives: either as an astrophysicist
trying to understand the behaviour of neutron stars, or as a nuclear physicist trying to ex-
plore dense matter. In the first case, the microscopic properties of dense matter are an input
which is necessarily nuclear model dependent as conditions of density in the core are not
understood for now. In the latter case, the macroscopic and observable behavior of neutron
stars is used to probe the unknown physics of extremely dense matter. In both cases, multi-
messenger astronomy is a tool that allows to probe neutron star interior in a way that is out
of reach for Earth based laboratories.
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3 A laboratory for dense matter: the
equation of state mystery

Despite continuous efforts to push the limits of nuclear experiments, conditions of den-
sity and temperature in the deepest layers of neutron stars remain out of reach for labora-
tories. The microphysics of neutron star matter is a crucial element to determine the as-
trophysical features of neutron stars. The equations of relativistic hydrodynamics act as a
bridge between ultra dense matter, and observable macroscopic parameters of neutron stars.
In that sense, neutron stars are laboratories testing gravity theories and nuclear physics.
Multi-messenger astronomy provides a chance to probe deep inside those extremely com-
pact stars.

In this chapter, we discuss the role of the equation of state of neutron star’s interior on
macroscopic parameter modelling.

In section 3.1, the theoretical framework to model dense matter in neutron stars is pre-
sented.

Experimental and theoretical constraints on the equation of state from microphysics are
discussed in section 3.2.

In section 3.3, the derivation of the main macroscopic parameters of neutron stars is
presented, and we explore the different ways that multi-messenger astronomy can impose
constraints on the equation of state of ultra dense matter.

In section 3.4, we discuss the importance of designing the high density part and the
low density part of neutron stars with the same nuclear model, and the consequences on
macroscopic parameter modelling if otherwise. Results presented in this section are the
subject of the publication Suleiman et al. [2021].

Finally, in section 3.5, we present an analytical representation based on piecewise poly-
tropes for modern and unified equations of state. Results presented in this section are the
subject the publication Suleiman et al. [2022a].
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3.1 Theoretical framework of strong interaction modelling

Astronuclear physicists rely on nuclear models to describe the equation of state (EoS) of
dense matter. Throughout this thesis, no theory of quantum gravitation will be discussed,
such that the model of nuclear interaction is established outside of the theory of gravitation,
using the Minkowski metric

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (3.1)

in signature (+,−,−,−)1. This is a correct approach when the curvature of space-time can
be considered sufficiently small locally. Given their compactness, neutron stars should be
an ideal candidate to probe the role of gravitation coupling to strong interaction, however,
no such considerations will be taken in this manuscript.

In this section, we present several approaches to the strong interaction in dense matter.
The discussion is focused on β-equilibrated and cold matter modelling, i.e. modelling of a
neutron star, neither in its proto-neutron star stage, nor in or post merger. Such consider-
ations result in one parameter equations of state: there is only one independent variable,
which we choose to be the density. We shall also concentrate on catalyzed matter, or in other
words, matter at ground state. Throughout this manuscript, a set of around sixty equations
of state will be used; this set is non exhaustive. We refer to the database CompStar Online
Supernovae Equations of State CompOSE [Typel and et al., 2022] for an extensive catalogue
of cold and finite temperature equations of state of dense matter, and to Oertel et al. [2017]
for a review on neutron star equations of state.

3.1.1 Phenomenological models

Nuclear interaction can be modelled as a parametrized effective interaction between
hadrons, that is what we call a phenomenological approach. Parameters of the theory are
then calibrated to the results of nuclear laboratory experiments. In the following, we intro-
duce two phenomenological approaches to neutron star matter at β-equilibrium: relativistic
mean field models and non-relativistic Skyrme theory.

3.1.1.1 Relativistic mean field theory

The relativistic mean field (RMF) description of nucleonic matter is a phenomenological
approach in which particles are considered to be immersed in a self-consistent single particle
potential established in quantum field theory. The strong interaction between nucleons is
mediated by the following meson fields:

1The metric signature usually depends on the field of study: the signature (+,−,−,−) is used in nuclear
physics, and (−,+,+,+) is used in gravitation.

https://compose.obspm.fr/
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• Scalar-isoscalar2 meson field, denoted σ, with a zero spin and zero isospin. The La-
grangian density of such fields is that of a typical scalar field with mass mσ and self-
interaction terms of j order

Lσ =
1
2

(
∂µσ ∂µσ − m2

σ σ2
)
−

jσ
max

∑
j=3

gσj

j!
σj , (3.2)

with gσj the coupling constants of the σ-field self-interaction of order j, and jσ
max the

maximum order for the self-interaction of the field σ.

• Scalar-isovector meson field, denoted δ, with a spin zero and isospin one; its La-
grangian density resembles that of the meson field σ, but the meson field δ is a three-
component vector

Lδ =
1
2

(
∂µδ · ∂µδ − m2

δ δ2
)
−

jδ
max

∑
j=3

gδj

j!
δj , (3.3)

with gδj the coupling constants of the δ-field self-interaction of order j.

• Vector-isoscalar meson field, denoted ω, with spin one and isospin zero. The La-
grangian density is that of a typical vectorial field of mass mω

Lω = −1
2

(
1
2

ΩµνΩµν − m2
ω ωµωµ

)
+

jω
max

∑
j=3

gωj

j!
(ωµωµ)j , (3.4)

with gωj the coupling constants of the ω-field self-interaction of order j, and Ωµν the
field strength tensor of meson ω given by

Ωµν = ∂µων − ∂νωµ . (3.5)

• Vector-isovector meson field denoted ρ with spin and isospin one

Lρ = −1
2

(
1
2

Pµν · Pµν − m2
ρρµ · ρµ

)
+

jmax

∑
j=3

gρj

j!
(ρµ · ρµ)j , (3.6)

with gρj the coupling constants of the ρ-field self-interaction of order j, and Pµν the
field strength tensor of meson ρ given by

Pµν = ∂µρν − ∂νρµ − cρ

(
ρµ ∧ ρν

)
, (3.7)

denoting cρ a constant.

In a parametrized theory such as relativistic mean field theory, more parameters allow for
an increased precision, but too many parameters render the calibration to nuclear laboratory

2The nomenclature used for the tensorial order of mesons is (spin)-(isospin); for example, a scalar-isoscalar
meson field corresponds to a meson field which is scalar in spin space, and scalar in isospin space.
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experiments more difficult. For details on the value of the coupling constants for a large
number of relativistic mean field models, see Dutra et al. [2014]. It is also possible to estab-
lish a Lagrangian density with couplings dependent on the density n such that g = g(n).

Both spin-scalar mesons σ and δ account for the attractive part of the strong interaction
whereas spin-vector mesons ω and ρ account for the repulsive part; in the case of mesons σ

and ω, the attractive and repulsive parts of strong interaction affect matter with null isospin,
whereas mesons δ and ρ affect matter with non-zero isospin. It needs to be emphasized that
these mesons are not "real" particles: they are only used as carriers of the strong interaction,
and therefore only interact with nucleons and themselves, not with any other field that may
be taken into account to describe dense matter.

Aside from the fields needed to mediate strong interaction, one must add the fields
related to real particles, and their interaction with other fields. Assuming that neutron star
matter is made of nucleons and leptons, we must include fields for:

• Bare3 nucleons
LN = ψN

(
iγµ∂µ − mN

)
ψN , (3.8)

with ψN the field for the nucleon N (neutrons or protons), mN the nucleon mass and γ

the Dirac matrices.

• The interaction between nucleons and scalar meson fields

LNs = ψN
(

gσσ + gδδ · τ
)

ψN , (3.9)

with τ the vector of isospin Pauli matrices.

• The interaction between nucleons and vector meson fields

LNv = −ψN
(

gωγµωµ +
gρ

2
γµ ρµ · τ

)
ψN . (3.10)

• The cross interactions of meson fields

Lσδωρ = ασδ σ δ · δ + α′
σδ σ2 δ · δ + ασω σ ωµωµ + α′

σω σ2 ωµωµ + ασρ σ ρµ · ρµ

+ α′
σρ σ2 ρµ · ρµ + αδω δ · δ ωµωµ + αδρ δ · δ ρµ · ρµ + αωρ ωµωµ δµ · δµ , (3.11)

with α denoting coupling constants.

• The interaction between nucleons and the electromagnetic field Aµ

LemN = − e
2

ψNγµ

(
1 + τ3

)
AµψN , (3.12)

with e the elementary charge.

3The term bare refers to particles stripped of any interaction.
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• Bare charged leptons
Ll = ψl

(
iγµ∂µ − ml

)
ψl , (3.13)

with ψl the lepton field of nature l and ml the lepton mass;

• The interaction between leptons and the electromagnetic field

Leml = e ψlγµ Aµψl ; (3.14)

• Photons
Lγ = −1

4
FµνFµν , (3.15)

with Fµν the electromagnetic field strength tensor (also called the Faraday tensor).

Although baryons and leptons can interact through weak interaction via bosons W+, W−

and Z, the equation of state of β-equilibrated matter assumes chemical equilibrium be-
tween the particles, thus avoiding having to consider the channels of weak interaction in
the derivation. The full Lagrangian density of neutron star matter designed in field theory
is a sum of all above mentioned terms, such that

L = ∑
N=n,p

LN + ∑
X=σ,δ,ω,ρ

LX + LBs + LBv + Lσδωρ + LemB + ∑
l
Ll + Leml . (3.16)

Once the Lagrangian density has been established, the mean field approximation is
used. Instead of constructing the interaction between baryons by solving the N-body prob-
lem, all baryons are considered to be immersed in one mean field per meson type. The same
approach is used for all terms of Eq. (3.16). The Euler-Lagrange equations -as many as there
are fields in play- can be derived from this Lagrangian density, as well as the stress-energy
tensor Tµν defined as

Tµν = ∑
ϕ

∂L
∂(∂µϕ)

∂νϕ − ηµνL , (3.17)

with ϕ designating the field. The different components of the stress-energy tensor lead us to
equation of state related quantities: the energy density is derived from the T00 component,
and the pressure is derived from the diagonal space component.

Depending on the number of fields taken into account in the theory, or the value of
the coupling constants, a large number of different models can be established. In order to
categorize different nuclear models, we use the terminology of "equation of state family":
different families in relativistic mean field theory correspond to which meson interaction
are considered. In this manuscript, eight different relativistic mean field families for nucle-
onic models will be used, and the terms taken into account in the Lagrangian density are
presented in Table 3.1. The difference between nuclear models within one family is often
due to different values of the coupling constants.
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Family Mesons considered Self-interaction Cross-interaction Model References

BSR σ + ω + ρ σ + ω σ-ω + σ-ρ + ω-ρ
BSR2

Agrawal [2010]
BSR6

DD
σ + ω + ρ

none none
DD2∗◦ Typel et al. [2010]

DDME2∗ Lalazissis et al. [2005]
σ + ω + ρ + δ DDhδ Gaitanos et al. [2004]

FSU2 σ+ω+ρ σ + ω ω-ρ
FSU2 Chen and Piekarewicz [2014]

FSU2H∗
Negreiros et al. [2018]

FSU2R

GM/H σ+ω+ρ σ none
GM1 Glendenning and Moszkowski [1991]
H3⋄

Lackey et al. [2006]
H4⋄

NL3 σ+ω+ρ σ
none NL3∗ Horowitz and Piekarewicz [2001]
ω-ρ NL3-ωρ∗◦ Lalazissis et al. [1997]

TM σ+ω+ρ σ+ω
none

TM1
Sugahara and Toki [1994]

TM2

ω-ρ
TM1-ωρ

Providência and Rabhi [2013]
TM2-ωρ

Table 3.1: Meson terms included in the Lagrangian density of seventeen relativistic mean field models for cold and β-equilibrated matter.
The family of nuclear models DD contains no self or cross-interactions but the coupling constants are density dependent. Symbol ⋄ desig-
nate nuclear models that include hyperons, symbol ∗ designate models for which a hyperonic version has been calculated, and symbol ◦
designates models for which a hybrid version has been calculated, see section 3.1.3 for details.
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3.1.1.2 Skyrme energy density functionals

Another phenomenological approach to compute the equation of state of dense matter
is based on the Skyrme force. It was first introduced by the English physicist Tony Skyrme in
Skyrme [1956], to properly account for effective nucleon interaction in nuclei, a problem that
was brought forth a few years before by Keith Brueckner in Brueckner et al. [1954]. In the
Skyrme energy density functional approach, an effective nuclear Hamiltonian is constructed
from the expansion of the density matrix in the zero range interaction.

The Skyrme force is a non-relativistic approach to the nucleon interaction. From this
force, one can derive a density functional which is used in the framework of the variational
principle to obtain a Hamiltonian operator. In this theory, the baryons are solutions to an
approximation of the Schrödinger equation, which can be that of the mean field method of
Hartree-Fock for example. The Skyrme force is defined by a series of parameters, later on
referred to as the Skyrme parameters. From the Skyrme parameters, one can define some
microscopic quantities of interest, such as the energy per baryon or the symmetry energy,
using analytical expressions; for details on those microscopic quantities, see section 3.2.2.
The Skyrme parameters are adjusted to laboratory experiments such as nuclear data tables,
or to properties of homogeneous neutron matter. Skyrme density functional theory can
be separated in two classes: the standard Skyrme functionals, and the generalized Skyrme
functionals. The latter were introduced to avoid neutron matter polarization that lead to
ferromagnetic collapse of the star [Chamel et al., 2009]. To classify Skyrme models, we refer
to the expression of the Skyrme force S ruling the interaction between nucleons presented
in Goriely et al. [2010]

S(rij) = t0(1 + x0Ps)δ(rij) +
t1(1 + x1Ps)

2h̄2

(
p2

ijδ(rij) + δ(rij)p2
ij

)
+

t2(1 + x2Ps)

h̄2 pij · δ(rij)pij +
t3(1 + x3Ps)

6
ρ(r)α1 δ(rij)

+
t4(1 + x4Ps)

2h̄2

(
p2

ijρ(r)
α2 δ(rij) + δ(rij)ρ(r)α2 p2

ij

)
+

t5(1 + x5Ps)

h̄2 pij · ρ(r)α3 pij +
iW0

h̄2 (σi + σj) · pij × δ(rij)pij . (3.18)

The quantity rij is defined as the difference between the spatial coordinates of nucleon i and
j, and pij designates the relative momentum (difference between the momentum operator
of i and of j). The spin exchange operator between nucleons is denoted Ps, and ρ(rij) is the
local density, or in other words the density at the barycenter r = (ri + rj)/2.

The terms of Eq. (3.18) can be understood as follows:

• Terms proportional to t0 are the effect of the force at zero range (hence the Dirac δ-
function).

• Terms proportional to t1 and t2 are effects for an effective range, and express the
momentum dependence of the interaction - consequently finite temperature effects.
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The parameters t4 and t5 represent the effective range in the generalized form of the
Skyrme force, and introduce density dependence to the term.

• Terms proportional to t3 account for a phenomenological three-body interaction ex-
pressed as a density-dependent two body interaction.

• Terms proportional to W0 account for the two-body spin interaction with spin-orbit
coupling.

To the Skyrme force can be added a pair force and Wigner force, as is the case for example in
Brussels-Skyrme models. In this manuscript, 24 Skyrme based models for nucleonic matter
at β-equilibrium are used, and the characteristics of their corresponding six equations of
state families are presented in Table 3.2.
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Family Parameters Model Ref.

BSk t2 = 0, t2x2 ̸= 0
BSk-20/21 Goriely et al. [2010]

BSk-22/23/24/25 Goriely et al. [2013]

SLy x4 = x5 = t4 = t5 = 0
SLy-2/9 Chabanat [1995]

DH Douchin and Haensel [2001]
SLy230a Chabanat et al. [1998]

KDE t4 = t5 = 0 KDE0v1 Agrawal et al. [2005]
Rs x1 = x2 = t5 = 0 Friedrich and Reinhard [1986]
SK x1 = x2 = x4 = x5 = t4 = t5 = 0 SK-a/b Köhler [1976]

Sk x4 = x5 = t4 = t5 = 0

Sk-255/272 Agrawal et al. [2003]
SkMP Bennour et al. [1989]
SkOp Reinhard et al. [1999]

SkI-1/2/3/4/5 Reinhard and Flocard [1995]
SkI6 Nazarewicz et al. [1996]

Table 3.2: Classification of Skyrme models from parameters of the Skyrme force presented in Eq. (3.18).
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3.1.1.3 Treating inhomogeneous matter

The Lagrangian density presented in Eq. (3.16) presents baryons as degrees of freedom,
and similarly for the expression of the Skyrme force. It is therefore straightforward to es-
tablish the equation of state for a homogeneous mixture of baryons and leptons, which is a
state valid at high density in the core of neutron stars. However, the crust of neutron stars
is made of a lattice, which requires an additional theoretical framework to describe nuclear
structure.

The first calculation of the inner crust equation of state was established by Negele and
Vautherin [1973]: the nuclear energy is calculated from the nucleon wave function in the
Hartree-Fock formalism, and is minimized in a Wigner-Seitz cell; the Coulomb energy is
derived from β-equilibrium for particles in play. Almost thirty years later, Douchin and
Haensel [2001] emphasized the importance of calculating the crust with the same effective
nucleon-nucleon interaction as the core, and established an equation of state denoted DH
in the Compressible Liquid Drop Model [Douchin and Haensel, 2000]. Their approach in-
cludes terms of nuclear surface, Coulomb energy, as well nuclear shapes and nuclear struc-
tures, and of course nucleon bulk energy directly linked to the model of nucleon-nucleon
interaction.

Later on, pairing correlations and shell effects were incorporated in the crust calculation.
A formalism well suited to the relativistic mean field models is the Thomas-Fermi approx-
imation [Avancini et al., 2009]: the density of particles in play are treated with a one-body
Hamiltonian, before solving the Euler-Lagrange equations.

From the nuclear models mentioned above, the DH and Brussels-Skyrme models are
established with the same nuclear model for the high and low density parts of the star in the
references mentioned in Table 3.1 and Table. 3.2.

3.1.2 Microscopic models

Although it is computationally costly, microscopic models can be established by solving
the N-body Schrödinger equation. Conceptually, microscopic models, which are also called
ab initio models, are the most physically based models because they are constructed from
scratch. In this framework, the only requirement to construct the equation of state is a solid
understanding of the nucleon-nucleon interaction (calibrated to nuclear data). Different ap-
proaches exist, for example, the non-relativistic Brueckner-Hartree-Fock approach which is
a technique to solve the many-body problem from the few-body interaction, or the relativis-
tic Dirac-Brueckner-Hartree-Fock; for a description of microscopic models, see Taranto et al.
[2013]. In practice, the N-body problem is reduced to a three-body problem, which is some-
times itself reduced to a density dependent two-body problem. The number of CPU hours
required for such calculations has greatly restricted this type of models, but it is a field that
is being actively developed. In this manuscript, we use one ab initio equation of state of
dense matter at β-equilibrium, presented in Sharma et al. [2015], and referred to as BCPM.
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Another promising microscopic approach which has been largely explored for neutron
star matter in recent years is Chiral Effective Field Theory (χEFT). With neutron stars, one
can probe a temperature-density-isospin region of the Quantum Chromo-Dynamics (QCD)
phase diagram which is otherwise unexplorable. Chiral effective field theory is a low en-
ergy effective field theory of QCD with hadrons as degree of freedoms, whose results can be
applied to neutron star matter. It is constructed as an expansion in the four-momentum of
the degrees of freedom that are baryons and pions, and not quarks and gluons as in QCD.
Instead of constructing the full equation of state of dense matter through microscopic con-
structions, χEFT can be used as a theoretical constraint, as it provides information on pure
neutron matter to relatively high densities (up to around twice the saturation density), see
Drischler et al. [2021]. In this theory, the three-body force is not just an extension of the
two-body force (established e.g. with a density dependence) but is constructed consistently.
Thanks to high performing simulations, χEFT is able to provide results for the three nu-
cleon interaction, and operate up to the next-to-next-to-next-to leading order in the chiral
expansion.

3.1.3 The unknown composition of the core

The supranuclear densities that can be reached in the most massive neutron stars leave
the description of neutron star cores open to several composition hypotheses. The outer core
is believed to contain a mixture of neutrons, protons, electrons and muons (npeµ), but the
inner core might be the host of particles such as hyperons or quarks.

Hyperons -baryons with with non-zero strangeness- in neutron stars were first intro-
duced in the 1960s by Ambartsumyan and Saakyan [1960]. They are expected to appear in
the core through a series of reactions involving nucleons such as (but not exclusively)

p + e− → Λ + νe , (3.19)

p + e− → Σ0 + νe , (3.20)

n + e− → Σ− + νe . (3.21)

Hyperons Λ, Σ0, and Σ− once created in Eqs. (3.19), (3.20), (3.21), can themselves be sources
of double strange Ξ− hyperons. Hyperons are heavier than nucleons, see Fig. 3.1.

Figure 3.1: Masses of hyperons, as presented in the course of Dr. Morgane Fortin
at the Pharos Training School of March 2019, "Equation of state and neutron star
properties constrained by nuclear physics and observations".

Laboratory measurements of hyperons are performed in heavy-ion collision experi-
ments at the Thomas Jefferson National Accelerator facility (Jlab, USA), the Mainz Microtron
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accelerator (MAMI-C, Germany), and the Japan Proton Accelerator Research Complex (J-
Parc, Japan); for details on experimental data of hypernuclei, see Vidaña [2021]. However,
only very short lived hypernuclei can be measured, making it difficult to give solid con-
straints on the parametrization of hyperon-nucleon or hyperon-hyperon interactions. For
example, no scattering of hypernuclei has been measured, which is needed to accurately
calculate properties of hyperons in dense matter.

The presence of hyperons softens a priori the core equation of state. The addition of a
new species lowers the overall Fermi pressure because of the Pauli exclusion principle. A
lower pressure at fixed density leads to a smaller radius of the neutron star such that the
presence of hyperons results in smaller total radii. Softening the equation of state, however,
leads to neutron stars with a lower maximum mass. This is a problem referred to as the "hy-
peron puzzle", which can be counteracted if one finds a way to stimulate hyperonic pressure
[Bednarek et al., 2012]. One way to do so is to instigate repulsion from the nature of baryon
interactions, see Chatterjee and Vidaña [2016], Vidaña [2013].

For hyperonic matter calculated in the relativistic mean field theory, terms for bare hy-
perons and for mesons mediating the hyperonic interactions are added to the Lagrangian
density in Eq. (3.16). Coupling constants for the hyperon-hyperon and hyperon-nucleon
interactions are presented e.g. in Fortin et al. [2017, 2020], Providência et al. [2019]. Simpli-
fications for the theory can be applied to the hyperonic sector, for example by not including
cross terms between the hyperonic mesons fields [Fortin et al., 2017].

As the density increase, the nucleon structure may be disrupted by a phase transition
from confined quarks (baryons) to deconfined quarks: part of the core might be made of
quark matter [Blaschke and Chamel, 2018]. Models for dense matter which include decon-
fined quarks are referred to as hybrid models. The quark phase transition induces a density
jump that ensures a softening of the equation of state. If this jump exceeds a critical value,
the softening is such that the relation between the mass and the radius of the star presents a
branch which is partly unstable with respect to radial oscillations. In this case, a single equa-
tion of state corresponds to the two stable branches of stellar models, and twin stars with
the same mass but different radii can exist. To account for quark matter in the relativistic
mean field approach, terms for scalar, vector, and pseudovector quark couplings are added
to Eq. (3.16); we refer to Pereira et al. [2016] and Ferreira et al. [2020] for a discussion about
the coupling constants in the quark matter Lagrangian density.

Amongst the models used to describe quark matter are the Nambu and Jona-Lasinio
(NJL) model, the quark-meson model or the MIT bag model. Hybrid models considered in
this manuscript are presented in Pereira et al. [2016], Ferreira et al. [2021] and were estab-
lished within the SU(3) NJL model for quark matter, paired with a relativistic mean field
description of hadronic matter. The confined phase follows the same Lagrangian density
as nucleonic or hyperonic (strange quark) matter. The Lagrangian density of deconfined
quarks established from the NJL model includes four-quark scalar and pseudoscalar inter-
action terms with coupling constant GS, four-quark vector and pseudovector interaction
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terms -both vector-isoscalar (VP) with coupling constant Gω and vector-isovector (notation
VIPI) with coupling constant Gρ are considered-, and the six-quark t’Hooft term (ensures
that the QCD U(1)A symmetry is broken). In the NJL models, the pressure and energy den-
sity are defined up to the pressure bag constant B. It is chosen to ensure either that the
effective pressure falls to zero when the baryon chemical potential vanishes (notation B0)
or to impose another type of constraint such as fixing the deconfinement baryonic density
(notation B). Finally, the ratio between the vector and scalar coupling constants respectively
ξ = Gω/Gs and η = Gρ/Gs, are parameters that characterize the models and define the
intensity of the VP and VIPI channels (for more details, see Pereira et al. [2016] and Fer-
reira et al. [2020]). For the hybrid models used in this manuscript, we use the nomenclature
EoS−Bx − 100ξ − 100η, where x characterizes the magnitude of the bag constant.
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Figure 3.2: Adiabatic index Γ as a function of the mass den-
sity ρ for the nucleonic, hyperonic, and hybrid versions of
the model DD2.

Hybrid stars have also been
described with an ab initio ap-
proach to hadronic matter, such
as the Brueckner-Hartree-Fock many-
body theory with realistic two-
body and three-body forces Maieron
et al. [2004], Chen et al. [2011]; for
other ab initio models associated
with quark matter, see the reviews
Oertel et al. [2017], Burgio et al.
[2021].

In Table 3.1, models which are
calculated with hyperons or de-
confined quarks in the core are
presented with the symbol ⋄ or ∗,
and ◦ respectively. The softening
of the equation of state related to
hyperons or a quark phase transi-
tion can be illustrated by the value
of the adiabatic index as a function of the density in the star; this is presented in Fig. 3.2 for
the relativistic mean field model DD2; in this figure, we use the adiabatic index, defined as

Γ =
n
P

dP
dn

, (3.22)

with n the baryon density and P the pressure.

Overall, the extreme conditions of temperature and density in the innermost layers of
neutron stars leave the modelling of neutron star’s equation of state open to various core
compositions and theoretical framework. There are two general approaches to the equa-
tion of state of dense matter, the phenomenological approach which include the relativistic
mean field theory and the Skyrme density functionals, and the microscopic approach which
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attempts to solve the N-body problem ab initio. The different models for the core composi-
tion include purely nucleonic matter, strange nuclei, as well as deconfined quarks.
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3.2 Microphysics constraints on the equation of state

A large number of nuclear experiments are designed to constrain the equation of state
of dense matter. Although, the densities and isospin asymmetries in the innermost parts
of neutron stars are way beyond the reach of nuclear physics laboratories, it is possible to
constrain some microscopic parameters.

3.2.1 Constraints on the outer crust

The crust of neutron stars is made of a lattice of nuclei, such that the equation of state
of cold and catalyzed dense matter can be established by minimizing the Gibbs energy of
nuclei at given pressure. Instead of using a theoretical model to determine the binding
energy of nucleus, one can use the available measurement of atomic masses provided by
nuclear experiments. In this manuscript, we use the Atomic Mass Evaluation (AME) tables
presented in Wang et al. [2012, 2017, 2021a], which gather measurements for thousands of
nuclei. Such tables are updated every few years, with additional nuclei measured, and an
increase in the precision for previously measured nuclei.
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BSk21

Figure 3.3: Nuclei of proton number Z and neutron number N measured in the
AME2016 (in grey) and AME2020 tables. Nuclei which were not previously re-
ported in AME2016 are presented in green; those whose value of the atomic mass
have changed between AME2016 and AME2020, but for which the 2020 value stays
within the precision presented in AME2016 are presented in orange; nuclei whose
value of the atomic mass have changed between AME2016 and AME2020 and for
which the 2020 value is outside the precision presented in AME2016 are presented
in red. In yellow, we present nuclei in the catalyzed outer crust of BSk21.

Nuclei measured in the table AME2016 and AME2020 are presented in Fig. 3.3. Mea-
sured nuclei are relatively isospin symmetric, or in other words, not many neutron rich
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nuclear measurements are provided. The composition of the outer crust for catalyzed mat-
ter (for an isolated neutron star), calculated with the Skyrme model BSk21 is also presented
in this figure. The outer crust of BSk21 was calibrated to the table AME2016. Only ten nuclei
out of eighteen were available in this table. The AME2020 table provided measurements for
around fifteen new neutron rich nuclei, including 50Cu and 56Ca which appear in the crust
of the above mentioned models. In overall, measured nuclei can be used to describe only
the outer part of the outer crust, and not the entire crust.

In the computation of the outer crust, only the central value of the measurement in
the AME tables is used, and not its error bars. Therefore, nuclei presented in orange in
Fig. 3.3, i.e. nuclei whose value of the atomic mass has changed between the AME2016 and
AME2020 tables but stay within the precision of AME2016, will affect slightly the equation
of state. However, no nuclei reported in AME2020 that present a precision beyond that of
the nuclei measured in the AME2016 table will affect the calibration in the outer crust of
BSk21.

The nuclear chart of measured nuclei presented in Fig. 3.3 shows that laboratory mea-
surements can only constrain part of the outer crust. Isospin asymmetric nuclei are more
difficult to measure than symmetric ones, such that neutron rich nuclei in the outer crust
are not all calibrated to laboratory measurements (yet). The neutron drip line has only been
experimentally verified up to Neon [Ahn and et al., 2019]. Therefore, part of the outer crust
and the entire inner crust are model dependent.

3.2.2 Incorporating constraints at moderate and high density

Matter in neutron stars is highly isospin asymmetric. Assuming purely nucleonic mat-
ter, the isospin asymmetry can be assessed by introducing

• The isoscalar density ns = nn + np, with nn and np respectively the neutron and proton
densities. It is a quantity which remains invariant under an exchange of neutrons and
protons.

• The isovector density nv = nn − np. It changes sign under an exchange of neutrons
and protons.

The isospin asymmetry parameter denoted δ is defined as the ratio between the isovector
and the isoscalar density

δ =
nv

ns
. (3.23)

Pure neutron matter corresponds to δ = 1 and symmetric matter corresponds to δ = 0. The
equation of state for catalyzed matter in a given nuclear model corresponds to calculations
with δ suited for β-equilibrated matter. However, results can also be established for pure
neutron matter and symmetric matter, in this same nuclear model.

The difference in energy between neutron matter and symmetric matter is related to the
symmetry energy. The energy per baryon can be expanded around the isospin asymmetry
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parameter according to the parabolic approximation.

E(n, δ) = E(n, δ = 0) + δ2Esym(n) +O(δ4) . (3.24)

The symmetry energy Esym is here defined as the second derivative in isospin direction for
symmetric matter. Neglecting the terms of order O(δ4), the symmetry energy corresponds
to the difference between the energy per baryon for pure neutron matter, and the energy
per baryon for symmetric matter at a given density. In this case, the symmetry energy is the
energy required for all protons of symmetric matter to be changed into neutrons.

The energy per baryon as a function of the baryon density for pure neutron matter and
symmetric matter, calculated for the Skyrme model SLy4 is presented in Fig. 3.4.
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Figure 3.4: Energy per baryon E/A as a function of the baryon density n for sym-
metric and pure neutron matter for the Skyrme model SLy4.

The saturation density is defined as the density at which the energy per baryon for
isospin symmetric matter is minimum and is denoted nsat; it can also be understood as
the density below which symmetric matter is self-bound, and can no longer be treated as
homogeneous. A typical value of the saturation density is often used as unit of measurement
for the baryonic density; outside of this section, and unless otherwise stated, the saturation
density n0 = 0.16 fm−3 will be used. But in reality, the saturation density nsat must be
properly calculated for a given nuclear model.
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The energy per baryon for symmetric matter (isoscalar energy), and the symmetry en-
ergy per baryon (isovector energy) can be developed around saturation density by introduc-
ing a dimensionless parameter expressing the deviation of the density from the saturation
density

u(n) =
n − nsat

3nsat
. (3.25)

The energy per baryon for symmetric matter can be expanded around this quantity as

E(n, δ = 0) = Esat +Ksat
u(n)2

2!
+Qsat

u(n)3

3!
+ ... , (3.26)

with:

• Esat the energy per baryon at saturation density for symmetric matter,

• Ksat the isoscalar incompressibility modulus,

• Qsat the isoscalar skewness,

• and etc. for higher order parameters;

The symmetry energy per baryon gives

Esym(n) = J + Lu(n) + Ksym
u(n)2

2!
+ Qsym

u(n)3

3!
+ ... ,

with:

• J the symmetry energy at saturation density,

• L the slope of the symmetry energy at saturation density,

• Ksym the isovector incompressibility,

• Qsym the isovector skewness,

• and etc. for higher order parameters.

The parameters introduced by this development around saturation density can be con-
strained by laboratory experiments, especially the isoscalar parameters, because symmetric
matter is easier to probe. Ample details on the constraints on the symmetry energy are
presented in Tsang and et al. [2012], Oertel et al. [2017], and we present in the following, a
non-exhaustive list of experiments which probe the value of J, L and K.

The binding energy described by the Finite Range Droplet Model (FRDM) can be used
to probe J and L, because it includes symmetry related terms whose values can be explored
by using large tables of nuclear data. The formula for the FRDM binding energy presented
in Möller et al. [2012] is combined with the nuclear data table in Wang et al. [2012] to ex-
tract: L = 70 ± 15 MeV and J = 32.5 ± 0.5 MeV. Coulomb effects are linked to the surface
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symmetry term in the FRDM [Danielewicz, 2003]; experiments are performed also on iso-
baric nuclei [Danielewicz and Lee, 2014] in order to alleviate this entanglement. The same
method has been used with Skyrme forces in Kortelainen et al. [2010].

The Heavy Ion Collisions (HIC) of nuclei such as gold has introduced constraints on
symmetric matter beyond the saturation density. The collision of nuclei such as isotopes of
tin allows one to probe the asymmetry between the number of protons and the number of
neutrons [Tsang et al., 2009]; the slope L of the symmetry energy at saturation density was
measured at a 95% confidence level to be in the interval 42 < L < 117 MeV.

Neutron-rich nuclei are particularly interesting to investigate the symmetry energy when
they present an asymmetric number of neutrons and protons. That is the case for some Sn
isotopes or for 208Pb that closes its nucleon shells, which simplifies the nuclear structure.
An asymmetry in favor of neutrons implies that the nucleus will present a large difference
in the radius distribution of neutrons and protons,: this difference is referred to as the neu-
tron skin. There are a few different ways of measuring the neutron skin thickness, one of
which is to see how electroweak parity of 208Pb is violated by polarized electrons in the
experiments PREX-I and PREX-II [Horowitz et al., 2014, Adhikari et al., 2021] and of 48Ca
in the experiment CREX [Adhikari and et al., 2022]. To extract L from the measurement of
the neutron skin, the correlation between the two quantities is exploited via a fit established
within a theory of dense matter. In Chen et al. [2010], the Skyrme Hartree-Fock model is
used on measurements of tin isotopes to constrain the relation between J and L. In Reed
et al. [2021], the FSU2Gold relativistic mean field parametrization is used on PREX-II data
to extract J = 38.1 ± 4.7 MeV and L = 106 ± 37 MeV; however, it is important to note that
this result is in tension with other nuclear experiment constraints, as values of J and L are
very large. An analysis of the compatibility between PREX-I, PREX-II and CREX experi-
ments and other experiments determining J and L is discussed in Yüksel and Paar [2022].
In overall, the measurement of the neutron skin thickness in the CREX and PREX experi-
ments are currently being questioned and should be cautiously reviewed before being used
to constrain dense matter.

The collective motion of nuclei is a source of giant resonances: let there be an exterior
isoscalar monopole operator, the strength function of excited states in response to that op-
erator is directly linked to the nuclear incompressibility K for which experimental data are
available, (see Tables I and II of Garg and Colò [2018]); again, the relation between exper-
imental data and K is established within a theoretical framework (e.g. Skyrme or Gogny
forces). Constraints on L and J can also be extracted, such as presented in Drischler et al.
[2020], Trippa et al. [2008].

There are also some attempts at including results from cold atom experiments to con-
strain the low density part of the equation of state using the unitary Fermi gas approach. The
idea is to consider that low-density neutron matter can be characterized by an infinite scat-
tering length and can be considered as a unitary Fermi gas (see chapter 2 of Gandolfi et al.
[2015] for details) in which the energy per nucleon is determined by a single and universal
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parameter. There are, however, no considerations of lattice nor clusters with this approach,
which are essential in the understanding of crust physics.
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Figure 3.5: Symmetry energy and its slope at saturation density respectively
denoted J and L for relativistic mean field and Skyrme models used in this
manuscript. Experimental data constraints are presented: in blue is the compiled
constraint presented in Ref. Oertel et al. [2017], and in red that of PREX-II. The
names of the equations of state in green refer to nucleonic models that do not per-
mit the Direct Urca process (see next section): these are DD2, DDME2, KDE0V1,
Skb, SLY2, DH, BSk20 and BSk26.

The values of J and L for relativistic mean field models and Skyrme4 presented in sec-
tion 3.1 are given in Fig. 3.5a and Fig. 3.5b respectively. The synthesis of laboratory con-
straints presented in Oertel et al. [2017], as well as the PREX-II experiment are shown in
these figures. Five relativistic mean field models of our set of equations of state, and a few
Skyrme based models from the Sk family are compatible with the PREX-II experiment.

Overall, part of the outer crust of neutron stars is well constrained by the measurement
of atomic masses in laboratories. However, the inner crust and the core of neutron stars is
not constrained and therefore, it is equation of state dependent. The microscopic parameters
that are e.g. the symmetry energy and its slope can be constrained by laboratory measure-
ments on isospin asymmetric matter, but some results are in tension and should be taken
with caution.

4The parameters of Skyrme models presented in Eq. (3.18) can be directly linked to the microphysics pa-
rameters presented in this section, which makes it particularly convenient to understand the physics of the
parametrization. For details, see Chabanat et al. [1997, 1998], Danielewicz and Lee [2009].
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3.3 Astrophysical constraints on dense matter

Even if the equation of state of dense matter is constrained by laboratory measurements
and theory, the highest density parts remain out of the reach of microphysics constraints.
The conditions of density and temperature in the innermost parts of neutron stars are such
that the core composition is left unknown. However, observations of neutron star’s macro-
scopic parameters in multi-messenger astronomy can provide further constraints on dense
matter.

3.3.1 Macroscopic parameter modelling and observations

The macroscopic features of neutron stars depend on their internal structure, or in other
words, on the equation of state. The mass, the radius, the moment of inertia, and the tidal
deformability of neutron stars can be derived within a theory of gravitation. By comparing
macroscopic parameters modelled from a given equation of state, to observables of neutron
stars, we can test the equation of state’s ability to be consistent with observations.

The compactness of neutron stars denoted by C = GM/(Rc2) ∼ 0.2 implies that mod-
elling their macroscopic parameters must be treated with a relativistic theory of gravitation.
In the following, Albert Einstein’s theory of general relativity is used.

3.3.1.1 Mass and radius

The variation of Einstein-Hilbert’s action established from the least action principle
leads to Einstein’s equation [Einstein, 1915]

Rµν −
(R

2
− Λg

)
gµν = κgTµν , (3.27)

gµν the metric (describes the geometry of space-time), Rµν and R are the Ricci tensor and
Ricci scalar respectively, and Tµν is the stress-energy tensor which accounts for matter. The
Ricci tensor is the contraction of a four-dimensional tensor, itself derived from derivatives
of the metric; the Ricci scalar (or curvature radius) is the contraction of the Ricci tensor
and the metric. The constant κg = 8πG/c4 is the gravitational coupling, and the constant
Λg accounts for the mean energy-density of vacuum on cosmological scales (we neglect
it completely). Equation (3.27) is the tensorial form of a series of non-linear second order
partial derivative equations, and describes how matter deforms space-time.

Let us assume that space-time is spherically symmetric, static and isotropic, such that
the Schwarzschild metric is used

gµν =


−e2ϕ 0 0 0

0
(

1 − 2Gm
rc2

)−1

0 0

0 0 r2 0
0 0 0 r2 sin2(θ)

 , (3.28)
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with m the mass variable, r the radial variable, ϕ the gravitational field, and θ the azimuthal
angle. The stress-energy tensor is that of an isolated neutron star filled by a perfect fluid,
and is given by

Tµν =
(
ϵ + P

)
uµuν − Pgµν , (3.29)

with ϵ the energy density in rest frame, P the pressure, and u the velocity of the fluid. In ad-
dition to Einstein’s equation, the conservation of energy in general relativity implies that
the covariant derivative of the stress-energy tensor vanishes. The combination of those
two equations render the Tolman-Oppenheimer-Volkoff [Tolman, 1939, Oppenheimer and
Volkoff, 1939] set of differential equations

dm
dr

= 4πr2ϵ(r) , (3.30)

dϕ

dr
=

Gm(r)
r2

(
1 +

4πr3P(r)
m(r)c2

)(
1 − 2Gm(r)

rc2

)−1

(3.31)

dP
dr

= −
(

ϵ(r) +
P(r)

c2

)
dϕ

dr
, (3.32)

with r the radial variable, m the gravitational mass5 contained in a sphere of radius r, G the
gravitational constant and c the light velocity. To solve those equations, one must specify the
equation of state P(ϵ), as well as the boundary condition that is the central pressure denoted
Pc. The total mass and radius of a neutron star for a given central pressure are denoted M
denoted R respectively, and defined by P(R) = 0. We designate as a M(R) sequence the
relation between the total mass and the total radius.

There are theoretical constraints on the relation between the total mass and the total
radius:

• The mass of a neutron star cannot increase indefinitely for a fixed radius in general
relativity. The neutron star radius follows the strict limit of the Schwarzschild radius

R >
2GM

c2 . (3.33)

• The central pressure must be finite, such that in the limiting case of a uniform density

R ≥ 9GM
4c2 , (3.34)

see Shapiro and Teukolsky [1986].

• The equation of state must be subluminal, such that the sound speed vsound < c; for
details concerning Lorentz invariance and causality we refer to Haensel et al. [2007b].

5It is important to distinguish the gravitational mass and the total baryon mass, which corresponds to the
mass of baryons in the neutron star.
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This leads to the lower bound radius

R ≥ 2.9
GM
c2 . (3.35)

• It is possible to solve Einstein’s equation for a metric which includes the angular veloc-
ity of the star, in which case the relation M(Req), with Req designating the equatorial
radius, is solved for a uniformly rotating neutron star. The rotational frequency of the
star has a limit, referred to as the Keplerian frequency limit or mass shedding limit,
over which the neutron star is disrupted by centrifugal forces.

There are also observational constraints on both the mass and the radius of a neutron
star. The most crucial one, later referred to as the maximum mass criterion, is the maximum
mass attainable for a given equation of state: it has to reach the largest mass observed to
date. The measurement of neutron star masses are presented in Fig. 3.6 with the following
classification:

• mass measured in a binary with two neutron stars (DNS),

• mass measured from millisecond pulsars (MSP) with a spin frequency f ≥ 50Hz, in a
binary with a companion star which is not a neutron star,

• mass measured from slowly rotating pulsars (SLOW) with a spin frequency f ≤ 50Hz,
in a binary with a companion star which is not a neutron star,

• mass measured in X-ray or optical (X/OPT) as opposed to radio in previous categories,

• mass measured from gravitational wave (GW) detections. Gravitational wave de-
tections for which the neutron star nature of the binary component was confirmed
by tidal deformability measurement or electromagnetic counterparts are presented in
black; in grey, we present gravitational wave detections for which the neutron star
nature of the component is only concluded from the mass.

Data is gathered from Freire [2021], Özel and Freire [2016], Table 1 in Alsing et al. [2018],
Lattimer [2012] and Abbott et al. [2017], The LIGO Scientific Collaboration et al. [2021].

The most accurate determinations of pulsar masses are based on the measurement of
the parameters in binary systems. By detecting the companion star, the gravitational inter-
action with the neutron star can be evaluated, and we can assess the Keplerian (Newtonian)
parameters of the binary:

• orbital period,

• orbital eccentricity,

• projected semi major axis,

• longitude of the periastron,
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• time of periastron passage,

and post-Keplerian (relativistic) parameters

• rate of the orbital decay due to gravitational radiation,

• relativistic advance of the periastron,

• time dilation and gravitational redshift,

• range and shape parameters of the Shapiro delay.

At least two post-Keplerian parameters, in addition to the classical parameters, are required
to determine the masses of the stars in the binary6. For a complete derivation of post-
Keplerian parameters, see [Misner et al., 1973]. In relativistic binaries involving neutron
stars, one of the two components is observed as a pulsar (with the exception of J0737-3039
for which the two neutron stars were observed as pulsars until 2008). Whether it is possi-
ble or not to measure a specific post-Keplerian parameter depends on the shape, size and
orientation of the binary orbit. For example, the rate of periastron advance is measurable
for eccentric orbits, and Shapiro delay parameters for rather large companion mass with an
edge-on orientation of the orbit.

Most of the millisecond pulsars in binaries have a white dwarf as a companion. The
determination of the pulsar mass in those cases, is mainly based on Shapiro delay mea-
surements, but there exists systems in which the spectroscopy of white dwarfs provides a
measurement of the orbit’s parameters needed to determine the mass of each star. For binary
systems observed in X-ray, the analysis of the companion is crucial to estimate the neutron
star mass; the systematic uncertainty in these cases is significantly larger than in the case of
all double neutron star binary and many millisecond pulsar binaries. In general, the mea-
surement of post-Keplerian parameters is the most reliable technique of neutron star mass
determination; particularly, the Shapiro shape and delay are oftentimes used. It is also very
common that the first estimation of the mass is revised a few years after the source was first
observed. For example, in the binary source J0951+1807, the mass of the pulsar was first
estimated to be 2.1 M⊙ (a record holder at the time), and later was revised to be 1.26 M⊙,
and finally to 1.64 M⊙.

In this manuscript, the maximum mass criterion is set by the measurement of massive
millisecond pulsar J1614−2230 Arzoumanian and et al. [2018], with a mass of 1.908 ± 0.016 M⊙.
Sources with larger masses have been reported, such as the millisecond pulsar J0952−0607
[Romani et al., 2022], whose mass was estimated to be of 2.35 ± 0.17M⊙, and seems to be
the fastest rotating pulsar in our galaxy (with a spin of 1.41 ms); however, this measure-
ment is based on the analysis of the companion’s spectroscopy. Also, the millisecond pulsar
J0740+6620, was measured by Cromartie et al. [2019] using relativistic Shapiro delay for a

6If more than two post-Keplerian parameters are provided, the overdetermination of the binary allows one
to test the theories of gravitation.
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mass of 2.14+0.10
−0.09 M⊙; it was however recently revised to a 2.08 ± 0.07 M⊙ Fonseca and et al.

[2021].
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Figure 3.6: Mass measurements of seventy-five neutron stars presented for a 68.3%
confidence level (1σ) except for sources presented with a ⋄ symbol (99.7%) and
gravitational wave detections.
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The radius of a neutron star is directly connected to the equation of state’s stiffness.
For a significant range of pressures typical of neutron-star interior, the corresponding den-
sities are smaller for a stiff equation of state than for a soft one. As a result, from the
Tolman-Oppenheimer-Volkoff equations, the thickness of this region is larger for stiff equa-
tions of state, which can lead to a larger radius of the neutron star. A strong correla-
tion exists between the pressure and the radius at densities [1 − 2.5]n0 (saturation density
n0 = 0.16 fm−3), as shown by Lattimer and Prakash [2001]. The radius and mass of two
sources (PSR J0030+0451 and PSR J0740+6620), have been reported by the NICER telescope
by two teams each. The measurement technique is based on an analysis of the surface emis-
sion of the pulsar, precisely of its hot spots. The source J0030+0451 was reported by E. and et
al. [2019] to have a mass of 1.34+0.15

−0.16 M⊙ and radius of 12.71+1.14
−1.19 km and reported by Miller

and et al. [2019] to have a mass of 1.44+0.15
−0.14 M⊙ and a radius of 13.02+1.24

−1.06 km within 1σ pre-
cision. The source J0740+6620 was reported by Riley and et al. [2021] to have a radius of
13.7+2.6

−1.5 km and by Miller et al. [2021] to have a radius of 12.39+1.3
−0.98 km within 1σ precision;

prior knowledge from radio measurements of the mass and XMM-Newton telescope data
were used. Because the uncertainty for the radius is quite large, measurements serve more
as a proof of concept for an elegant radius determination, than a conclusive constraint on
neutron star matter. The radius can also be determined from the thermal emission of the
neutron star, but this method is strongly model dependent [Potekhin, 2014].

In Abbott et al. [2018], Abbott and et al. [2020], an indirect estimation of the radius was
established from the detection of the tidal deformability extracted from the inspiral of the
gravitational waves; the authors either used the so-called universal relations established in
Yagi and Yunes [2017] to present a radius with 3.5 km error bars, or a collection of equa-
tions of state in a Bayesian analysis to give a likelihood for the radius. As a substitute for
radius measurements, a series of papers attempt to impose limits on the radius. In Steiner
et al. [2013], a prior distribution of equations of state is used to obtain a radius interval
of [10.4 − 12.9] km for a 1.4 M⊙ neutron star, with a 95% confidence level. A similar ap-
proach is used by Guillot et al. [2013] in a Monte Carlo analysis with five low mass X-ray
binary sources, to extract a minimum radius of 9.1+1.3

−1.5 km within a 90% confidence level. In
Haensel et al. [2009], a constraint on the radius is established, based on the assumption that
neutron star’s rotation follows a Keplerian frequency. However, neutron stars might not
follow such frequencies when the rotation of the star is associated with gravitational wave
emission or when triaxial deformability sets on.

It is important to note that the definition of the radius itself depends on the lowest
density defined by the equation of state. The atmosphere of neutron stars is usually not
presented in the equation of state; the lowest density provided by equation of state’s tables
ranges from 106 to 105 g/cm3 for the mass density. There is therefore an ambiguity in the
definition of the total radius: should the radius be defined at the surface of the outer crust,
or at the surface of the atmosphere. However, the current precision on the determination of
the radius implies that such consideration are not necessary yet, because the atmosphere is
extremely thin (∼ 1 m). In the following, we shall consider that the total radius is defined
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as the radius at the surface of the outer crust.

The M(R) sequence modelled from equations of state presented in section 3.1 are pre-
sented:

• in Fig. 3.7 for relativistic mean field models,

• in Fig. 3.8 for Skyrme models,

• in Fig. 3.9 for the ab initio model BCMP.

The maximum mass criterion from source J1614−2230, as well as the contours from NICER
measurements of sources J0030+0451 and J0740+6620, are represented in those figures; only
the Skyrme equation of state BSk19 and the relativistic mean field model H3 do not meet the
maximum mass criterion.
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Figure 3.7: M(R) sequence for relativistic mean field models presented in Table 3.1.
The contour of the NICER measurements of J0740+6620 and J0030−2230 are rep-
resented in green and violet (see text for details). The maximum mass criterion
from the source J1614−2230 is presented in grey. The sound speed velocity limit is
presented in green.
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Figure 3.8: M(R) sequence for Skryme models presented in Table 3.2. The contour
of the NICER measurements of J0740+6620 and J0030−2230 are represented in
green and violet (see text for details). The maximum mass criterion from the source
J1614−2230 is presented in grey. The sound speed velocity limit is presented in
green.
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Figure 3.9: M(R) sequence for the ab initio model BCPM. The contour of the NICER
measurements of J0740+6620 and J0030−2230 are represented in green and violet
(see text for details). The maximum mass criterion from the source J1614−2230 is
presented in grey. The sound speed velocity limit is presented in green.

3.3.1.2 Moment of inertia

The moment of inertia, denoted I, measures the ability of an object to resist angular ac-
celeration. The derivation of the moment of inertia can be approached in the slow rotation
approximation, as presented in Hartle [1967]. The general idea of the slow rotation approx-
imation is the following. Let us assume that the gravitational potential Φ and the equation
of state relation ϵ(P), with ϵ the energy density, and P the pressure, are defined for the
non-rotating self-gravitating body solution. To develop a solution for a rotating star from
the solution of the non-rotating one, an expansion of leading term (Φ, ϵ, P) in powers of the
angular velocity Ω is performed. For a rotational axis along z, the polar angle is denoted θ,
and the radial coordinate r corresponds to the radius defined by isodensities, such that

ϵ(r) = ϵ(r, θ) . (3.36)

z

r
θ

Figure 3.10: Illustration of the
slow rotation configuration.

The centrifugal force risen by rotation induces a displace-
ment, denoted ξ, and a modification of the gravitational po-
tential denoted χ. In the slow rotation approximation, it is rea-
sonable to treat the radius and gravitational potential of the ro-
tating star, as a development in angular velocity Ω with zeroth

order r and Φ. The quantities ξ and χ can be conveniently
developed on the spherical harmonics basis

ξ(r, θ) = ∑
l

ξl(r)Pl(θ) , (3.37)
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χ(r, θ) = ∑
l

χl(r)Pl(θ) , (3.38)

with Pl the Legendre polynomials established at fixed m = 0
or in other words, for zonal harmonics. Because the system
presented in Fig. 3.10 follows certain symmetries, some orders in the lth development vanish:

• Symmetry with respect to the equatorial plane: ∀θ, ξ(r, θ) = ξ(r, π − θ). Because terms
of the polynomial are proportional to sinl(θ), sinl−2(θ), the order l is necessarily even.

• Symmetry under the reversal of Ω direction: ∀ f , f (Ω) → f (−Ω). The expansion must
contain only even powers of the angular velocity

r =
[
r + ξ(r, θ) +O(Ω4)

]
er , (3.39)

Φ = Φ(r) + χ(r, θ) +O(Ω4) . (3.40)

Three equations are required to solve a rotating, self-gravitating object made of an ideal
fluid:

• The field equations, which in the framework of Newtonian gravitation correspond
to Poisson’s equations, and in general relativity corresponds to Einstein’s equation.
Assuming rigid rotation, i.e. that the star rotates with an angular velocity which is
constant in the star, the metric of space-time can be written as the sum of the Tolmann-
Oppenheimer-Volkov metric gTOV

µν , and an expansion in order of Ω of the slow rotation
metric hµν such that

gµν = gTOV
µν + hµν(Ω) + h̃µν(Ω2) + ... . (3.41)

The metric h can be expressed in terms of Legendre polynomials, because the order l
of the polynomial is linked to the chosen order of Ω through the symmetries presented
above.

• The equilibrium equations that govern the fluid, and include the centrifugal potential.
Within general relativity, this equation is derived from Einstein’s equation [Hartle,
1967].

• The equation of state that relates the pressure and the density.

In the framework of general relativity, this leads to the a set of differential equations to
be solved simultaneously with the gravitational field Φ(r) equations

dI
dr

=
8π

3
r4
[

ϵ(r) +
P(r)

c2

]
e−Φ(r)

(√
1 − 2Gm(r)

c2r

)−1
ω̃(r)

Ω
, (3.42)

dω̃(r)
dr

=
6GeΦ(r)

c2r4

(√
1 − 2Gm(r)

c2r

)−1

j(r) , (3.43)
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dj(r)
dr

=
8π

3
r4
[

ϵ(r) +
P(r)

c2

]
e−Φ(r)

(√
1 − 2Gm(r)

c2r

)−1

ω̃ , (3.44)

with ω̃(r) the spin frequency measured in a local inertial frame, j(r) the contribution from
the sphere of radius r to the stellar angular momentum such that J = j(R), with R the total
radius. The quantity Ω is the uniform angular frequency of the star measured at infinity

Ω = ω̃(R) +
2GJ
c2R3 . (3.45)

The slow-rotation approximation is valid for stars with a rotating frequency well below
the Keplerian frequency. To solve neutron stars with a consequent rotation frequency, the
full treatment of a stationary axi-symmetric rotation for a self-gravitating body in general
relativity is required; Einstein’s equation for a metric whose conformal factors, and therefore
the gravitational field, depend on the angular frequency must be solved. For instance, the
numerical relativity software LORENE Gourgoulhon et al. [2016] can operate such calcula-
tions.

1.6 1.8 2.0 2.2 2.4
M (M )

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

I (
10

45
g 

cm
2 )

Hyperonic
DD2
DDH
DDME2

Figure 3.11: Moment of inertia calculated in the
slow rotation approach for DD family relativistic
mean field models.

The moment of inertia calculated within
the slow rotation approximation for the
different equations of state used in this
manuscript (see section 3.1) are presented
in Fig. 3.12, Fig. 3.13 and Fig. 3.14. The mo-
ment of inertia is presented in those figures
as a function of the central pressure, and not
as a function of the total mass. In Fig. 3.11,
we present the moment of inertia as a func-
tion of the total mass up to the maximum
mass configuration for the family of equa-
tions of state DD. Around the maximum
mass, it seems that the moment of iner-
tia is decreasing drastically before reaching
the maximum mass configuration. The mo-
ment of inertia treated in classical mechan-
ics is approximately proportional to MR2. It
can be seen from the M(R) sequences presented in the previous section that around the max-
imum mass configuration, the mass stays almost constant, whereas the radius largely varies.
This effect is absent for the dependence on the central density or pressure.

https://lorene.obspm.fr/
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Figure 3.12: Total moment of inertia I, as a function of the central pressure Pc, for
stars in the range of 1.0 M⊙ to the maximum mass configuration, for the relativistic
mean field models .
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Figure 3.13: Total moment of inertia I, as a function of the central pressure Pc, for
stars in the range of 1.0 M⊙ and the maximum mass configuration, for the Skyrme
families.
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Figure 3.14: Total moment of inertia I, as a function of the central pressure Pc, for
stars in the range of 1.0 M⊙ to the maximum mass configuration, for the ab initio
BCPM model.

Rotation of the neutron star has consequences on the mass-radius relation of the star
when considered beyond the slow-rotation approximation. The equatorial radius Req must
be introduced for a rotating neutron star whose shape is not spherical. A large rotation
frequency flattens the M(Req) sequence, because the equatorial radius is much larger. The
gravitational mass of the star is also larger at fixed equatorial radius for rotating neutron
stars than non rotating ones. The maximum mass for a given equation of state is therefore
larger than the Tolmann-Oppenheimer-Volkoff maximum mass for high rotational frequen-
cies [Haensel et al., 2016].

The measurement of I also holds great promises in the equation of state investigation,
but has not been provided so far. Measuring the moment of inertia requires a monitoring of
the relativistic features of the binary orbit (the more compact the better) over a long period of
time, see Greif et al. [2020]. In a binary system, the gravitational spin-orbit coupling, which
is a relativistic effect, causes the periastron to advance; the spin of a neutron star enters the
second order of the advance of the periastron, and therefore might be extracted if observa-
tional precision allows, see Lattimer and Schutz [2005]. The best chance of measuring this
parameter lies in highly compact binaries with high spinning neutron stars such as the bi-
nary pulsar PSR J0737−3039 McLaughlin et al. [2004], Kramer and et al. [2021]. The two
pulsars of the system were observed, until pulsar B disappeared as a radio signal in 2008
due to precession. Fortunately, FAST and SKA radio-telescopes should hopefully increase
the number of observations of pulsars by orders of magnitude, thus including thousands of
millisecond pulsars, among which will be double pulsar binaries.

There are ways to provide an indirect measurement of the moment of inertia via the
so-called universal relations: from the measurement of the compactness, one could extract
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I with the help of those relations. Silva et al. [2021] used NICER measurement of PSR
J0030+0451 compactness combined with a Markov chain Monte-Carlo analysis to provide a
radius distribution of the 1.3381M⊙ neutron star of the double binary PSR J0737−3039, and
extract I.

3.3.1.3 Tidal deformability

The tidal deformability can be defined as the susceptibility of the neutron star to be de-
formed by an external gravitation field. The equations determining this quantity are derived
from the quadrupole moment of the star.

Let us consider an external tidal field denoted E ; said field induces a response of the
neutron star which is quantified by the multipole moment denoted Q. Both El and Ql can
be developed on the basis of spherical harmonics Ym

l with mode l and expansion order m.
Depending on the parity of the quantities, two tidal polarizabilities can be distinguished: the
gravito-electric (or mass) multipole moment, and the magneto-electric (or spin) multipole
moment.

In the following, we shall focus on the quadrupolar tidal deformability defined by the
gravito-electric multipole moment of mode l = 2; for a complete study of both mass and
spin multipole moments for any l, see Damour and Nagar [2009]. The tidal deformability
denoted λ2(r), is related to the tidal Love function denoted k2(r) according to

λ2(r) =
2
3

k2(r)
[

rc2

Gm(r)

]5

, (3.46)

The derivation of the tidal Love function k2 for a stationary and barotropic external gravi-
tational field perturbation on the metric of an isolated neutron star is presented in Hinderer
[2008], and is written in terms of the compactness as

k2(r) =
8C(r)5

5
(1 − 2C(r))2 [2 + 2C(r)(y(r)− 1)− y

]{
2C(r)

[
6 − 3y(r) + 3C(r) (5y(r)− 8)

]
+ 4C(r)3[13 − 11y(r) + C(r)(3y(r)− 2) + 2C(r)2(1 + y(r))

]
+ 3(1 − 2C(r))2[2 − y(r) + 2C(r)(y(r)− 1)

]
ln(1 − 2C(r))

}−1
. (3.47)

The function y(r) is the solution to the set of equations presented in Hinderer [2008] that
must be solved simultaneously with the Tolmann-Oppenheimer-Volkoff equations

r
dy
dr

+ y(r)2 + F(r)y(r) + Q(r) = 0 , (3.48)

F(r) =
(

1 − 2Gm(r)
rc2

)−1 (
1 − 4πGr2

c4 [ϵ(r)− P(r)]
)

, (3.49)

Q(r) =
4πGr2

c4

(
1 − 2Gm(r)

rc2

)−1
[

5ϵ + 9P(r) +
ϵ(r) + P(r)
vsound(r)2 c2 − 6 c4

4πr2G

]
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− 4G
(

1 − 2Gm(r)
rc2

)−2
[

m(r)
rc2 +

4πr2

c4 P(r)

]2

, (3.50)

with the sound speed v2
sound = c2dP/dϵ, and the boundary condition y(0) = 2, for details on

the boundary conditions see Hinderer [2008]. In Fig. 3.15, Fig. 3.16 and Fig. 3.16, we present
the observable dimensionless tidal deformability denoted Λ and defined as Λ = λ(R), as a
function of the central pressure for the different models used in this manuscript.
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Figure 3.15: Tidal deformability Λ, as a function of the central pressure Pc, for stars
in the range of 1.0 M⊙ to the maximum mass configuration, for relativistic mean
field models.
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Figure 3.16: Tidal deformability Λ, as a function of the central pressure Pc, for stars
in the range of 1.0 M⊙ to the maximum mass configuration, for Skyrme models.
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Figure 3.17: Tidal deformability Λ, as a function of the central pressure Pc, for stars
in the range of 1.0 M⊙ to the maximum mass configuration, for the ab initio BCPM
model.

Observational prospects for the tidal deformability rely on gravitational wave measure-
ments. Indeed, the tidal deformability can be extracted from the inspiral of a neutron star
binary system. The detection of the merger GW170817 [Abbott et al., 2017], which was the
first double neutron star (NS-NS) binary merger to be detected with gravitational waves,
provided a constraint on the relation between the tidal deformabilities of the two stars. The
dominant tidal parameter which enters the inspiral GW waveform is the effective tidal de-
formability of the binary

Λ̃ ≡ 16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 + M2)5 . (3.51)

To model this relation from the equation of state, the tidal deformability of the two stars
is obtained while varying the mass of the heaviest neutron star M1 in the range proposed
in Abbott et al. [2017], i.e. [1.365 − 1.60] M⊙; the mass of the lightest M2 neutron star is
determined by fixing the chirp mass

M =

(
(M1M2)3

M1 + M2

)1/5

, (3.52)

at its measured value: 1.188 M⊙. In Fig.3.18, we present the 90% and 50% credibility lines
presented in Abbott et al. [2017], as well as the relation between the tidal deformabilities of
the two stars modelled with nucleonic relativistic mean field models NL3, DD2 and H3, and
Skyrme models BSk21 and SLy4. In this figure, NL3, which is a very stiff model, does not
comply with tidal deformability measurements within the 90% precision line.
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Figure 3.18: Relation between the tidal deformabilities of the heaviest star Λ1 and
the lightest star Λ2 of the binary neutron star merger GW170817 for models NL3,
DD2, H4, BSk21 and SLy4. We also represent the 90% and 50% credibility lines
provided by Abbott et al. [2017].

3.3.2 Astrophysical constraints on the microphysics parameters

In addition to nuclear physics experimental constraints, it is possible to impose astro-
physical constraints on the symmetry energy at saturation density J and its slope L.

Observations of neutron star cooling in the X-ray band has revealed the role of neutrino
emission rapidly cooling processes in the core of accreting neutron stars (in a binary receiv-
ing matter from its companion) [Fortin et al., 2018]. The Direct Urca process [Lattimer et al.,
1991] is permitted if the proton fraction is high enough, and is therefore triggered at a given
value of the density nDUrca. This threshold is constrained by the density dependence of the
symmetry energy, such that a large L favors a large proton fraction, and a process allowed
for lower nDUrca - or equivalently for lower neutron star mass. The presence of hyperons
in the core implies that there is no need for an elevated L to ensure that the DUrca process
occurs [Fortin et al., 2021]. In Fig. 3.5a and Fig. 3.5b which present the values of L and J for
the models presented in section 3.1, the models which do not permit the process of DUrca
(nDUrca > nmax) are presented in green: DD2, DDME2, BSk20, BSk26, KDE0v1, SLy2, DH
and Skb.
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Techniques to infer knowledge relevant for microscopic parameters, based on Bayesian
inference statistical analysis were recently designed; we refer to Ref. Golomb and Talbot
[2022] for a recent study of this technique, and to Ref. Vitale et al. [2020] and references
therein for a review. Instead of confronting equations of state one by one to macroscopic ob-
servables, it is possible to use a more systematic approach. Bayesian inference is a statistical
technique using data to make an educated guess through the Bayes Theorem

P(X|Y) = P(Y|X)×P(X)

P(Y)
, (3.53)

with:

• P(X) the probability distribution of the equation of state, called the prior: it corre-
sponds to what we believe the equation of state is before any measurement is made.

• P(Y|X) the probability given an equation of state of getting a certain measurement is
called the likelihood associated to the measurement.

• P(Y) the probability of making the measurement is called the marginal likelihood,

• P(X|Y) what is believed about the equation of state given the measurement is the
posterior.

In overall, we start with a belief in what the equation of state should be (as vague as nuclear
physics constraints of dense matter), then make the measurement and have a new belief
in what the equation of state is. In practice, a random statistical method such as Monte-
Carlo-Markov-Chain, or Gaussian process, is used to infer information on dense matter by
implementing observational filters on agnostic equation of state priors. GW170817 detec-
tion was used in Raithel and Özel [2019], Güven et al. [2020] to constrain L: in Raithel and
Özel [2019] the effective tidal deformability of the binary is strongly correlated to that quan-
tity and GW170817 indicates a preference for a low L. Malik et al. [2018] discovered strong
correlations between the tidal deformability and linear combination of pairs of nuclear pa-
rameters of different orders. Miller et al. [2021], Riley and et al. [2021] related to NICER
observation of J0740+6620, used a Bayesian analysis based on likelihood of measurement to
infer high density equation of state properties. Perfect knowledge of the equation of state be-
low half the saturation density (n0/2 = 0.08 fm−3) is assumed; above n0/2, a parametrized
equation of state and Gaussian-process-based models are used. A similar technique is used
by Ref. Essick et al. [2021] with Chiral Effective Theory (CET) constraints.

Bayesian inference can be used with mass measurements, gravitational wave detection,
radius measurements of NICER etc. see e.g. Somasundaram et al. [2021], Al-Mamun et al.
[2021], Malik and Providência [2022]. It is also possible to include nuclear physics con-
straints, such as the heavy ion collision data, or chiral effective field theory calculations, see
e.g. Ghosh et al. [2022].

Overall, the observation of neutron star’s macroscopic parameters can help constrain
the microphysics of their interior beyond what is achievable in nuclear physics laboratory.
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The maximum mass criterion is the most precise constraint available to us as of today. The
NICER telescope provides simultaneous measurements of the mass and the radius of a few
millisecond pulsars, with a precision which is yet not constraining for ultra dense matter
properties, but is promising. The booming era of gravitational waves has lead to the detec-
tion of the double neutron star binary merger GW170817, and provided the first measure-
ment of the neutron star tidal deformability.
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3.4 Consequence of non-unified models for dense matter on neu-
tron star modelling

Equations of state for neutron star matter are based on advanced calculations. Partic-
ularly, treating inhomogeneous matter in the crust is more complicated than treating the
homogeneous matter in the core. It is a common practice within the astronuclear physics
community to design equations of state separately for the core and the crust. In this sec-
tion, we present the consequences of such constructions on the modelling of macroscopic
parameters, as is detailed in Suleiman et al. [2021] and Suleiman et al. [2022a].

3.4.1 Unified vs. non-unified equations of state

Non-unified equations of state are defined as equations of state which have been calcu-
lated using different nuclear models for the core and for the crust. A widespread practice
is to compute a core equation of state, and match to it a well-known, well-established crust.
Examples for the use of non-unified equations of state are found in more simulations than
can be listed: analytical representations used for gravitational wave data, finite tempera-
ture simulations, modelisation of neutron star’s parameters in modified gravity, magneto-
hydrodynamics, quasi-universal relations, etc.

This non-unified approach to constructing equations of state of dense matter is founded
on two assumptions:

• The assumption that the crust is well-constrained by laboratory measurements, in
which case the equation of state and composition of the crust should be the same
for any nuclear model calibrated to laboratory measurements. However, only part
of the outer crust is constrained by measurements of nuclear masses, as is presented
in Fig. 3.3.

• The assumption that the macroscopic parameters of neutron stars do not depend on
the crust equation of state. Although it is true that some macroscopic parameters are
more impacted by the core equation of state (as is the case for the mass and the mo-
ment of inertia), the radius is particularly influenced by the crust equation of state.
Moreover, using non-unified equations of states with no care for the core-crust match-
ing introduces errors that go beyond the model dependence of the crust, as we discuss
in the following.

From unified computations, the core-crust transition density, denoted nt, can be calcu-
lated as the density point for which uniform matter becomes unstable with respect to spatial
variations in the particle densities. In Tsang et al. [2019], Pais and Providência [2016], the lin-
ear dependence of nt on the slope of the symmetry energy at saturation density is discussed.
To estimate nt outside of complete unified equation of state models, several techniques were
proposed, but the uncertainty in its value is large. For example, it was found that nt ranges
between [0.3 − 0.6]n0, for the broad collection of equations of state considered in Oyamatsu
and Iida [2007], Ducoin et al. [2011], Pais and Providência [2016]. It is very common that nt is
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not calculated at all, hence a widely used approach when constructing a non-unified equa-
tion of state is to glue core and crust at some density around saturation density n0. However,
we will show in the following that the microscopic parameters for different models of dense
matter can be very different at such densities.

In principle, when gluing equations of state, one should match all thermodynamical
quantities: the pressure P, the energy density ϵ, and the baryon density n. In other words, a
pair of functions: P(n) and ϵ(n) should be constructed so that thermodynamical consistency
is fulfilled, ensuring that the chemical potential µ as a function of the pressure is continuous.
However, the constructed equations of state in the literature do not always uphold this con-
tinuity. A matching technique is employed in Margueron et al. [2018]: a cubic spline is used
on the logarithm of the pressure and mass-energy density over the range of baryonic den-
sities between 0.1n0 and n0. For this technique, later on referred to as the spline technique,
the continuity in pressure is ensured, but not the continuity in chemical potential.

We can now identity four different flaws in non-unified constructions:

• the inner crust model dependence,

• the uncertainty on the estimated value of the core-crust transition density,

• the difference in the microscopic properties of the core and crust models,

• and the thermodynamic inconsistencies of the matching.

In order to assess the role of non-unified constructions of equations of state on neutron
star modelling, we use the set of unified equations of state presented in section 3.1; note that
figures presented in section 3.3.1 are established from unified constructions. For this set of
unified equations of state, the inner crust is calculated consistently with the core, i.e. using
the same nuclear parametrization. The resulting equation of state would be better qualified
as quasi-unified, because the outer crust is not calculated consistently with the inner crust
and the core. However, it was shown in Fortin et al. [2016] that the radius is hardly affected
if a non-consistent outer crust is used, in the sense that the uncertainty that is introduced
for masses above 1.0 M⊙ (which is the mass range of all neutron stars currently observed) is
much less than the precision of any current or near-future measurements.

The set of unified equations of state based on relativistic mean field calculations are
taken from Fortin et al. [2016, 2020], Providência et al. [2019]; the relativistic mean field
models which include hyperons are constructed consistently with the available experimen-
tal measurements of hypernuclei properties detailed in Fortin et al. [2017, 2020]. The inner
crust equation of state is calculated within the Thomas-Fermi approximation consistently
with the equation of state for the core [Grill et al., 2014, Providência et al., 2019]. The equa-
tion of state of the outer crust has not been obtained consistently, but was taken from Rüster
et al. [2006]. Several other outer crust equations of state are available, for example Baym
et al. [1971], Haensel and Pichon [1994], Pearson et al. [2018], but they all are strongly con-
strained by nuclear physics data and therefore quite similar.
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The set of unified equations of state based on Skyrme models is taken from Fortin et al.
[2016], except for DH and Brussels-Skyrme models which are already constructed in a uni-
fied way. The construction of the crust does not include shell effects nor curvature terms,
which results in a mass shift with respect to experimentally measured masses [Gulminelli
and Raduta, 2015]. Therefore, the equation of state for the external part of the outer crust dif-
fers from that which employs experimental data; however, the differences are small enough
to impact the relation between the mass and the radius by less than 1%.

For the ab initio equation of state, the outer crust is based on the formalism of Baym et al.
[1971]; a density functional designed from Brueckner-Hartree-Fock computations is used in
the deformed Hartree-Fock-Bogoliubov formalism for nuclei which are not included in the
data table of Wang et al. [2012]. For the inner crust, the energy density functional derived
from Brueckner-Hartree-Fock calculations is used in the Thomas-Fermi approximation.

Although we have chosen to focus on models presented in Fortin et al. [2016], several
nuclear physics groups have put tremendous efforts in designing unified models, to name
but a few Douchin and Haensel [2001], Gulminelli and Raduta [2015], Sharma et al. [2015],
Pearson et al. [2018], Viñas et al. [2021], Parmar et al. [2022].

To assess the role of non-unified constructions of equation of state on macroscopic pa-
rameter modelling, we focus on three models for dense matter with a purely nucleonic core
(uniform neutron, proton, electron and muon mixture) obtained from unified relativistic
mean field calculations, classified from stiff to soft: NL3, BSR6, and DD2. To construct non-
unified equations of state, we use the additional equations of state DH and BSk21 (with an
accreted and nonaccreted crust) which are both based on Skyrme parametrizations.

We compare the following equation of state constructions:

• unified equations of state DD2, BSR6 and NL3;

• core of DD2, BSR6 and NL3, to which the crust of DH is matched at several densities;

• core of DD2, BSR6 and NL3, to which the catalyzed crust of BSk21 is matched at several
densities;

• core of DD2, BSR6 and NL3, to which the accreted crust of BSk21 [Fantina et al., 2013]
is matched at several densities.

The following matching densities are investigated

nm =



0.08 fm−3 ,

0.1 fm−3 ,

0.16 fm−3 ,

nt extracted from unified calculations .

(3.54)
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Table 3.3: Nuclear properties of the models for dense matter used in this section.
Are presented, the saturation density nsat, the energy per nucleon at saturation
density (Esat), the compression modulus at saturation density (Ksat), the symmetry
energy at saturation density (J), and the slope of the symmetry energy at saturation
density (L). The density at the interface between the core and the crust extracted
from unified calculations, is denoted nt. The last two columns present the value
of the symmetry energy and its slope, at the density 0.1 fm−3 and are denoted
respectively J0.1 and L0.1.

Model nsat Esat Ksat J L nt J0.1 L0.1
(fm−3) (MeV) (MeV) (MeV) (MeV) (fm−3) (MeV) (MeV)

Core
NL3 0.149 -16.2 271.6 37.4 118.9 0.057 25.0 73.7
BSR6 0.149 -16.1 235.8 35.6 85.7 0.061 25.8 62.9
DD2 0.149 -16.0 242.6 31.7 55.0 0.067 24.9 70.1
Crust
DH 0.159 -16.0 230.0 32.0 46.0 0.076 25.2 41.6
BSk21 0.159 -16.1 245.8 30.0 46.6 0.081 23.7 36.8

Table 3.3 presents nuclear properties for all models at play at their respective saturation
density and at 0.1 fm−3. The core equations of state of NL3, BSR6 and DD2 have very differ-
ent microscopic properties at saturation density from those of the crust equations of state.
The differences are greater between NL3 core and DH crust, than between DD2 core and
DH crust. The reason lies in the softness of DH: as DD2 has also a relatively soft core, the
microscopic parameters are more similar to that of DH, than the stiff core of NL3. Matching
the core and the crust, at values of the density at which models are microscopically incoher-
ent, will induce inconsistencies in the equation of state. Note that the differences are not as
pronounced at 0.1 fm−3.

Figure 3.19 shows the pressure as a function of the baryon number density n, and as
a function of the chemical potential µ for the different equations of state constructions that
we consider. A jump in the pressure as a function of the baryon number density can be
observed at the transition between the core and the crust for all matched constructions ex-
cept the one employing a spline matching technique. All matched equations of state exhibit
a jump in the chemical potential which attest to the thermodynamic inconsistency of the
matching. In the case of the spline matching technique, the jump stems from the fact that
even though the pressure is continuous, the energy density is not at the upper bound of
the interpolated crust equation of state. Thermodynamic inconsistencies are introduced by
non-unified constructions as jumps in the relation between the pressure and the chemical
potential.

In the case of the matching at n0, the stiffer the core equation of state, the larger the
pressure jump. The microscopic quantities of NL3 are further from that of DH than BSR6
and DD2; in others words at this value of the density, DH is soft, and therefore is better
matched with a soft core model. Matching at the core-crust transition density ensues jumps
as well, showing that to reduce the inconsistencies is not just about finding the core-crust
transition, but also about matching the microscopic quantities as this value. Not only do
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models for dense matter have different core-crust transition densities, but this region is not
calibrated by laboratory measurement so that the equations of state at this transition point
are different.
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Figure 3.19: Relation between the pressure P and the baryonic density n, as well
as the pressure and the chemical potential µ. Results are presented for the unified
equations of state NL3, BSR6 and DD2, and for non-unified constructions designed
for matching density nm presented in Eq. (3.54) and with the spline technique.
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3.4.2 Consequence on macroscopic parameter’s modelling

The relativistic hydrostatics equations are nonlinear, and the neutron star interior is
opaque to observations. Therefore, one cannot separate the contribution of different parts of
the equation of state in the modeling of the total macroscopic parameters in a simple way. To
evaluate the consequences of non-unified equations of state on the modeling of macroscopic
parameters, the equations of hydrostatics are solved according to section 3.3 for the different
constructions presented in the previous section.

Results are presented in Fig. 3.20: the total radius, the moment of inertia in the slow ro-
tation approximation, and the dimensionless tidal deformability are presented as a function
of the total mass of the star on the left hand side of the figure. To quantify the effect of the
matching compared to unified equations of state, we calculate for a given total mass and
variable X = R, Λ, I, the relative difference between the variable for a given matching Xm

and the unified equation of state Xu

∆X
X

=
Xm − Xu

Xu
. (3.55)

This quantity is plotted in the right panels of Fig. 3.20.

The error induced by non-unified constructions can be as large as ∼ 10% for the radius,
∼ 20% for the tidal deformability and ∼ 5% for the moment of inertia, in the case of the stiff
core model NL3. For the softer equation of state DD2, errors are much smaller, respectively
∼ 6%, ∼ 5% and ∼ 1%. Therefore, core-crust matching of two equations of state with
very different microscopic parameters, such as the symmetry energy Jm and its slope Lm,
increases the error in the modeling of macroscopic parameters.

The errors are largest for small total masses of the neutron star: for large neutron star
masses, the core plays relatively a more important part in the star than for small total masses,
therefore the crust inconsistencies have less impact for large total masses.

The matching between the core and the crust introduces a large relative difference with
respect to the unified equation of state in the radius determination. In the case of the spline
technique of matching presented in Fig. 3.20a, it is even as large as 10%, or 1.5 km for a
M ≃ 1 M⊙ neutron star. The error introduced by thermodynamical inconsistencies on the
modeling of the radius can be anticipated using the relation between the jump in chemical
potential and the radius presented in Zdunik et al. [2017]

∆R
R

= −0.72%
∆µ

1 MeV
R

10 km
M⊙
M

(
1 − 2GM

Rc2

)
; (3.56)

this estimation is very accurate, as is presented in Fig. 3.20a for the spline construction. The
sign of the relative difference is related to the sign of the jump in the chemical potential: a
drop in the chemical potential results in a larger radius, hence a positive ∆R/R, and vice
versa. The inaccuracy in the radius due to the discontinuity in the chemical potential can
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Figure 3.20: M, R, I and Λ for the different matched constructions and the unified
equations of state (left panels) and the relative differences with respect to the uni-
fied equation of state for the NL3, BSR6 and DD2 cores presented in Eq. (3.55) (right
panels). For the NL3 model, the brown line on top of the one for the spline shows
the results obtained using the approximate approach to the crust in Eq. (3.56) (see
text for details).
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also be anticipated using a similar formula for the compactness

∆C =
∆µ

µ0
(1 − 2C) , (3.57)

with µ0 the chemical potential at the surface of the star (at which P = 0).

The dimensionless tidal deformability seems always the most affected macroscopic quan-
tity by the non-unified constructions while actually, the impact of microscopic inconsisten-
cies are similar for all quantities. This is due to the fact that Λ spans over two orders of
magnitude in the interesting range of masses. As a consequence, if the tidal deformabil-
ity were to be measured with a precision of around 15%, the corresponding mass could be
extracted with a precision of around 2%.

The uncertainties are the smallest when the core and crust are connected at densities
n0/2 = 0.08 fm−3 or 0.1 fm−3, which is the value of the core-crust transition density found
for a number of models Oyamatsu and Iida [2007], Ducoin et al. [2011], Pais and Providência
[2016]. In fact, laboratory experiments allow us to constrain relatively well the dense matter
equation of state up to roughly n0/2 [Dutra et al., 2012]. Because most equations of state
are adjusted to reproduce the experimental data, they consequently have properties like the
symmetry energy that are similar up to ∼ n0/2, as can be seen in Figure 2 of Ducoin et al.
[2011]. From Table 3.3, we can see that models have remarkably close values of the symme-
try energy at a density 0.1 fm−3, around 25 MeV. The spread of the slope of the symmetry
energy over the different models studied is also smaller at 0.1 fm−3 than at the saturation
density. In other words all equations of state used have similar softness around 0.1 fm−3,
which is why the jump in the chemical potential when gluing them is small in the range of
densities 0.08 − 0.1 fm−3. This results in relative differences for the macrophysical proper-
ties that are small, as can be seen from Fig. 3.20b and Fig. 3.20c. Overall, when constructing
an equation of state for neutron stars in case a unified equation of state is not available,
gluing the core to the crust at nB = 0.08 − 0.1 fm−3 minimizes the relative differences with
respect to the unified equation of state, and thus the artificial uncertainties in the radius,
tidal deformability and moment of inertia modelling.
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Figure 3.21: Relation between the tidal deformabilities of neutron stars in
GW170817 event, with the 90% and 50% credibility lines presented in Abbott et al.
[2017]. Different constructions for NL3, BSR6 and DD2 are presented.

To better emphasize the role of non-unified equations of state in the investigation of
dense matter from observations of neutron star’s macroscopic parameters, let us use the
example of the gravitational wave detection GW170817. In Fig. 3.21, we present the 50%
and 90% credibility lines on the relation between the dimensionless tidal deformabilities of
the two neutron stars (Λ1 for the more massive and Λ2 for the less massive) of the merger
GW170817 presented in Abbott et al. [2017]. The differences between the unified curve of
NL3 in this figure, and the matching at the saturation density of NL3 and DH is as large
as the difference between the two unified equations of state of DD2 and BSR6. Therefore,
using non-unified equations of state matched at values of the density for which microscopic
parameters are very different, can easily mislead into accepting or excluding an equation of
state using observations.
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Figure 3.22: Relation between the effective tidal deformability of the binary Λ̃ and
the radius of the lightest star of GW170817. Different constructions for NL3, BSR6
and DD2 are presented. See text for details.

In Raithel et al. [2018], Raithel and Özel [2019], the authors present a relation between
the effective tidal deformability of GW170817 defined in Eq. (3.51) and the radius of the more
massive star R(M1). This relation is interesting because the effective tidal deformability is
supposed to hardly depend on the mass of the component stars for a fixed chirp mass in
binary neutron star mergers. This would allow one to use the effective tidal deformability
to extract the radius of a neutron star in a merger. For each equation of state and each
matching presented above, we present in Fig. 3.22 the relation between Λ̃ and R(M1) for
M1 = 1.36 M⊙ (indicated by the smallest dot in the figure) and M1 = 1.6 M⊙ (indicated by
the larger dot in the figure) for a chirp mass of 1.188 M⊙. The relation obtained by Raithel
et al. [2018] as a fit from a sample of six equations of state in the form of polytropic fits based
on non-unified constructions is represented with a black line. Similarly, we presented in blue
the contour established from the approximate relation presented in Raithel and Özel [2019].
The influence of the core-crust matching is non-negligible for our three equations of state,
and increases strongly with the stiffness of the equation of state. Hence the use of consistent
microscopic parameters is required to assess the dependence of Λ̃ on the R(M1). The fits
between Λ̃ and R(M1) obtained in Raithel et al. [2018], Raithel and Özel [2019] appear to
strongly depend on the equation of state matching, and to be only marginally consistent
with the results obtained when a unified equation of state is employed.

We finish this section with an analysis using the crusts of accreting neutron stars, to
better understand the extent of the impact of non-unified equations of state on our under-
standing of dense matter. The crust of accreting neutron stars are fundamentally different
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from those of an isolated neutron star, for details see chapter 5; to design an accreted crust
equation of state, the computation is completely different, a local equilibrium is used con-
trary to a global one for catalyzed matter, and the compositions are also different. In the
following, we assess if the error introduced by matching crusts of different nature is larger
than the one introduced by the non-unified constructions themselves.

We design the following constructions:

• NL3 and DD2 cores, glued to the DH crust,

• NL3 and DD2 cores, glued to the catalyzed crust equation of state of BSk21,

• NL3 and DD2 cores, glued to the accreted crust equation of state of BSk21.
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Figure 3.23: M, R, I and Λ for the matchings (left) and the relative differences with
respect to the unified EoS (right). Thin lines correspond to a matching between
the core and the crust of catalyzed or accreted matter at n0, and the thicker ones at
n0/2.

Results are not presented for BSR6, as they should lie in between the results of NL3
and DD2. Moreover, as we have shown that the least error is introduced by this matching,
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we use only the matching density nm = 0.08 fm−3, and nm = n0 as a reference. It can be
seen in Fig. 3.23, that the main contribution to the uncertainty originates from the choice
of the matching density, and very little from the nature of the crust equation of state. For
the stiffest core equation of state (NL3) matched at n0/2, the difference is at most of around
2.5% for the radius, ∼ 1% in the deformability and 0.5% in the moment of inertia while it
can reach 5%, 20%, and 7% for a matching at n0. The two models DH and BSk21 are based
on the Skyrme force and are quite similar in their values of the microscopic parameters
(see Table 3.3). Consequently they give very similar results for matchings of a catalyzed
crust. The case of the matchings to an accreted crust is different because the density jumps
inherent to accreted matter equations of state directly relate to an increase of the radius (see
Eq. (3.56)). This is why matching a catalyzed core to an accreted crust gives larger relative
differences compared with the unified equation of state. In the end, the choice of the core-
crust transition density influences the results in larger differences with respect to the unified
equation of state, than the use of a catalyzed or an accreted crust, which have fundamental
difference in properties, composition and nature.

One disappointing comment can be made about the potential observational distinction
between a catalyzed and accreted crust: the differences for a matching that introduces the
least error in the unified sense, are so small that we are still a long way from distinguishing
the crust nature with radius measurements.

We conclude that using non-unified equations of state results in artificial errors on
macroscopic parameters which are non negligible in the face of next generation telescopes. If
one wants to explore high density matter with neutron star observations, the artificial errors
introduced by non-unified models can mislead into the acceptance or exclusion of the in-
vestigated nuclear model. Particularly, if the core-crust matching is performed with no care
for thermodynamic consistency, it can lead to nonphysical jumps in the chemical potential.
Gluing core and crust at values of the density 0.08 or 0.1 fm−3 leads to the smallest errors,
but a more accurate study of the crust and the core microscopic properties at the matching
density is required to establish non-unified equation of state constructions resulting in the
least error possible. Overall, a large number of equations of state have been calculated in
the last few years, and should be systematically used in simulations of neutron stars.

3.4.3 Role of non-unified constructions in quasi-universal relations

Even though observations have a crucial part to play in the investigation of dense mat-
ter, it is possible to extract some macroscopic parameters from so-called universal relations,
also referred to as quasi-universal relations. Those relations are established between macro-
scopic parameters of neutron stars which weakly depend on the equation of state. Quasi-
universal relations can be extremely powerful to predict one macroscopic parameter from
the measurement of an another one: for example, a truly universal relation between the mo-
ment of inertia, and the compactness would provide insight into the moment of inertia of
neutron stars, parameter that has yet to be measured.
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The story of quasi-universal relations starts with Yagi and Yunes [2013], in which the au-
thors establish the famous I-Love-Q (moment of inertia, tidal deformability and quadrupole
moment) relations. In this paper, two finite temperature equations of state LS220 [Lattimer
et al., 1991] and Shen [Shen et al., 2011], as well as APR Akmal et al. [1998], SLy, and a few
polytropes, are used. Macroscopic parameters are modelled from those equations of state
for a non-rotating neutron star, and the relations between some parameters is fitted using a
logarithmic scale polynomial expression. Many other relations for different configurations
(rotation and temperature) of neutron stars, and parameters (oscillations, frequencies, high
order Love numbers etc.), were derived or discussed, for example in Maselli et al. [2013],
Steiner et al. [2016], Breu and Rezzolla [2016], Yagi and Yunes [2017], Zhao and Lattimer
[2018], Wei et al. [2019], Raduta et al. [2020], Khadkikar et al. [2021].

The physical meaning of this quasi-universality has been attributed to two main rea-
sons. The first is the moderately low density dependence of some of those relations, as is
discussed in Yagi et al. [2014] and reference therein: the authors investigate the relation be-
tween the quadrupole moment and the moment of inertia, and found that the universality
of this relation was mostly attributed to the outer core part of the equations of state. How-
ever, it is important to note that the set of equations of state used for this analysis was based
on non-unified equations of state with a DH crust for all equations of state of the set, and a
technique of matching core and crust which does not respect the core-crust transition value
(see next section for details about piecewise polytropic fits). The second main idea behind
this universality is a sort of extension of the no-hair theorem. This theorem states that in
general relativity all properties of a black hole depend solely on its mass, angular momen-
tum and electric charge7. This argument is discussed in length in Yagi et al. [2014], Sham
et al. [2015]: the authors explore the analytical meaning of an extrapolated no-hair theorem
in general relativity. They suggest that this quasi-universality arises from a symmetry ac-
quired when equations of state parameters are tuned out; that is the case when one follows
the path of increasing compactness, from main sequence stars, to relativistic stars, to black
holes for which universality perfectly holds as per the no-hair theorem.

Quasi-universal relations have been established by fitting the modelled macroscopic pa-
rameters calculated from existing equations of state which are non-unified. In the following,
the universality of the relations is not put into question, but we assess the role of a set of non-
unified equations of state on the precision of fits proposed by Maselli et al. [2013], Breu and
Rezzolla [2016], Yagi and Yunes [2017], Zhao and Lattimer [2018], Godzieba et al. [2021]. We
use the same approach as in the previous section, however, we focus on the matchings at
densities n0, n0/2 = 0.08 fm−3 and 0.1 fm−3 (except for the study of Godzieba et al. [2021]),
as the former is used as a reference, and the other two result in the smallest uncertainties of
all the matchings discussed previously. Again, we use the NL3, BSR6 and DD2 relativistic
mean field models.

7This theorem does not necessarily hold in modified gravity, in which black holes can be hairy.
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The quasi-universal relation for the different fits we want to explore are based on differ-
ent sets of equations of state. In this section, we use the following:

• The fits presented in Maselli et al. [2013] (later on referred to as Maselli et al.), which are
based on three purely nucleonic equations of state taken from non-unified piecewise
polytropic fits presented in Read et al. [2009] (for details, see section 3.5) and consistent
with the maximum mass criterion.

• The fits presented in Yagi and Yunes [2017] (later on referred to as Yagi & Yunes),
which are based on a the set of thirty non-unified equations of state presented in Read
et al. [2009], some of which are inconsistent with the maximum mass criterion.

• The fits presented in Breu and Rezzolla [2016] (later on referred to as Breu & Rezzolla),
which are based on 28 equations of state all consistent with the maximum mass crite-
rion, most of which are non-unified.

• The fits presented in Zhao and Lattimer [2018] (later on referred to as Zhao & Lat-
timer), which are consistent with the maximum mass criterion and are based on non-
unified piecewise polytropic fits for which the crust is fixed, and the parameters of the
core are varied to obtain a large set of equations of state.

• The fits presented in Godzieba et al. [2021] (later on referred to as Godzieba et al.),
which are consistent with the maximum mass criterion, and are based on non-unified
piecewise polytropic fits for which the crust is fixed, and the parameters of the core
are varied to obtain a large set of equations of state. The matching density ranges from
0.15 n0 to 1.2 n0.

We investigate four quasi-universal relations

Cfit =
N=2,6

∑
k=0

ak(ln Λ)k , (3.58)

ln Ifit =
4

∑
k=0

bk ln(Λ)k with I = I
c4

G2M3 , (3.59)

Ifit =
4

∑
k=1

ckC−k , (3.60)

Ĩfit =
4

∑
k=0

dkCk/2 with Ĩ = IC2 , (3.61)

with ak, bk, ck and dk the parameters of the fits. Values for the parameters of the fit, as well
as the reported relative errors between the modelling of macroscopic parameters from the
set of equation of state and the fit, are presented in Table 3.4.
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Table 3.4: Fits parameters of quasi-universal relations presented in this
manuscript.

Relation Fit Parameters of the fit Reported fit error

C − Λ

Maselli et al
a0 = 0.371

≤ 2%a1 = 0.0391
a2 = 0.001056

Yagi & Yunes
a0 = 0.360

≤ 6.5%a1 = −0.0355
a2 = 0.000705

Godzieba et al.

a0 = 0.3388

Improvement on Yagi & Yunes

a1 = −2.3 × 10−2

a2 = −4.651 × 10−4

a3 = −2.636 × 10−4

a4 = 5.424 × 10−5

a5 = −3.188 × 10−6

a6 = 6.181 × 10−8

I − Λ

Maselli et al

b0 = 1.95

≤ 5%
b1 = −0.373
b2 = 0.155

b3 = −0.0175
b4 = 0.000775

Yagi & Yunes

b0 = 1.496

≤ 1%
b1 = 0.05951
b2 = 0.02238

b3 = −6.953 × 10−4

b4 = 8.345 × 10−6

I − C

Yagi & Yunes
c1 = 1.317

≤ 9%
c2 = −0.05043
c3 = 0.04806

c4 = −0.002692

Breu & Rezzolla

c1 = 0.8134

≤ 3%
c2 = 0.2101

c3 = 0.003175
c4 = −0.0002717

Ĩ − C

Zhao & Lattimer

d0 = 0.01
d1 = 1.2

d2 = −0.1839
d3 = −3.735
d4 = 5.278

Breu & Rezzolla

d0 = 0.244

≤ 6%
d1 = d3 = 0
d2 = 0.638
d4 = 3.202
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3.4.3.1 Universal relation C − Λ
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Figure 3.24: Relations between Λ and M in the top panel, and relative error be-
tween the Maselli et al. (solid lines) and the Yagi and Yunes (dotted lines) C − Λ
fits with respect to exact calculations.

Let us start by analyzing the fits presented by Yagi & Yunes and Maselli et al. for the
relation

Cfit =
2

∑
k=0

ak(ln Λ)k . (3.62)

We compute the relation C(Λ) from the fits, and compare them to unified NL3 (stiffest core
model), BSR6, and DD2 (softest core model), as well as non-unified construction of NL3,
BSR6 and DD2 with a DH crust, for masses ranging from 1.0 M⊙ to the maximum mass
configuration; results for NL3 and DD2 are presented in Fig. 3.24. To confront results to
reported errors of the fits, we present the maximum relative error between the fit and the
NL3, BSR6, and DD2 constructions in Table 3.5.
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Table 3.5: Maximum relative difference in % between the values obtained using
the relation C −Λ established from fits of Yagi & Yunes, Maselli et al., and Gozieba
et al., as well as equation of state constructions for NL3, BSR6 and DD2. We con-
sider unified equations of state (column "uni.") and three matched constructions to
the crust of DH at different densities: n0, n0/2 and 0.1 fm−3. Numbers in paren-
theses correspond to the neutron star mass at which the relative difference is the
largest. Numbers in bold correspond to the highest relative error of the fit.

C − Λ uni. n0 n0/2 0.1fm−3

EoS Maselli et al.

NL3 3.65 (1.02) 3.05 (1.01) 5.53 (1.01) 4.74 (1.00)
BSR6 5.57 (1.00) 4.35 (1.00) 6.38 (1.01) 5.77 (1.01)
DD2 4.45 (1.00) 4.54 (1.01) 5.46 (1.00) 5.14 (1.01)

Yagi & Yunes

NL3 2.94 (1.01) 2.74 (1.01) 1.85 (1.44) 1.78 (1.00)
BSR6 2.12 (1.33) 0.92 (1.35) 2.71 (1.30) 2.20 (1.31)
DD2 1.11 (2.22) 1.17 (2.21) 1.72 (1.23) 1.52 (1.23)

EoS uni. 0.15n0 1.2n0 0.1fm−3

Godzieba et al.

NL3 2.37 (1.54) 7.14 (1.01) 2.90 (2.77) 2.88 (1.40)
BSR6 3.77 (1.21) 6.85 (1.00) 2.28 (1.01) 3.98 (1.01)
DD2 2.78 (1.00) 4.84 (1.01) 2.70 (1.01) 3.53 (1.01)

Overall the Yagi & Yunes fit gives a smaller relative error (∼ 3% at most) than the Maselli
et al. fit (up to ∼ 6%). The maximum difference is larger for the Maselli et al. fit than for
the Yagi & Yunes one for stars with masses ≤ 2 M⊙ while the situation is opposite for larger
masses. Table 3.5 shows that the use of non-unified constructions matched at n0 = 0.08 fm−3

or 0.1 fm−3 gives rise to an uncertainty which is smaller than the reported precision of the
Yagi and Yunes fit, but larger by up to a factor ∼ 3 for the Maselli et al. fit. Actually, for the
latter fit, the relative difference in the compactness when using a unified equation of state
is about two times larger than the reported precision. Hence, using three equations of state
covering a large range of stiffness, we conclude that results obtained with the Yagi & Yunes
fit are not affected by the treatment of the low-density part of the equation of state and the
matching, while the Maselli et al. fit is.

We now go on to study the fit of Godzieba et al., given by

Cfit =
6

∑
k=0

ak(ln Λ)k , (3.63)

thus extending the polynomial to the sixth order, compared to the second order in the pre-
vious fits. In Godzieba et al. [2021], authors proposed a revision of quasi-universal relations
for multipole Love numbers based on the fit of piecewise polytropic equations of state. Be-
low approximately the saturation density, the equation of state is that of DH approximated
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by one polytrope, whereas, in the core, three polytropes are used. Around two million equa-
tions of state are created by changing the parameters of the core: they follow basic rules of
causality, maximum mass constraint around 2 M⊙, and GW170817 measurement of the tidal
deformability. This construction is not unified; however, authors use a method that adapts
the matching density between [0.15-1.2] n0 at the junction of DH and their polytropic cores.
Universal relations are established for dimensionless tidal deformability Λ of order two,
three and four with the compactness, but we focus on the relation C − Λ2 which relates
the compactness and the tidal deformability as measurable by gravitational wave detectors
now.
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Figure 3.25: Relations between Λ and M in the top panel, and relative error be-
tween the Maselli et al. (solid lines) and the Yagi and Yunes (dotted lines) C − Λ
fits with respect to exact calculations.

We test this fit with respect to unified equations of state and non-unified constructions
of NL3 and DD2, and present results in Fig. 3.25. In Table 3.5, we present the maximum
relative difference between the fit and NL3, BSR6 and DD2 for the unified constructions, as
well as matching at densities 0.15 n0, 1.2 n0 (boundary values of the matching technique),
and 0.1 fm−3.

It is evident from Fig. 3.25 that the universality of the relations stands with respect to the
unified equations of state. In Godzieba et al. [2021], the authors emphasize that their fit is an
improvement on the Yagi & Yunes one based on their collection of two million non-unified
polytropic equations of state; however, when compared with tables of unified equations of
state, the maximum relative difference is generally larger for Godzieba et al. (3.77%) than
for Yagi & Yunes (2.94 %).
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In overview, Yagi & Yunes fit performs the best out of the three fits. This fit falls within
its reported precision when compared with unified, as well as non-unified constructions, for
soft and stiff equations of state.

3.4.3.2 Universal relation Λ − I

Fits from Maselli et al. and Yagi & Yunes are provided for the relation between the mo-
ment of inertia and the dimensionless tidal deformability presented in Eq. (3.59). Similarly
to the previous section, results are presented in Table 3.6.

Table 3.6: Maximum relative difference in % between the values obtained using
the relation Λ − I established from fits of Yagi & Yunes and Maselli et al., and
constructions for NL3, BSR6 and DD2. Numbers in bold correspond to the highest
relative error of the fit.

Λ − I uni. n0 n0/2 0.1 fm−3

EoS Maselli et al.

NL3 7.18 (1.01) 5.13 (1.01) 7.30 (1.01) 7.23 (1.00)
BSR6 4.49 (2.26) 4.56 (2.26) 4.47 (2.26) 4.49 (2.26)
DD2 4.55 (2.24) 4.55 (2.23) 4.53 (2.24) 4.53 (2.24)

Yagi and Yunes

NL3 0.28 (2.67) 0.38 (2.61) 0.26 (2.66) 0.27 (2.67)
BSR6 0.17 (2.32) 0.24 (2.29) 0.16 (2.33) 0.17 (2.32)
DD2 0.23 (2.30) 0.23 (2.30) 0.21 (2.30) 0.22 (2.30)

The relative differences between the fits and the exact calculations are similar for the
three matched equations of state, and the unified one. The Yagi & Yunes fit gives rise to a
maximum relative difference of at most 0.4%, well within the reported precision of the fit.
However, for the Maselli et al. fit, the relative difference reaches up to 7% for the stiffest EoS
and up to 4.5% for the softer ones. The unified equations of state and the three matched ones
give similar values of the difference between the fits and the exact calculations. Overall, the
Yagi & Yunes fit performs much better than the Maselli et al. fit.

3.4.3.3 Universal relation I − C

Fits from Breu & Rezzolla and Yagi & Yunes are provided for the relation between the
moment of inertia and the compactness presented in Eq. (3.60). Other fits from Breu & Rez-
zolla and Zhao & Lattimer related to Eq. (3.61) have been established. Results are presented
in Table 3.7.
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Table 3.7: Maximum relative difference in % between the values obtained using
the relation I − C established from fits of Brey & Rezzolla and Yagi & Yunes, and
constructions for NL3, BSR6 and DD2. Numbers in bold correspond to the highest
relative error of the fit.

EoS uni. n0 n0/2 0.1 fm−3

I − C

Breu & Rezzolla
NL3 3.98 (2.77) 5.06 (2.77) 3.52 (2.77) 3.83 (2.77)
BSR6 1.66 (1.00) 2.35 (2.40) 3.14 (1.01) 2.04 (1.01)
DD2 2.81 (2.40) 2.89 (2.40) 2.46 (2.41) 2.56 (2.41)

Yagi & Yunes
NL3 3.04 (2.51) 3.03 (2.11) 3.38(2.51) 3.14 (2.51)
BSR6 3.15 (1.17) 1.00 (1.14) 4.35(1.14) 3.40 (1.14)
DD2 2.06 (2.32) 2.00 (2.32) 2.92(1.06) 2.55 (1.06)

Ĩ − C

Breu & Rezzolla
NL3 4.44 (2.60) 5.90 (2.37) 5.33 (1.01) 4.23 (2.63)
BSR6 4.60 (1.00) 3.66 (2.14) 6.00 (1.01) 4.85 (1.01)
DD2 4.01 (2.14) 4.11 (2.12) 4.04 (1.00) 3.64 (2.19)

Zhao & Lattimer
NL3 2.90 (2.51) 3.16 (2.40) 4.64 (1.01) 3.23 (1.00)
BSR6 4.58 (1.00) 2.36 (1.00) 6.01(1.01) 4.93 (1.01)
DD2 2.69 (1.00) 2.82 (1.01) 4.44(1.00) 3.91 (1.01)

Interestingly, the four fits, whether for Ĩ or I, have a similar precision of 5% − 6% as
shown in Table 3.7, with very little dependence on the core-crust transition density. The
two fits obtained by Breu & Rezzolla appear to be more accurate (i.e., give a smaller relative
error) than the two other ones for low-mass stars M ≤ 1.2 − 1.3 M⊙.

All in all similar uncertainties are obtained whether one employs the unified construc-
tions, or one matched with the crust at n0/2, n0 or 0.1 fm−3. The precision of the Yagi &
Yunes fits between Λ and C, and Λ and I is not affected by the treatment of the core-crust
transition. The precision of the fits of Maselli et al., however, appears to be overestimated,
in particular the precision of the Λ − C fit, and turns out to be strongly affected by the
matching. The reported improvement of Godzieba et al. does not hold when compared to
unified equations of state. Finally, all fits between C and I are not affected by the core-crust
matching for a precision of ∼ 6%.

Quasi-universal relations can be quite useful to extract one macroscopic parameter from
the measurement of another. However, differences in the fit parametrization appear when
the set of equations of state it is based on is not the same. It is also important that the
construction of the equation of state be unified, otherwise, a systematic bias is introduced
in the fit, and therefore in simulations that use such fits. With current gravitational wave
observatories, the systematic errors on the estimation of parameters using quasi-universal
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relations are smaller than the statistical uncertainties. Nevertheless, for future and more
precise detectors, more accurate relations will be needed [Baiotti, 2019].

Overall, non-unified constructions of equations of state, for which the core and the crust
are not calculated using the same nuclear model, result in artificial errors on macroscopic
parameter modelling. Those constructions can mislead into accepting or rejecting a nuclear
model on the basis of modelling errors on the mass, the radius, the tidal deformability or the
moment of inertia. In the prospects of the next generation of detectors, using unified equa-
tions of state to model neutron star’s observable will be critical for an accurate exploration
of ultra dense matter properties.
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3.5 Analytical representations of modern and unified equations of
state

The standard output format for computations of cold matter equations of state is a three
column table with the baryonic density n, the energy density ϵ, and the pressure P. How-
ever, an analytical representation of tabulated equations of state is convenient, particularly
for simulations. To establish analytical representations of equations of state, one chooses
a parametrized expression, and then adjusts parameters to the tabulated equation of state.
Having one expression with easily comparable parameters is also a practical way to com-
pare microscopic and macroscopic features of neutron stars.

In this section, the non-unified piecewise polytropic fits presented in Read et al. [2009]
are analyzed, and their accuracy when compared to unified equations of state is studied. We
revise this parametrization using the models for dense matter presented in this manuscript;
this section discusses results presented in Suleiman et al. [2022a].

3.5.1 Piecewise polytropic fits

The relation between the pressure P and the mass density ρ8, can be described by a
polytrope by using two parameters, the polytropic constant κ and the adiabatic index Γ,
such that

P = κρΓ . (3.64)

Such a crude approximation of the equation of state is well suited for the outer crust of neu-
tron stars, for which the equation of state is dominated by the pressure of ultra-relativistic
electrons, with Γ = 4/3. However, in order to represent analytically all density ranges of
the neutron star interior, it is necessary to use several polytropes. The equation of state is
divided in N parts, each of which is represented by a polytrope with fixed κ, Γ, and transi-
tion density ρt: that is what is referred to as piecewise polytropes. A practical fit contains a
restricted number of polytropes in order for the parametrisation to be convenient. Piecewise
polytropic fits presented in Read et al. [2009] (later on referred to as PPFRead9) are based on
N = 7 polytropes with four in the crust and three in the core.

The number of parameters required to express an equation of state with N polytropes
is not 3 × N − 1 with N Γs, N κs and N − 1 transition densities ρt[i→i+1] that defines parts of
the equation of state by which the polytrope i is fitted (with i ∈ [1, N]). Indeed, the pressure
continuity which renders

κiρ
Γi
t = κi+1ρ

Γi+1
t , (3.65)

reduces the number of parameters to 2 × N with N adiabatic indices, N − 1 transition den-
sities, and only one polytropic constant: at ρt[i→i+1], κi+1 is calculated from Γi, κi, and Γi+1.

8The mass density is directly connected to the baryonic density n via the baryon mass mB = 939 MeV/c2

(ρ = n mB). Note that the notation ρ can be found in the literature designating the energy density.
9PPFRead are the most widely used analytical representations in neutron star simulations.
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To reconstruct the energy density ϵ from the polytrope expression, the first law of ther-
modynamics in the zero temperature limit is used

d
(

ϵ

ρ

)
= −Pd

(
1
ρ

)
. (3.66)

Integrating Eq. (3.66) with the help of Eq. (3.64) gives an expression for the energy density
that depends on the adiabatic index, and polytropic constant

ϵ(ρ) = (1 + ai)ρ +
κi

Γi − 1
ρΓi , (3.67)

with ai an constant determined at the transition between polytropes and given by the ex-
pression

ai = ai−1 +
κi−1ρ

Γi−1
t

Γi−1ρt
− κiρ

Γi
t

(Γi − 1)ρt
. (3.68)

The value of a0 is a physical requirement: given the non-relativistic nature of the compo-
nents close to the surface, the mass density and energy density follow the requirement that
ϵ = ϵ0 = ρc2 at P = 0.

There exists other analytical representations, for example the spectral representation
presented in Lindblom [2018]. It is important to note that piecewise polytropic fits have a
conceptual flaw: the fact that the equation of state is cut in pieces implies the non-derivability
of certain quantities: for example, simulations requiring the sound speed to be continuously
defined cannot use piecewise polytropic fits without having to treat jumps by hand. Spec-
tral representations are established as a polynomial of high order, fitting the whole density
range of the equation of state, and therefore do not have such issues.

3.5.2 PPFRead vs. unified equations of state

We have shown earlier in this chapter, that non-unified constructions can lead to non-
negligible errors in the modeling of macroscopic parameters. The analytical representation
of PPFRead is based on the following construction

• the high density part of the equation of state is fitted by three polytropes,

• the low density part of the equation of state is fitted by four polytropes based on the
DH equation of state;

• the point at which the high density and the low-density polytropes are matched is
adapted to ensure a minimal fit error on the whole non-unified construction;

• the last polytrope of DH is prolonged or shortened to ensure that it crosses the first
polytrope of the high-density part.

In order to assess the role of non-unified constructions on the accuracy of PPFRead,
we focus on three equations of state of the set presented in this manuscript, which are in
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common with the set of equations of state presented in Read et al. [2009]: nucleonic DH,
and hyperonic H3 and H4. We investigate the following constructions:

• the unified equation of state H3 and H4,

• the unified equation of state DH,

• PPFRead for H3, H4 and DH.

We present the relation between pressure and mass density in Fig. 3.26; results are only
presented for H3, because the difference between H3 and H4 lies in the hyperonic meson
couplings, which are relevant only at higher densities than the region of interest.
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Figure 3.26: Relation between the pressure P and the mass density ρ for unified
equation of state H3 compared with PPFRead of H3. Transition between poly-
tropes of PPFRead are presented with blue points. A zoom is made at the transi-
tion between the DH polytropes and the H3 core polytropes.

In Fig. 3.26, the lowest-density parts, i.e. for ρ < 1011.6 g/cm3, overlap for all construc-
tions. This corresponds mostly to the outer crust which is calibrated to experimental data,
therefore, it is similar for all models used. Over 1011.6 g/cm3, DH and unified H3 are differ-
ent. The zoom in the figure highlights the matching area: for H3, the matching density is
ρH3

m = 7.9477 × 1013 g/cm3; for H4, ρH4
m = 8.8774 × 1013 g/cm3. In between the last point of

convergence for all constructions, and the matching of DH and H3 PPFRead, the curves are
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different which attests to the limit of laboratory measurement calibrations of the low density
part of the equation of state. Although precautions are taken to avoid jumps in the pressure,
the differences between the sole DH crust and the core equations of state in PPFRead are not
negligible.

From the above mentioned constructions, the total mass, the total radius, the tidal de-
formability and the moment of inertia are calculated and presented in Fig. 3.27.
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Figure 3.27: Radius R, tidal deformability Λ, and moment of inertia I as a function
of the mass M for unified tables H3, H4, and DH, as well as PPFRead. In the right
panel, the relative difference between unified tables and PPFRead for each macro-
scopic parameter in the three cases of equation of state is presented as a function of
the total mass. For equations of state H3 and H4, the relative uncertainty is shown
up to 98% of the maximum mass in plain lines, and the last two percent in dotted
lines, see text for details.

DH PPFRead is constructed from DH equation of state at low density, and DH equation
of state at high density, it is therefore unified: the red line in the right panel of Fig. 3.27
shows that it coincides with the tabulated unified equation of state of DH. From this, we can
conclude that the fit method itself is powerful. For PPFRead H3 and H4, the low density
polytropes of DH are matched to the high density polytropes of H3 and H4 at ρH3

m and ρH4
m

respectively. Therefore, the whole fit is not unified and differs from our unified tables, as
is shown for green and blue lines in Fig. 3.27. This indicates that using non-unified tabu-
lated equations of state for piecewise polytropic fits induces an artificial error on the macro-
scopic parameters. In this figure, the relative error is presented as a function of the total
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mass. The large increase of the relative error close to the maximum mass is a consequence
of choosing the mass as an independent variable (see discussion on the central pressure in
section 3.3.1.2). Close to the maximum mass point, the error increases significantly even
for a small difference between the values of the maximum mass for the original and fitted
equation of state. This effect is absent for the dependence of the error as a function of central
density or pressure. For that reason, the relative error are presented in dotted lines from
98% of the total mass .

From Fig. 3.27, the uncertainty related to the tidal deformability leads to two interesting
points. On the one hand, despite the largest relative error being that of the tidal deformabil-
ity, in the left panels of Fig. 3.27 the accuracy looks very similar for all three quantities. This
is due to the fact that Λ is plotted on a logarithmic scale, because it spans over two orders
of magnitude in the interesting range of masses. As a consequence, the relative change of Λ
by 15% corresponds to 2% in mass and such error bars would be of a similar size in Fig. 3.27
(left panel). On the other hand, one can notice that the sign of the relative difference in ra-
dius and that in tidal deformability are not the same. However, Λ is calculated according
to the relation Λ = 2

3 k2C−5 [De et al., 2018, Malik et al., 2018], with k2 being the tidal Love
number. The dimensionless deformability is proportional to k2R5, therefore an increase in
radius should correspond to an increase in the tidal deformability. The sign difference in
the relative uncertainty of the two quantities in Fig. 3.27 can be explained by the large error
of PPFRead with respect to the unified equation of state on the Love number function k2.
It is particularly large for low mass stars, such that it dominates the R5 factor. For higher
mass stars, the uncertainty on k2 is smaller and the scale of R5 dominates. This large k2 error
can be understood as the strong effect of the crust matching on this quantity. Indeed, the fit
from H3 unified tables in which the crust is treated correctly with the core -as is presented
in details in the next section- gives a relative error on k2 which is at most 3% (for a 1.5 M⊙)
whereas PPFRead give a relative error on k2 of at most 50% (for a 1.0 M⊙).

We can conclude that, although the piecewise polytrope fitting method with seven poly-
tropes is accurate, the use of non-unified equations of state introduces errors which are not
negligible.

3.5.3 Revising piecewise polytropic fits from modern and unified equations of
state

In Read et al. [2009], 34 non-unified equations of state are fitted, and twenty of them
do not follow the maximum mass criterion. In the following, we present parameters for the
unified nuclear models presented in section 3.1.

Our fitting method differs from that of PPFRead. An adaptive nonlinear least squares
method is used to calculate the Npoly − 1 transition densities ρt, with the number of poly-
tropes Npoly = 7. They are adapted such that the fit error is minimized for the entire unified
equation of state (core and crust). For each unified table, we create a distribution for the
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number of density points ρ different from the original tabulated equation of state. Our dis-
tribution of points allows us to give more importance to the accuracy of the fit in some parts
of the star than others. We use a total of 1500 points, allocating 1/5 of the points in the
crust and 4/5 of the points in the core, because it resulted in better fits of the full table. In
each region, we distribute these points uniformly on a logarithmic scale. The fragment of
the unified tables with the largest densities is not used because the density goes beyond the
central density at maximum mass. We eliminate this highest density part by calculating the
maximum mass of the star from the unified table, and only interpolate the equation of state
up to nmax, thus increasing the fit accuracy for astrophysical quantities.

The core-crust transition density has a particular influence on the success of our fit
method. This area is particularly sensitive to changes in the polytropic parameters and in
turn, the points could be miss-allocated. Therefore, we chose to test values of the core-crust
transition densities from n = 0.06 to n = 0.14 fm−3 for each fit.

The relation P(ρ) is interpolated by using a first-order spline method to establish the
pressure points from our distribution of density points. Each polytrope is fitted using a
nonlinear least squares method from Eq. (3.64); Γ and κ are determined for each polytrope.
Then, transition densities are recalculated from the polytropic parameters just fitted and the
whole process with these new transition densities starts over until the set of ρt stagnates.
Finally, the energy density ϵ is calculated from Eq. (3.67).

Some alternatives to this fit method have been explored. First, we have tested the num-
ber of piecewise polytropes of the approach: we have found that the accuracy for nucleonic
matter did not increase significantly beyond seven piecewise polytropes. However, the soft-
ening induced by hyperons or transitions to quark matter would require an additional poly-
trope in the core for the error to match that of nucleonic matter. But in an effort to provide
a method for all models, we have chosen to keep three polytropes in the core, noting that
the error on hyperonic and hybrid models is not so large that the fit cannot be considered
accurate with respect to observational precision. The number of points for the interpolation
were also tested for values between 200 and 10 000 points: we observed a plateau of accu-
racy for ∼1500 points. We have also tested an inverse fit method, starting the fit from high
density to low density which renders a similar accuracy on the equation of state fit.

The method described above is implemented to calculate the fit parameters which are
presented in Table 3.8 and Table 3.9.
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Table 3.8: Parameters of unified fits by seven polytropes of 15 nucleonic, seven hyperonic and five hybrid relativistic mean field equations
of state. The logarithm of the transition densities ρti between the polytropes is given in g/cm3. For each polytrope i, the adiabatic index Γi
is presented. Only the first constant κ0 is presented because all others can be calculated from pressure continuity.

EoS log10(κ0) Γ0 log10(ρt1) Γ1 log10(ρt2) Γ2 log10(ρt3) Γ3 log10(ρt4) Γ4 log10(ρt5) Γ5 log10(ρt6) Γ6

Nucleonic RMF EoS
BSR2 12.4812 1.6379 6.9304 1.3113 11.3669 0.8349 12.7363 1.3136 14.0413 3.2464 14.8162 2.8221 14.9832 2.3788
BSR6 12.4804 1.6381 6.9312 1.3109 11.4161 0.7053 12.8819 1.2421 13.5005 2.5053 14.4823 3.1753 14.9091 2.4855
DD2 12.4878 1.6369 6.9309 1.3114 11.3929 0.6260 12.3993 1.2833 13.7322 2.3253 14.3792 3.4041 14.8719 2.6026

DDHδ 12.4849 1.6372 6.9466 1.3092 11.4523 0.5441 12.1843 1.1022 14.1019 4.1828 14.5019 3.1328 14.8150 2.4599
DDME2 12.4955 1.6353 6.9470 1.3106 11.4015 0.6160 12.3748 1.2921 13.6025 2.0223 14.3561 3.5998 14.8460 2.6395

FSU2 12.5074 1.6330 6.9793 1.3076 11.4658 0.6605 12.7237 0.8687 13.5102 2.9854 14.1278 2.6376 14.9194 1.9831
FSU2H 12.4979 1.6349 6.9546 1.3097 11.4067 0.7657 12.4968 1.3578 14.2427 3.9780 14.6581 3.1615 14.8787 2.1387
FSU2R 12.4986 1.6347 6.9527 1.3103 11.3870 0.7898 12.4679 1.3331 14.2033 3.7040 14.6178 2.8757 14.8944 2.0137
GM1 12.4928 1.6356 6.9626 1.3082 11.4783 0.5103 12.2341 0.9431 13.6981 3.2095 14.3853 2.8973 14.9312 2.5144
NL3 12.4945 1.6355 6.9470 1.3103 11.4119 0.6234 12.3397 0.9161 13.5283 2.8788 14.5470 3.4771 14.8390 2.5896

NL3ωρ 12.4740 1.6396 6.8920 1.3155 11.2354 0.7958 12.8470 1.6250 14.2557 3.9080 14.7642 3.1231 14.9024 2.5096
TM1 12.4922 1.6360 6.9387 1.3113 11.3769 0.5885 12.2818 1.0673 13.6098 2.8867 14.2938 2.6964 14.8874 2.0656

TM1ωρ 12.4834 1.6377 6.9197 1.3125 11.3283 0.8353 13.0023 1.7447 14.2658 3.2911 14.7090 2.6657 14.9376 2.0072
TM2 12.4986 1.6347 6.9558 1.3096 11.4258 0.7248 12.7689 1.0601 13.5766 2.8071 14.8360 2.4069 14.9871 1.9881

TM2ωρ 12.4809 1.6382 6.9119 1.3133 11.3180 0.8364 13.0174 1.7590 14.2803 3.3754 14.7323 2.7264 14.9386 2.0438
Hyperonic RMF EoS

DD2 12.4849 1.6373 6.9355 1.3108 11.4036 0.6167 12.3954 1.2856 13.7387 2.3656 14.4082 3.4499 14.7460 2.1317
DDME2 12.4797 1.6383 6.9258 1.3112 11.3963 0.6274 12.4257 1.3473 13.7718 2.1575 14.3628 3.6315 14.7501 2.1179
FSU2H 12.4855 1.6371 6.9377 1.3105 11.3993 0.7711 12.4958 1.3600 14.2574 4.1927 14.5282 3.6776 14.7324 1.9163

H3 12.7365 1.5950 7.1558 1.3021 11.5194 0.4741 12.2298 0.9455 13.7026 3.2473 14.3214 2.9180 14.6654 1.9421
H4 12.7332 1.5958 7.1362 1.3035 11.5018 0.4987 12.2443 0.9454 13.7026 3.2456 14.3267 2.9158 14.7047 2.1990

NL3 12.4804 1.6382 6.9277 1.3111 11.4092 0.6241 12.3368 0.9139 13.5225 2.8704 14.5487 3.4335 14.6612 2.1934
NL3ωρ 12.4666 1.6409 6.8926 1.3141 11.3219 0.7170 12.5349 1.3253 13.5939 2.0372 14.3365 3.8767 14.7107 2.1491

Hybrid EoS
DD2-B15-40-20 12.8916 1.5682 7.3053 1.3013 11.4524 0.5827 12.3650 1.2772 13.7478 2.3416 14.3675 3.3902 14.8872 1.2831

NL3ωρ-B20-50-0 12.6482 1.6090 7.0411 1.3126 11.1942 0.8373 13.0106 1.7766 14.2898 3.7905 14.6848 2.1843 15.0271 1.4575
NL3ωρ-B28-75-0 12.6539 1.6079 7.0516 1.3122 11.1957 0.8375 13.0148 1.7533 14.2720 3.8022 14.7582 1.8590 15.0730 1.4889
NL3ωρ-B0-50-0 12.6539 1.6079 7.0516 1.3122 11.1957 0.8375 13.0158 1.7541 14.2723 3.8042 14.8040 0.0344 14.9109 2.1239

NL3ωρ-B0-50-50 12.6539 1.6079 7.0557 1.3113 11.2603 0.7904 12.8250 1.5964 14.1493 3.0321 14.4147 3.9648 14.7511 3.1637
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Table 3.9: Parameters of unified fits by seven polytropes of 24 nucleonic Skyrme and one ab initio equations of state. The logarithm of the
transition densities ρti between the polytropes is given in g/cm3. For each polytrope i, the adiabatic index Γi is presented. Only the first
constant κ0 is presented because all others can be calculated from pressure continuity.

EoS log10(κ0) Γ0 log10(ρt1) Γ1 log10(ρt2) Γ2 log10(ρt3) Γ3 log10(ρt4) Γ4 log10(ρt5) Γ5 log10(ρt6) Γ6

(Nucleonic) Skyrme EoS
BSk20 12.4732 1.6396 6.9219 1.3117 11.3469 0.7499 12.4636 1.3408 14.1522 2.8323 14.4311 3.2096 14.8995 3.0780
BSk21 12.4958 1.6357 6.9433 1.3107 11.3651 0.7452 12.3329 1.2571 14.1610 3.4841 14.6921 3.1032 14.9021 2.8012
BSk22 12.5847 1.6208 7.0094 1.3087 11.3556 0.7443 12.5103 1.3024 14.0180 3.1330 14.6885 2.9089 14.8925 2.7427
BSk23 12.5847 1.6208 7.0094 1.3087 11.3556 0.7443 12.5103 1.3024 14.0180 3.1330 14.6885 2.9089 14.8925 2.7427
BSk24 12.5798 1.6215 7.0054 1.3093 11.3762 0.7402 12.3322 1.2579 14.1588 3.4628 14.7075 3.0922 14.9230 2.7773
BSk25 12.5907 1.6197 7.0119 1.3090 11.3885 0.7444 12.2107 1.2034 14.2131 3.7548 14.6893 3.1507 14.9108 2.6403
BSk26 12.4353 1.6458 6.9024 1.3126 11.3405 0.7526 12.4679 1.3404 14.1348 2.7472 14.4199 3.2064 14.9161 3.0628

DH 12.7007 1.6021 7.0898 1.3030 11.5622 0.6165 12.4163 1.3397 14.0053 2.1052 14.2804 3.0053 14.9602 2.8605
KDE0v1 14.7161 1.3184 10.1496 1.2477 11.5395 0.6476 12.4235 1.3753 14.0090 2.4045 14.4262 2.8665 15.0278 2.7822

Rs 14.7794 1.3089 10.2552 1.2161 11.7133 0.5642 13.0311 0.3835 13.3745 1.4335 13.5407 3.1815 14.2645 2.6712
Sk255 14.7118 1.3176 10.1273 1.2456 11.5501 0.5897 12.5538 1.2295 13.5409 2.4784 14.4910 2.7236 15.1723 2.6880
Sk272 14.7050 1.3188 10.1052 1.2497 11.5150 0.6131 12.4888 1.2939 13.6393 2.4588 14.4272 2.8096 15.1060 2.7603

Ska 14.7299 1.3149 10.1492 1.2381 11.5816 0.5908 12.4222 1.1598 13.5067 2.0177 14.0436 2.8420 15.0849 2.7774
Skb 14.7293 1.3142 10.1099 1.2372 11.5344 0.7113 13.2162 0.3365 13.7754 4.0702 14.2652 3.0945 14.7695 2.8537
SkI2 14.7376 1.3144 10.1308 1.2373 11.5685 0.6265 13.4248 1.7804 13.6041 3.2146 14.3183 2.6160 15.0811 2.6441
SkI3 14.7239 1.3164 10.1258 1.2435 11.5830 0.5858 12.3665 1.1000 13.7485 2.9839 14.4126 2.8078 14.6677 2.6923
SkI4 14.7263 1.3167 10.1323 1.2426 11.5727 0.5761 12.3014 1.1311 13.9299 3.1012 14.6916 2.9305 14.9658 2.7467
SkI5 14.7427 1.3139 10.2018 1.2345 11.6527 0.4384 12.0220 0.6561 13.5518 3.3975 14.2875 2.5666 14.9267 2.6828
SkI6 14.7290 1.3163 10.1451 1.2418 11.5705 0.5986 12.3258 1.1753 13.9557 3.0843 14.7293 2.9186 14.9817 2.7458

SkMP 14.7605 1.3113 10.1929 1.2251 11.6484 0.5811 12.6209 1.0106 13.6166 2.7978 14.4767 2.7814 14.9768 2.7302
SkOp 14.7348 1.3160 10.1478 1.2410 11.5968 0.5485 12.4485 1.0966 13.3943 1.8574 13.9326 2.6883 15.1036 2.6213

SLy230a 14.7200 1.3174 10.1478 1.2437 11.5337 0.6262 12.2329 1.2824 14.1720 3.1458 14.8556 2.9664 15.0878 2.7300
SLy2 14.7218 1.3170 10.1456 1.2429 11.5318 0.6369 12.3351 1.3217 14.0238 2.4088 14.3263 2.9840 14.9738 2.8379
SLy9 14.7253 1.3165 10.1345 1.2418 11.5328 0.6416 12.3443 1.3051 13.9715 2.5671 14.2802 2.9772 14.9302 2.7763

ab initio EoS
BCPM 12.4703 1.6383 6.9467 1.3136 11.3401 0.7181 12.4647 1.3333 14.0080 2.7194 14.0053 2.9133 14.9915 2.6914
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Figure 3.28: Relative difference at as a function of
the mass M in percent between unified tables and
our fits for the radius ∆R/R, the tidal deforma-
bility ∆Λ/Λ and the moment of inertia ∆I/I for
equation of state H3 and H4. The relative differ-
ence between PPF Read and unified equations of
state H3 and H4 is presented in gray. For our fits,
the relative difference is presented up to 98% of
the maximum mass in plain lines, and the last two
percent in dotted lines, see text for details.

To assess the improvement of our
method with respect to PPFRead, we
present the relative error on H3 and H4 for
our fitting method, and that of PPFRead in
Fig. 3.28. The impact of using unified fits on
the relative difference for the radius is par-
ticularly important for low mass stars, be-
cause the crust is relatively more significant
for such objects. Overall, the relative differ-
ence for our fit is significantly smaller than
for PPFRead for all macroscopic parameters
considered. The relative inaccuracy of our
fits for stellar configurations with the same
central pressure is smaller in particular in
the region close to maximum mass and for
R, Λ and I are 0.1%, 1.8%, 1% respectively,
compared with 1%, 8.7%, and 2% for a fixed
mass M = 2 M⊙ for equation of state H4.

Our fitting method is intended to pro-
vide accurate modeling of macroscopic pa-
rameters of neutron stars. Therefore, quan-
tities M, R, I, and Λ are calculated from our
fitted equations of state, and compared with
that of unified tables. Results for macro-
scopic parameters of prime interest are pre-
sented in Table 3.10 and Table 3.11: we
present the maximum mass Mmax, density
at the maximum mass nmax, the radius at
1.0 M⊙ and 1.4 M⊙ respectively denoted R1.0 and R1.4, as well as the radius at maximum
mass Rmax, the moment of inertia at 1.338 M⊙ denoted I1.338 and at the maximum mass Imax,
and the tidal deformability at 1.4 M⊙ denoted Λ1.4 and at maximum mass Λmax. We provide
the relative errors ∆ on these quantities except those defined at the maximum mass. For the
latter, we include instead the relative error δ defined as the relative difference between the
quantities calculated at the maximum mass for the unified table, and at the maximum mass
for our fit. Indeed, because the maximum mass of the unified equation of state and our fit
are not exactly equal, ∆ at the maximum mass and δ are different. The largest errors are
presented in red in the tables.
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Table 3.10: Key macroscopic quantities calculated from the unified table of 15 nucleonic, seven hyperonic and five hybrid relativistic mean
field models, and the relative errors ∆ and δ in percent related to unified piecewise polytropic fit. The maximum mass (in solar mass)
Mmax, the density (in fm−3) at maximum mass nmax, the radius (in km) for a 1 M⊙ NS R1.0, the radius for a 1.4 M⊙ neutron star R1.4, the
radius at maximum mass RMmax , the moment of inertia (in 1045g.cm2) for a 1.338 M⊙ neuton star I1.338 as measured in the double pulsar PSR
J0737−3039, the moment of inertia at maximum mass IMmax , the tidal deformability for a 1.4 M⊙ neutron star Λ1.4, and the tidal deformability
at maximum mass ΛMmax are presented. In red, we indicate the equations of state that give the largest relative fit error in each category. The
maximum mass of equation of state H3 is indicated in blue, to emphasize that is not consistent with J1614− 2230 mass measurement; results
are shown only because this model is used for a comparison.

Mmax ∆ nmax δ R1.0 ∆ R1.4 ∆ RMmax δ I1.338 ∆ IMmax δ Λ1.4 ∆ ΛMmax δ

Nucleonic RMF equation of state
BSR2 2.383 -0.14 0.852 -0.25 13.30 -0.16 13.40 -0.19 11.96 -0.11 1.634 -0.28 3.149 -0.36 761.70 -1.00 6.72 0.45
BSR6 2.430 -0.21 0.827 0.00 13.77 0.12 13.73 0.06 12.13 -0.24 1.677 0.02 3.306 -0.77 836.16 0.01 6.28 -0.99
DD2 2.417 -0.20 0.851 0.63 12.99 0.22 13.16 -0.01 11.87 -0.47 1.593 -0.30 3.216 -1.14 697.89 -1.13 5.74 -3.81

DDHδ 2.138 -0.30 1.000 -0.00 12.40 -0.04 12.61 -0.04 11.14 -0.52 1.533 -0.37 2.376 -1.42 589.00 0.41 9.23 -2.72
DDME2 2.481 -0.24 0.817 -0.23 12.98 0.16 13.20 -0.07 12.06 -0.32 1.604 -0.41 3.456 -0.95 719.61 -1.56 5.39 -1.77

FSU2 2.071 -0.22 0.904 -0.00 14.18 -0.17 13.93 -0.16 12.08 -0.35 1.716 -0.10 2.441 -0.90 886.54 -0.56 20.11 -1.30
FSU2H 2.375 -0.25 0.802 -0.27 13.05 0.11 13.32 0.13 12.37 -0.23 1.638 0.17 3.306 -0.88 752.85 3.44 9.93 0.59
FSU2R 2.047 -0.30 0.943 -0.28 12.89 0.32 12.98 0.02 11.66 -0.30 1.552 -0.25 2.333 -1.16 608.63 1.61 18.35 0.03
GM1 2.361 -0.14 0.864 0.00 13.64 -0.08 13.72 -0.12 11.92 -0.20 1.729 -0.27 3.063 -0.52 922.33 -1.02 6.82 -0.82
NL3 2.773 -0.16 0.669 0.00 14.52 -0.32 14.61 -0.18 13.29 -0.23 1.898 -0.16 4.744 -0.57 1297.27 -0.48 4.71 -0.80

NL3ωρ 2.753 -0.08 0.688 0.00 13.42 -0.31 13.75 -0.26 13.00 -0.15 1.732 -0.13 4.612 -0.27 953.91 -0.62 4.47 -0.30
TM1 2.175 -0.17 0.856 0.00 14.36 0.17 14.24 -0.00 12.34 -0.26 1.798 -0.21 2.739 -0.80 1051.06 -0.73 16.70 -1.52

TM1ωρ 2.118 -0.36 0.908 -0.28 13.43 -0.37 13.41 -0.22 11.91 -0.34 1.607 -0.21 2.522 -1.08 712.90 -0.82 16.20 -0.01
TM2 2.270 -0.14 0.823 -0.00 14.44 -0.19 14.34 -0.12 12.50 -0.14 1.813 -0.22 3.010 -0.44 1087.63 -0.67 13.45 0.05

TM2ωρ 2.220 -0.34 0.869 0.00 13.43 -0.37 13.47 -0.24 12.08 -0.37 1.626 -0.32 2.803 -1.09 748.94 -0.98 12.99 -0.46
Hyperonic RMF equation of state

DD2 1.996 0.02 1.007 -1.48 12.99 0.37 13.15 0.15 11.38 0.72 1.592 -0.11 2.125 1.18 694.86 -0.50 17.14 6.50
DDME2 2.064 0.06 0.947 -1.20 12.98 -0.11 13.20 -0.15 11.65 0.45 1.604 -0.19 2.342 1.00 719.19 -0.66 16.70 4.76
FSU2H 1.991 -0.03 0.901 -0.99 13.05 0.02 13.32 -0.01 11.99 0.33 1.638 -0.14 2.310 0.60 752.79 2.57 27.96 5.22

H3 1.787 -0.54 0.993 -0.28 13.66 -0.04 13.61 0.04 11.75 -0.76 1.707 -0.03 1.839 -2.39 852.60 0.07 47.43 -3.58
H4 2.032 -0.38 0.964 -0.00 13.66 -0.06 13.72 -0.08 11.71 -0.53 1.730 -0.27 2.268 -1.57 920.95 -0.94 18.32 -2.48

NL3 2.232 0.02 0.737 0.00 14.52 -0.15 14.61 -0.10 12.90 0.34 1.898 -0.13 3.058 0.72 1297.07 -0.45 20.05 3.65
NL3ωρ 2.277 -0.08 0.751 0.00 13.42 0.50 13.75 0.23 12.69 0.23 1.732 -0.05 3.158 0.17 953.84 -0.34 16.87 2.30

Hybrid EoS
DD2-B15-40-20 2.153 0.04 0.771 -0.40 12.99 0.05 13.16 -0.14 12.65 0.02 1.593 -0.32 2.933 0.17 698.15 -1.35 28.25 0.13
NL3ωρB20-50-0 2.151 -0.29 0.812 -0.37 13.40 0.59 13.73 0.16 12.58 0.04 1.730 -0.32 2.836 -0.61 950.32 -1.54 24.32 1.39
NL3ωρ-B28-75-0 2.326 -0.23 0.729 -0.36 13.40 0.41 13.73 0.16 13.07 -0.02 1.730 0.09 3.450 -0.45 950.32 0.02 19.36 1.40
NL3ωρ-B0-50-0 2.241 -0.45 0.666 -0.23 13.40 0.41 13.73 0.17 13.44 -0.15 1.730 0.11 3.428 -1.10 950.28 0.09 34.19 1.32
NL3ωρ-B0-50-50 2.455 -0.17 0.443 0.00 13.40 -0.03 13.73 -0.07 13.96 -0.06 1.730 -0.10 4.297 -0.35 950.29 -0.45 25.97 0.79
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Table 3.11: Key macroscopic quantities calculated from the unified table of 24 Skyrme and one ab initio models, and the relative errors ∆ and
δ in percent related to unified piecewise polytropic fit. The maximum mass (in solar mass) Mmax, the density (in fm−3) at maximum mass
nmax, the radius (in km) for a 1 M⊙ NS R1.0, the radius for a 1.4 M⊙ neutron star R1.4, the radius at maximum mass RMmax , the moment of
inertia (in 1045g.cm2) for a 1.338 M⊙ neuton star I1.338 as measured in the double pulsar PSR J0737−3039, the moment of inertia at maximum
mass IMmax , the tidal deformability for a 1.4 M⊙ neutron star Λ1.4, and the tidal deformability at maximum mass ΛMmax are presented. In
red, we indicate the equations of state that give the largest relative fit error in each category.

Mmax ∆ nmax δ R1.0 ∆ R1.4 ∆ RMmax δ I1.338 ∆ IMmax δ Λ1.4 ∆ ΛMmax δ

(Nucleonic) Skyrme EoS
BSk20 2.164 0.04 1.126 0.52 11.76 0.00 11.74 -0.00 10.17 -0.25 1.308 -0.06 2.176 -0.26 328.30 -0.19 3.53 -3.18
BSk21 2.274 0.06 0.975 0.77 12.47 0.04 12.59 -0.02 11.04 -0.31 1.484 -0.06 2.622 -0.34 533.99 -0.34 4.90 -3.93
BSk22 2.265 -0.12 0.969 0.24 13.03 -0.08 13.05 -0.08 11.19 -0.19 1.564 -0.13 2.622 -0.47 642.77 -0.52 5.39 -0.92
BSk23 2.265 -0.12 0.969 0.24 13.03 -0.08 13.05 -0.08 11.19 -0.19 1.564 -0.13 2.622 -0.47 642.77 -0.52 5.39 -0.92
BSk24 2.279 -0.15 0.978 0.24 12.47 -0.06 12.59 -0.07 11.05 -0.23 1.483 -0.11 2.637 -0.61 532.32 -0.53 4.84 -1.21
BSk25 2.225 -0.17 0.998 0.46 12.22 0.02 12.39 -0.07 10.99 -0.34 1.454 -0.16 2.516 -0.84 495.04 -0.74 5.86 -2.33
BSk26 2.169 -0.09 1.124 0.36 11.79 -0.05 11.78 -0.06 10.20 -0.25 1.314 -0.17 2.191 -0.51 333.57 -0.59 3.53 -2.01

DH 2.049 -0.04 1.207 0.00 11.90 -0.06 11.73 -0.03 9.99 -0.12 1.287 -0.08 1.904 -0.25 304.98 -0.20 4.64 -1.01
KDE0v1 1.969 -0.13 1.279 0.18 11.90 -0.07 11.61 -0.13 9.79 -0.18 1.255 -0.25 1.714 -0.47 274.01 -1.01 5.21 -0.72

Rs 2.116 -0.12 1.074 0.15 13.05 -0.09 12.91 -0.09 10.75 -0.15 1.547 -0.15 2.186 -0.42 605.14 -0.51 6.46 -0.47
Sk255 2.144 -0.15 1.057 0.19 13.42 0.11 13.12 0.08 10.84 -0.11 1.542 -0.01 2.248 -0.48 593.99 1.11 5.93 0.29
Sk272 2.231 -0.15 0.997 0.21 13.51 0.22 13.29 0.15 11.08 -0.11 1.577 0.07 2.495 -0.50 657.16 0.26 5.24 -0.28
Ska 2.208 -0.09 1.025 0.18 13.01 -0.21 12.89 -0.13 10.88 -0.17 1.522 0.05 2.409 -0.34 569.18 1.65 5.05 0.02
Skb 2.188 -0.13 1.060 0.69 12.05 -0.03 12.19 0.07 10.60 -0.49 1.449 0.17 2.333 -0.95 481.85 0.67 4.86 -4.29
SkI2 2.162 -0.07 1.015 0.01 13.58 -0.08 13.46 -0.15 11.11 -0.06 1.662 -0.31 2.354 -0.19 786.60 -1.07 6.95 0.20
SkI3 2.239 -0.10 0.967 0.08 13.59 0.00 13.53 -0.02 11.30 -0.08 1.666 -0.12 2.574 -0.30 801.58 -0.44 6.14 -0.04
SkI4 2.169 -0.13 1.061 0.24 12.31 -0.00 12.35 -0.07 10.66 -0.21 1.447 -0.16 2.297 -0.55 463.67 2.77 5.22 0.19
SkI5 2.240 -0.08 0.953 -0.05 14.16 -0.04 14.05 -0.10 11.46 -0.01 1.793 -0.25 2.598 -0.15 1029.71 -0.83 6.62 0.74
SkI6 2.189 -0.12 1.044 0.14 12.44 -0.06 12.47 -0.07 10.75 -0.17 1.464 -0.13 2.359 -0.47 501.68 -0.57 5.22 -0.70

SkMP 2.107 -0.11 1.107 0.15 12.58 0.02 12.48 -0.05 10.52 -0.13 1.459 -0.20 2.123 -0.40 489.63 -0.72 5.69 -0.49
SkOp 1.972 -0.13 1.224 0.19 12.41 -0.13 12.11 -0.17 10.12 -0.20 1.360 -0.18 1.781 -0.47 371.34 -0.83 6.76 -0.53

SLy230a 2.099 -0.08 1.145 0.08 11.86 -0.21 11.81 -0.13 10.24 -0.16 1.319 -0.09 2.063 -0.33 338.00 -0.35 4.92 -0.63
SLy2 2.053 -0.11 1.197 0.26 11.91 -0.13 11.76 -0.14 10.04 -0.25 1.301 -0.23 1.924 -0.52 318.13 -0.82 4.77 -1.62
SLy9 2.156 -0.12 1.074 0.38 12.54 -0.11 12.45 -0.15 10.63 -0.30 1.431 -0.29 2.249 -0.63 446.12 2.13 5.13 -0.85

(Nucleonic) ab initio equation of state
BCPM 1.980 -0.09 1.241 -0.24 11.93 0.00 11.71 -0.08 9.96 -0.08 1.283 -0.21 1.773 -0.29 299.68 -0.76 5.97 -0.08



91 3.5. Analytical representations of modern and unified equations of state

With respect to nucleonic relativistic mean field models, errors associated with the fit
on Mmax, nmax, and quantities related to the radius are systematically below 1%. For astro-
physical quantities related to the moment of inertia, it stays below 1.5%, and for the tidal
deformability below 4%. For hyperonic relativistic mean field models equations of state
consistent with the maximum mass criterion (all but H3), the errors associated to the fit on
Mmax, nmax, and quantities related to the radius stay below 1.5%. Quantities related to the
moment of inertia stay below 2.5%, and for the tidal deformability below 7%. For hybrid
relativistic mean field models, the errors associated with the fit stays below 2% for all quan-
tities.

For Skyrme models, the error associated with the fit for Mmax, nmax, quantities related
to the radius and the moment of inertia are below 1%. Once again, the tidal deformability
does not fair as well, with an error up to 5%.

The maximum mass is the most accurately reproduced quantity, with an error below
0.5%. The tidal deformability is systematically the quantity with largest errors associated
with the fit. Generally, nucleonic models are more accurately reproduced by our fits than
hyperonic or hybrid ones. This is understandable because the number of polytropes chosen
in the core is fixed to three, and the presence of hyperons or a phase transition to deconfined
quarks in the core produces respectively an additional softening and drop of the adiabatic
index as a function of the baryonic density, see Fig. 3.2.

Overall, we have provided a revision of an analytical representation of β-equilibrated
and cold neutron star matter’s equation of state based on piecewise polytropes, for dozens
of modern and well constrained nuclear models. Our fits perform well beyond the expected
precision on the detection of the mass, the radius and the tidal deformability.
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4 Crust compression related
astrophysical phenomena

Neutron stars are subject to astrophysical phenomena leading to the compression of
their crust: accretion processes in binary systems, spinning down of a rapidly rotating star,
or the decay of the magnetic field in magnetars. The exothermic reactions triggered in the
crust by compression have an impact on the exhibited luminosity of the star. Therefore, X-
ray observations can help us explore the crust composition and properties. In this chapter,
we explore the compression of the neutron star crust beyond commonly used approxima-
tions.

This chapter treats mainly of accreting neutron stars, a brief introduction to the accretion
process in neutron star binaries is given in section 4.1. The exothermic reactions triggered
by the compression of the crust are presented, and calculated for a simple nuclear model of
a compressible liquid drop.

The fully accreted crust approach, which is the common approximation chosen to model
the accreting neutron star crust, is abandoned in section 4.2. The equation of state and com-
position of an originally catalyzed outer crust under compression is derived using a simple
nuclear model. Heat sources of a partially accreted crust are reconstructed and applications
for compressed crusts in magnetars and rotating neutron stars are briefly discussed. Results
in this section are the subject of the publication Suleiman et al. [2022b].

In section 4.3, the commonly used approach to the kinetics of electron captures in ac-
creting neutron stars is revised. The impact of the reaction rate on the heat release in the
shallowest shells of the crust is derived, and the role of layers of electron captures in the
heat release of accreting neutron stars is discussed.
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4.1 Accreting neutron stars

Binary systems involving a neutron star can host the process of accretion: matter from
the companion star, whether it is a low mass star or a high mass star, is transferred to the
neutron star surface. In this section, the accretion process operating on neutron stars is
briefly introduced, from the origin of this process in the binary, to the crash of accreted
matter on the surface of the neutron star’s crust. The heat sources triggered in the crust by
the accretion process are presented.

4.1.1 From the donor to the neutron star crust

Neutron stars, whether isolated or in a binary, emit in the electromagnetic band of X-ray.
The process of transferring matter from the companion star to the neutron star in accreting
binary systems also emits in X-ray. In a Low Mass X-ray Binary (LMXB), the companion is
either a main sequence star or a white dwarf with a mass typically under one solar mass;
it evolves into a donor once its Roche lobe has been filled, and transfers matter to a disk
orbiting the neutron star. A loss of angular momentum in the accretion disk triggers the
falling of material onto the neutron star envelope. In the case of a High Mass X-ray Binary
system (HMXB), the companion is a massive star (e.g. a red giant) which transfers matter
through stellar winds or a decretion disk. A stable accretion process in a double neutron star
binary is excluded because the Roche lobe of a neutron star is filled only at merger stages of
the binary system’s evolution.

The accretion process is a highly luminous phenomenon in the X-ray band, with values
of the exhibited luminosity up to 1039 erg/s for low mass X-ray binaries. This process is
intermittent, with short and luminous stages that can last from days to weeks, interspersed
by quiescence stages -absence of accretion- that can last from months to decades. A few
sources, such as KS 1731−260 [Rutledge et al., 2002], are referred to as quasi-persistent tran-
sients; they have been observed accreting for rather long periods, from years to decades
[Cackett et al., 2006]. Sources emit in the soft X-ray band, with the photon energy below
10 keV, and are referred to as Soft X-ray Transients (SXT). Their emission is observed in both
active accretion and quiescent stages, thus allowing for a study of the thermal evolution of
neutron stars [Wijnands et al., 2017].

The exhibited luminosity of accreting neutron stars depend on the accretion rate. In
a simple way, the accretion rate is defined as the mass of matter accreted per unit time.
A more rigorous definition can be used: it is the baryon mass of a diluted gas of baryons
infalling onto the neutron star, per unit time, as measured by a distant observer. The second
definition puts into light the relativistic nature of neutron stars: the gravitational mass and
baryon mass of accreted matter can be considered equal in the accretion disk; however, it is
no longer the case when matter crashes onto the neutron star, is pushed deeper in the crust,
and is subjected to an increasing pressure. In the following, the accretion rate is defined by
the baryon mass of accreted matter. It is important to distinguish the mean accretion rate,
denoted ⟨Ṁ⟩ which includes the time of quiescence, and the accretion rate during active
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accretion phases, which we denote Ṁ. The order of magnitude for the accretion rate ranges
from 10−10 to 10−8 solar mass per year, see e.g [Degenaar et al., 2015, Wijnands et al., 2017].

When matter falls from the accretion disk orbiting the neutron star, angular momentum
is transferred such that accreting neutron stars are spun-up. The gravitational wave emis-
sion from a rotating neutron star decreases the neutron star spin as the star ages, however,
accretion recycles the spin, such that oldest pulsars are spinning fast [Tauris et al., 2013, Su-
vorov and Melatos, 2020]1. Moreover, the accretion process on the timescale of the binary
life time increases the mass of the neutron star; this is neglected in this chapter, which is
reasonable given the timescale of the accretion process in X-ray transients.

X-ray bursts are bright flashes in low-mass X-ray binaries, with a rising time of around
one second, a typical duration of one minute, and they are recurrent every few hours. The
matter transferred from the disk is a plasma rich in Hydrogen and/or Helium originating
from the companion star. It falls onto the neutron star, forming an envelope of light ele-
ments. Bursts are powered by the burning of Helium in the thermally unstable fusion of
α-particles, which is ignited at the bottom of the freshly accreted plasma. The freshly ac-
creted plasma is compressed under the weight of newly accreted matter, and accumulates
in a layer of growing mass, typically during a few hours. Thermonuclear burning, quenched
by the exhaustion of Helium and the decrease in temperature from the peak value exceed-
ing 109 K, produces ashes of isotopes with nucleon number A = [50 − 110]. The current
understanding of the mechanism of X-ray bursts and their theoretical models is described
in Bildsten [1998], Parikh et al. [2013], Meisel et al. [2018]. The evolution of the accreted
layer depends on the metallicity of freshly accreted material and the active accretion rate Ṁ
[Bildsten, 1998]:

• For 2 < Ṁ−10 < 10, with Ṁ−10 the accretion rate in 10−10 M⊙ per year, Hydrogen
burns into Helium in a stable way. When no Hydrogen is left in the accreted bottom
layer, the pure Helium layer starts to grow. Helium burning, which is initiated after
crossing the ignition line in the density-temperature plane, is associated with thermal
instability, resulting in thermonuclear runaway. The accreted envelope is then heated,
and reaches in a second a peak temperature of around 109 K.

• For 10 < Ṁ−10 < 260, Helium is ignited before Hydrogen burning has been completed,
such that the thermonuclear runaway of Helium takes place in the Hydrogen-Helium
mixture.

In both accretion regimes, nucleosynthesis is driven mainly by the rapid proton captures and
positron decays, but other nuclear processes with α-particles and protons are also involved.
Generally, nuclear ash abundances peak around A ∼ 60 and/or A ∼ 100, depending on the
accretion rate and metallicity of the accreted material [Parikh et al., 2013]. As the accretion

1The NICER telescope has observed fast rotating pulsars, whose spin is likely to have been recycled by
accretion. The radius of an isolated neutron star and an accreting crust differs by approximately a hundred
meters, therefore the increase in accuracy of the telescope will require accreting crust modelling.
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process continues, ashes accumulate and are pushed to higher pressures by freshly accreted
material.

In the following, we shall focus on what happens to the crust of neutron stars after the
ashes have been deposited on the outer crust surface.

4.1.2 Deep crustal heating

The temperature exhibited by neutron stars in quiescence is higher than expected for
isolated neutron stars. This suggests that accretion has induced heating processes deep
enough below the surface to be still visible in quiescence, because the heat diffuses to the
surface. As accreted matter accumulates on the surface of the crust, a series of exothermic
reactions are triggered by the compression of matter.

The common approximation to establish the equation of state and composition of ac-
creting neutron stars is that of a fully accreted crust: the original crust, i.e., the crust before
the star is subjected to accretion, is not considered because it is assumed to have been com-
pletely replaced by accreted material. The crust of a typical neutron star amounts to a total
mass Mcrust ∼ 10−2 M⊙ [Chamel and Haensel, 2008]. The time of accretion required to
replace the original crust, denoted toc, is

toc =
Mcrust

⟨Ṁ⟩
∼ 108

⟨Ṁ⟩−10
yr , (4.1)

where ⟨Ṁ⟩−10 is the time-averaged accretion rate in 10−10 solar mass per year. After toc

has passed in an accreting binary, the crust of the neutron star is made entirely of accreted
material, and it is different in composition from the crust of an isolated neutron star. Because
low mass X-ray binaries involving neutron stars can exist for as long as 109 years, a fully
accreted crust is a reasonable approach. It is important to note that the effect on the core
-into which the original crust is pushed-, and the effect on the total mass of the neutron
star, shall be neglected in this chapter. Indeed, accretion of matter can increase the neutron
star’s mass, but it does so with a timescale sufficiently large that the Tolmann-Oppenheimer-
Volkoff equations need not be solved for each time of the accretion process.

Designing the equation of state of an accreted crust is fundamentally different from the
derivation for a catalyzed crust. The catalyzed matter assumption is stringent: it requires
that the composition of the crust is at global minimum, or in other words that all reactions
that could have happened did occur, and that the crust is made of nuclei with globally min-
imized Gibbs energy at given pressure. This approach is appropriate for adult neutron stars
which have not accreted matter, in the assumption that their proto-neutron star stage im-
posed temperatures high enough, with slow enough cooling, that all nuclei have reshuffled,
and that the ground state has been reached. The equation of state for accreted crusts is calcu-
lated under completely different assumptions. Ashes that accumulate on the crust surface,
with a nucleon number A = [50, 110] [Haensel et al., 2007b], are pushed towards the core
and subject to compression related reactions, changing their proton and neutron number.
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Therefore, the local equilibrium with respect to reactions on the ashes element is looked for,
and not the global equilibrium. In practice, calculating the equation of state of a catalyzed
crust takes longer than computing an accreted crust: in the former case, the stability of all
possible nuclei must be tested at a given pressure, whereas in the latter case, the ash nuclei
are tested with respect to compression related reactions.

The most common approach to model nuclei in the accreted crust is the Wigner-Seitz cell
approximation in the framework of the single-nucleus model [Haensel and Zdunik, 2008,
Fantina et al., 2018, Potekhin and Chabrier, 2021]: Wigner-Seitz cells consist of a spherical
and positively charged nucleus permeated by a quasi-uniform gas of relativistic electrons.
In the inner crust, nuclei are additionally immersed in a gas of free neutrons. There is an in-
herent flaw to the single-nucleus approach: if one considers that a single cell can explain the
whole physics of the crust, then no considerations of interactions between cells can be taken
into account. The neutron diffusion is therefore excluded from the theory, and dripped neu-
trons can only stay in their cell. Recently, the non-diffusive approach was put into question
by Shchechilin et al. [2022], the authors arguing that neutron diffusion affects the exothermic
reactions in the accreted crust. In the following, we however use the single-nucleus model,
but discuss neutron diffusion. Acell refers to the number of nucleons per cell, A to the num-
ber of nucleons in the nucleus, N is the number of neutrons inside the nucleus, and Nout is
the number of neutrons outside the nucleus. The neutron star envelope is neglected in the
sense that the equation of state and the composition are established above the mass density
ρ ∼ 106 g/cm3; its importance in the cooling of soft X-ray transients is not forgotten, but the
infalling accreted material has undergone enough transformations that the final nucleus of
the burning (the ash) is 56Fe.

The first and most common compression related reactions on the nucleus (A, Z) are
electron captures

(A, Z) + e− → (A, Z − 1) + νe + Qec1 , (4.2)

with the electron denoted e−, the electronic neutrino denoted νe, and the energy release
denoted Qec1 . Odd number nuclei are energetically disfavored, therefore it is common
that electron captures are operated in pairs, i.e. if (A, Z) is an even-even nucleus, reaction
Eq. (4.2) is immediately followed by

(A, Z − 1) + e− → (A, Z − 2) + νe + Qec2 . (4.3)

Further details on electron captures are presented in section 4.3.

The second type of compression-related exothermic reactions are pycnonuclear fusions.
Electron captures triggered by compression decrease the number of protons in the nucleus.
As density continues to increase, the Coulomb repulsion localizing nuclei on the crust lattice
is challenged by the kinetic energy of the zero-point quantum vibrations of nuclei around
the crystal lattice sites. The Coulomb barrier can be penetrated, such that the non-thermal
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fusion of two nuclei is possible

(A, Z) + (A, Z) → (2A, 2Z) + Qpyc , (4.4)

with Qpyc the energy release. The rate of pycnonuclear fusions is subject to very large un-
certainty [Yakovlev et al., 2006]. As a result, the nucleus for which pycnonuclear fusion
occurs, and the pressure (and density) at which this energy source is located, are poorly
defined. However, some global quantities such as the total energy release do not depend
significantly on this rate [Haensel and Zdunik, 2008].

Above the neutron drip line, both reaction chains can be accompanied by neutron emis-
sion such that

(A, Z) + e− → (A − Nout;ec1 , Z − 1) + νe + Nout;ec1 + Qec1 , (4.5)

(A, Z − 1) + e− → (A − Nout;ec2 , Z − 2) + νe + Nout;ec2 + Qec2 , (4.6)

(A, Z) + (A, Z) → (2A − Nout, 2Z) + Qpyc + Nout;pyc , (4.7)

with Nout the number of emitted neutrons.

As a simple example, we compute the accreted crust from 56Fe ashes in the semi phe-
nomenological approach presented in Mackie and Baym [1977], later on referred to as Mackie
& Baym. In this paper, authors provide a parametrized formula for the Gibbs energy in
the compressible liquid drop model; note that shell effects are not taken into account. The
nucleus is approximated by a spherical drop, at the center of a non-interacting spherical
Wigner-Seitz cell. If atomic masses are available, we substitute the Mackie & Baym formula
of the Gibbs energy by measurements provided in the AME2016 table [Wang et al., 2017].
In practice, at a given pressure, we evaluate the Gibbs energy of the following proton and
nucleon number combinations

• (Acell, A, Z),

• (Acell, A, Z − 1),

• (Acell, A − Nout, Z − 1),

• (2Acell, 2A, 2Z),

• (2Acell, 2A − Nout, 2Z).

The combination of Acell, A and Z with the minimum Gibbs energy is selected. Evaluation
of Gcell includes free neutrons outside the nucleus, which determines the neutron drip point
at pressure Pnd, i.e., the limit of between the outer crust and the inner crust. The compo-
sition of the 56Fe ashes accreted crust calculated in the Mackie & Baym model, as well as
the functional density Brussels-Skyrme 21 (BSk21) model discussed in Fantina et al. [2022],
are presented in Fig. 4.1. The two models are different when they are not calibrated by the
AME2016 table. The BSk21 model takes into account shell effects which stabilize the proton
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number in the inner crust, as well as neutron skin effects. Pycnonuclear fusions are triggered
when the proton number Z < 8 as is discussed in Haensel and Zdunik [2008], Fantina et al.
[2018], which is in the inner crust for both models.
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Figure 4.1: The proton number Z and neutron number N as a function of the pres-
sure P in the 56Fe ashes accreted crust calculated in the Mackie & Baym and BSk21
models. The neutron drip pressure Pnd is presented in vertical dotted lines.

The exothermic nature of the above mentioned reactions leads to the deposit of heat
sources in the crust during active accretion. This phenomenon is referred to as deep crustal
heating [Brown et al., 1998]. In that sense, a compressed crust is a reservoir of heat at local
equilibrium. In Fig. 4.2, we present the heat sources of the 56Fe accreted crust calculated in
the Mackie & Baym and BSk21 models. Depending on the model, the number of sources
and the location of the heat sources can vary, but the total amount of heat deposited in the
crust is roughly the same. One can note that heat sources in the Mackie & Baym model are
smaller but more numerous than for the BSk21 model: the shell effects taken into account
in BSk21 stabilizes nuclei in the crust for a large range of pressure, such that there are fewer
reactions and they release more heat.
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Figure 4.2: Heat sources per nucleon as a function of the mass density ρ in the 56Fe
ashes accreted crust calculated with the models of Mackie & Baym and BSk21.

Finally, let us mention a timescale important for accreted crusts. For a star in hydrostatic
equilibrium, the pressure and gravity counterbalance one another. If an imbalance between
the two occurs in a given region of the crust, the crust structure adjusts on a timescale called
the dynamical timescale: it is the time required to cancel this imbalance, and reach a new
hydrostatic equilibrium, i.e., the time needed for a sound wave to cross the crust. This
timescale is about 0.1 ms, thus completely negligible on our context.
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4.2 Partially accreted crusts

Although the fully accreted crust approximation has proven partly successful for some
soft quiescent X-ray transients, the X-ray emission of other sources indicate an accretion
regime for which this approximation is not valid. In this section, we present the theoreti-
cal framework related to partially accreted crust, and then derive the equation of state and
composition of the different parts of the crust. The catalogue of heat sources in the par-
tially accreted crust is reconstructed, and interesting properties that appear in this crust are
discussed.

4.2.1 Beyond the fully accreted crust approximation

In the fully accreted crust approximation, the crust is solely made of accreted material,
while the original crust is considered to have been completely pushed into the core by pres-
sure from the accreted material. Exothermic reactions are continuously triggered for as long
as accretion is active, and the heat sources are located at fixed pressures. However, some
sources suggest that this approximation cannot be applied [Brown and Cumming, 2009].
One of those sources is IGR J17480−2446 [Bonanno and Urpin, 2015], which has been ob-
served before accretion, then during a two-month outburst in 2010, and two months after the
accretion had stopped. It presents a low-frequency spin of 11 Hz [Degenaar, 2015], which
suggests that the star’s rotation has not been recycled by accretion. If this source has only
accreted a small amount of matter [Degenaar et al., 2015], the original crust has not been
fully replaced, and the star would present a partially accreted crust. In this case, a hybrid
crust made of the original crust as it is pushed toward the core, and of the accreted mate-
rial pushing it, needs to be studied. The thermal evolution of 1RXS J180408−342058 has
been observed during its 4.5-month outburst in 2015 prior to quiescence [Baglio et al., 2016,
Marino et al., 2019]. In Parikh et al. [2017], it is suggested that the luminosity of this source
can be explained by a hybrid crust.

The role of a hybrid crust in the thermal properties of accreting neutron stars was re-
cently studied without a detailed description of the crust in Potekhin and Chabrier [2021].
In the following, we present the full derivation of the partially accreted crust in a simple nu-
clear model. The study is however restricted to the evolution of the original outer crust, con-
sidered catalyzed in its original state, under a uniform radial increase in pressure in spher-
ical symmetry. From Eq. (4.1) and the Tolman-Oppenheimer-Volkoff equations in the crust
(P/ρc2 ≪ 1 and PR3/Mc2 ≪ 1), we can deduce the compression, denoted ∆P, required to
fulfill the fully accreted crust approximation: ∆P = ∆Pfac = 1032 dyn/cm2; our calculations
are established up to this value.

There are three different components of the partially accreted crust that must be evalu-
ated within the same nuclear model:

• the catalyzed outer crust, which is the sole constituent of the partially accreted crust at
∆P = 0,



103 4.2. Partially accreted crusts

• the accreted material which dominates the partially accreted crust at ∆P > ∆Pfac,

• the originally catalyzed compressed outer crust which should be followed under an
increasing compression 0 < ∆P < ∆Pfac.

First, we compute the catalyzed outer crust in the Mackie & Baym model. The Gibbs
energy per cell is evaluated for a large set of nuclei at each pressure P, and the combination
(Acell, A, Z) presenting the minimum Gibbs energy is the ground state cell at this pressure.
Contrary to the accreted crust, the catalyzed crust is at global equilibrium. The proton and
neutron number as a function of the pressure in the star for the Mackie & Baym catalyzed
outer crust are presented in Fig. 4.3. This outer crust is made of 24 shells2, with a neutron
drip line Pnd ≃ 1.1 × 1030 dyn/cm2, and a last outer crust shell of 132Zr. As a comparison,
the catalyzed outer crust calculated in the BSk21 model consists of 18 shells, and a neutron
drip line Pnd ≃ 7.8 × 1029 dyn/cm2. The models of Mackie & Baym and BSk21 are similar
up to P ≃ 6 × 1028 dyn/cm2, with 80Zn the last common nucleus; up to this pressure, com-
positions are calibrated to experimentally determined masses of nuclei from the AME2016
table. For the next shell, the Gibbs energy of the odd proton number element 79Cu calculated
in BSk21 is lower than the calibrated 82Zn that was selected in Mackie & Baym; from then on
to deeper shells, the compositions differ. One thin shell of 58Fe appears for Mackie & Baym
and BSk21 models: as discussed in Sect. 7.4.1 of Blaschke and Chamel [2018], this shell does
not exist when a particular consideration for electron charge polarization is taken.
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Figure 4.3: Catalyzed outer crust composition, with the nucleon number A and
proton number Z, as a function of the pressure P in the crust, calculated in the
Mackie & Baym and BSk21 nuclear models.

2We refer to shells as layers of the crust in which a nucleus is stable.
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The mass and thickness of each shell of the catalyzed outer crust are presented for the
Mackie & Baym and BSk21 models in Fig. 4.4. The thickness and the gravitational mass of
the shells for a given stellar configuration (R,M) can be approximated with high accuracy
from formulas established in Zdunik et al. [2016]

∆R = 73 m ∆µMeV
R2

6
M/M⊙

(
1 − 0.295

M/M⊙
R6

)
, (4.8)

∆M
M⊙

= 4.7 × 10−5 ∆P30
R4

6
M/M⊙

(
1 − 0.295

M/M⊙
R6

)
, (4.9)

where R6 is the neutron star radius divided by 106 cm, ∆µMeV and ∆P30 correspond to the
thickness of the shell in baryon chemical potential and pressure respectively; those quanti-
ties are given in MeV and 1030 dyn/cm2. In Fig. 4.4, the structure of the crust is established
for a 1.4 M⊙ neutron star; the total radius of the star is calculated by constructing the equa-
tion of state with the Mackie & Baym crust associated to the SLy4 core on the one hand, and
using the unified equation of state equation of state of BSk21 on the other hand. A 1.4 M⊙

neutron star calculated with the Mackie & Baym/SLy4 equations of state and the BSk21
equation of state corresponds to a total radius of the star of 11.7 km and 12.6 km respec-
tively. The outer crust of the SLy4/Mackie & Baym model is thinner than that of the BSk21
model, 429 m and 494 m respectively.
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Outer crust thickness=429m            Outer crust mass =3.8×10−5M⊙
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Figure 4.4: Structure of the Mackie & Baym catalyzed outer crust compared to
that calculated in the BSk21 model, for a 1.4 M⊙ neutron star. Colors divide areas
with different proton numbers. For Mackie & Baym, the nucleon number A is pre-
sented to give a complete definition of the shell (Acell, A, Z), for which the decimal
logarithm of the gravitational mass in solar mass is presented.

For the accreted material part of the partially accreted crust, we choose the Mackie &
Baym 56Fe ashes accreted crust presented in section 4.1.2. The accreted material part of the
crust will progressively invade the partially accreted crust as the compression increases. It
is made of 36 shells, including 5 in the outer crust, for a total thickness of 722 m and a mass
of 3 × 10−3 M⊙.
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4.2.2 Heat sources in a compressed catalyzed crust

To describe the original outer crust under compression, each shell of the catalyzed outer
crust must be evaluated under an increase of pressure ∆P: in that sense, we need to design
24 accreted material equations of state which ash nuclei correspond to the catalyzed shell
nuclei. We denote Pcat

bot and Pcat
top the bottom (highest) and top (lowest) pressure boundaries of

the catalyzed outer crust shells. For each shell of the catalyzed outer crust, the composition
and equation of state must be evaluated from the pressure Pcat

bot to Pcat
bot + ∆Pfac. After a given

compression ∆P, the above-mentioned shells have evolved to pressure boundaries Pcat
bot + ∆P

and Pcat
top + ∆P. In the following, each shell of the originally catalyzed outer crust will be

subject to reactions such that it might host several nuclei, but in order to avoid confusion,
shells shall refer to the delimitation of shells in the catalyzed outer crust.

The compression of each shell of the catalyzed outer crust leads to exothermic reactions
and heat deposition, as is the case for the accreted material part of the crust. To compute
the location and amount of heat release in the partially accreted crust, the simple model of
Mackie & Baym is used once again. A piece of matter located at a pressure Pori in the original
crust is pushed to a pressure threshold Pth at which a specific reaction takes place within a
timescale denoted τacc

τacc = 4.8 × 105 α∗
⟨Ṁ⟩−10

(
Pth,30 − Pori,30

)
yr , (4.10)

where P30 is the pressure in 1030 dyn/cm2. The factor α∗ depends on the neutron star mass
and radius and is given by the formula

α∗ =
R4

6
M/M⊙

√
1 − 0.295

M/M⊙
R6

, (4.11)

such that for a 1.4 M⊙ neutron star

4πR4

GMm0

√
1 − 2GM

Rc2 = 9.06 × 1016α∗
cm3

MeV
. (4.12)

In Table 4.1, we present the reactions and associated heat release in the 24 shells of the
originally catalyzed compressed outer crust up to the first neutron emission, as a function
of the compression ∆P and relative compression δP/P.
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Table 4.1: Reactions triggered in the originally catalyzed compressed outer crust
calculated in the Mackie & Baym model up to the first neutron emission. Nuclei
based on experimentally determined masses from AME2016 are presented in bold.
The neutron-drip points calculated in the continuous approach are presented in
blue, for details see section 4.2.3. In order of columns, we give the pressure P,
the mass density ρini right before the reaction, λ = ∆ρ/ρ the relative change in
density due to the reaction, the reaction concerned, the energy per nucleon Q of
the reaction, the compression ∆P, and relative compression δP/P at which the
reaction is triggered. The table is separated into 24 parts, one for each shell of the
catalyzed crust: the first line (before the dashed lines) includes the top pressure
and density of the original shell (first and second column) as well as the nuclei of
the catalyzed shell.

1.442 × 1022 7.753 × 105 - 56Fe Shell 1
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
6.468 × 1026 1.374 × 109 8.2 56Fe + 2e− → 56Cr + 2νe 37.0 6.463 × 1026 1.2 × 105

1.829 × 1028 1.811 × 1010 8.9 56Cr + 2e− → 56Ti + 2νe 41.2 1.829 × 1028 3.4 × 106

1.059 × 1029 7.365 × 1010 9.8 56Ti + 2e− → 56Ca + 2νe 81.7 1.059 × 1029 2.0 × 107

4.747 × 1029 2.496 × 1011 10.9 56Ca + 2e− → 56Ar + 2νe 46.1 4.747 × 1029 8.8 × 107

1.064 × 1030 5.078 × 1011 4.3 56Ar + 2 e− → 52S + 4 n + 2 νe 41.9 1.064 × 1030 2.0 × 108

1.226 × 1030 5.649 × 1011 12.1 56Ar + 2e− → 52S + 4 n + 2νe 35.1 1.226 × 1030 2.3 × 108

5.441 × 1023 8.489 × 106 - 62Ni Shell 2
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.468 × 1027 3.846 × 109 7.5 62Ni + 2e− → 62Fe + 2νe 44.9 2.401 × 1027 3.6 × 103

2.987 × 1028 2.679 × 1010 8.2 62Fe + 2e− → 62Cr + 2νe 44.2 2.981 × 1028 4.4 × 104

4.283 × 1028 3.796 × 1010 4.3 62Cr + 1e− → 62V + 1νe 0.0 4.276 × 1028 6.4 × 104

6.314 × 1028 5.297 × 1010 4.5 62V + 1e− → 62Ti + 1νe 0.0 6.308 × 1028 9.4 × 104

4.735 × 1029 2.511 × 1011 9.8 62Ti + 2e− → 62Ca + 2νe 41.3 4.734 × 1029 7.1 × 105

1.014 × 1030 4.889 × 1011 3.8 62Ca + 2 e− → 58Ar + 4 n + 2 νe 32.2 1.014 × 1030 1.5 × 106

1.170 × 1030 5.444 × 1011 10.9 62Ca + 2e− → 60Ar + 2 n + 2νe 29.5 1.170 × 1030 1.7 × 106

6.723 × 1025 2.654 × 108 - 58Fe Shell 3
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
4.641 × 1027 6.207 × 109 8.2 58Fe + 2e− → 58Cr + 2νe 43.1 4.571 × 1027 6.5 × 103

4.552 × 1028 3.718 × 1010 8.9 58Cr + 2e− → 58Ti + 2νe 110.6 4.545 × 1028 6.5 × 104

2.003 × 1029 1.231 × 1011 9.8 58Ti + 2e− → 58Ca + 2νe 45.0 2.003 × 1029 2.8 × 105

6.598 × 1029 3.311 × 1011 7.1 58Ca + 2 e− → 56Ar + 2 n + 2 νe 35.4 6.597 × 1029 9.4 × 105

6.892 × 1029 3.421 × 1011 10.9 58Ca + 2e− → 58Ar + 2νe 44.3 6.891 × 1029 9.8 × 105

1.507 × 1030 6.830 × 1011 26.4 58Ar + 4e− → 46Si + 12 n + 4νe 108.6 1.507 × 1030 2.1 × 106

7.053 × 1025 2.821 × 108 - 64Ni Shell 4
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
8.042 × 1027 9.615 × 109 7.5 64Ni + 2e− → 64Fe + 2νe 39.0 7.471 × 1027 1.3 × 103

5.228 × 1028 4.208 × 1010 8.2 64Fe + 2e− → 64Cr + 2νe 38.9 5.171 × 1028 9.1 × 103

7.795 × 1028 6.143 × 1010 4.3 64Cr + 1e− → 64V + 1νe 0.0 7.738 × 1028 1.4 × 104

1.143 × 1029 8.538 × 1010 4.5 64V + 1e− → 64Ti + 1νe 0.0 1.138 × 1029 2.0 × 104

6.487 × 1029 3.284 × 1011 6.4 64Ti + 2 e− → 62Ca + 2 n + 2 νe 20.8 6.481 × 1029 1.1 × 105

6.674 × 1029 3.355 × 1011 9.8 64Ti + 2e− → 64Ca + 2νe 39.8 6.669 × 1029 1.2 × 105

1.418 × 1030 6.493 × 1011 10.7 64Ca + 2e− → 60Ar + 4 n + 2νe 42.4 1.418 × 1030 2.5 × 105

5.725 × 1026 1.375 × 109 - 66Ni Shell 5
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.261 × 1028 2.152 × 1010 7.5 66Ni + 2e− → 66Fe + 2νe 49.6 2.195 × 1028 3.3 × 103

7.860 × 1028 5.893 × 1010 8.2 66Fe + 2e− → 66Cr + 2νe 79.1 7.794 × 1028 1.2 × 104

3.254 × 1029 1.852 × 1011 8.9 66Cr + 2e− → 66Ti + 2νe 38.6 3.247 × 1029 4.9 × 104

7.992 × 1029 3.962 × 1011 6.5 66Ti + 2 e− → 64Ca + 2 n + 2 νe 16.6 7.986 × 1029 1.2 × 105
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9.018 × 1029 4.338 × 1011 9.8 66Ti + 2e− → 66Ca + 2νe 38.4 9.011 × 1029 1.4 × 105

1.556 × 1030 7.179 × 1011 23.2 66Ca + 4e− → 54S + 12 n + 4νe 102.4 1.556 × 1030 2.4 × 105

6.610 × 1026 1.561 × 109 - 86Kr Shell 6
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
9.884 × 1027 1.180 × 1010 5.7 86Kr + 2e− → 86Se + 2νe 29.2 8.236 × 1027 499
4.723 × 1028 4.031 × 1010 6.1 86Se + 2e− → 86Ge + 2νe 23.2 4.558 × 1028 2.8 × 103

1.333 × 1029 9.319 × 1010 6.5 86Ge + 2e− → 86Zn + 2νe 18.8 1.317 × 1029 8.0 × 103

4.385 × 1029 2.427 × 1011 7.0 86Zn + 2e− → 86Ni + 2νe 28.3 4.369 × 1029 2.7 × 104

8.422 × 1029 4.239 × 1011 5.0 86Ni + 2 e− → 84Fe + 2 n + 2 νe 14.7 8.406 × 1029 5.1 × 104

9.668 × 1029 4.702 × 1011 7.5 86Ni + 2e− → 86Fe + 2νe 28.3 9.652 × 1029 5.9 × 104

1.478 × 1030 6.956 × 1011 27.1 86Fe + 6e− → 66Ca + 20 n + 6νe 104.7 1.476 × 1030 9.0 × 104

1.653 × 1027 3.195 × 109 - 84Se Shell 7
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.827 × 1028 2.679 × 1010 6.1 84Se + 2e− → 84Ge + 2νe 28.6 1.934 × 1028 216
1.189 × 1029 8.353 × 1010 6.5 84Ge + 2e− → 84Zn + 2νe 33.1 1.100 × 1029 1.2 × 103

3.255 × 1029 1.895 × 1011 7.0 84Zn + 2e− → 84Ni + 2νe 29.2 3.166 × 1029 3.5 × 103

7.167 × 1029 3.668 × 1011 5.0 84Ni + 2 e− → 82Fe + 2 n + 2 νe 18.9 7.078 × 1029 7.9 × 103

7.690 × 1029 3.867 × 1011 7.5 84Ni + 2e− → 84Fe + 2νe 29.1 7.601 × 1029 8.5 × 103

1.398 × 1030 6.514 × 1011 17.0 84Fe + 4e− → 72Ti + 12 n + 4νe 64.8 1.389 × 1030 1.6 × 104

8.954 × 1027 1.172 × 1010 - 82Ge Shell 8
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
6.325 × 1028 5.077 × 1010 6.5 82Ge + 2e− → 82Zn + 2νe 23.0 3.488 × 1028 122
2.991 × 1029 1.736 × 1011 7.0 82Zn + 2e− → 82Ni + 2νe 44.3 2.708 × 1029 954
5.970 × 1029 3.121 × 1011 7.5 82Ni + 2e− → 82Fe + 2νe 29.9 5.686 × 1029 2.0 × 103

1.032 × 1030 5.065 × 1011 2.9 82Fe + 2 e− → 78Cr + 4 n + 2 νe 25.4 1.004 × 1030 3.5 × 103

1.201 × 1030 5.676 × 1011 8.0 82Fe + 2e− → 78Cr + 4 n + 2νe 22.1 1.173 × 1030 4.1 × 103

2.846 × 1028 2.897 × 1010 - 80Zn Shell 9
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.529 × 1029 1.493 × 1011 7.0 80Zn + 2e− → 80Ni + 2νe 56.3 1.597 × 1029 171
4.503 × 1029 2.464 × 1011 7.5 80Ni + 2e− → 80Fe + 2νe 30.8 3.571 × 1029 383
8.818 × 1029 4.389 × 1011 5.5 80Fe + 2 e− → 78Cr + 2 n + 2 νe 16.1 7.886 × 1029 846
1.022 × 1030 4.902 × 1011 8.2 80Fe + 2e− → 80Cr + 2νe 29.5 9.284 × 1029 996
1.500 × 1030 7.076 × 1011 18.4 80Cr + 4e− → 66Ca + 14 n + 4νe 80.9 1.407 × 1030 1.5 × 103

9.346 × 1028 7.248 × 1010 - 82Zn Shell 10
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.991 × 1029 1.736 × 1011 7.0 82Zn + 2e− → 82Ni + 2νe 44.3 1.954 × 1029 188
5.970 × 1029 3.121 × 1011 7.5 82Ni + 2e− → 82Fe + 2νe 29.9 4.932 × 1029 475
1.032 × 1030 5.065 × 1011 2.9 82Fe + 2 e− → 78Cr + 4 n + 2 νe 25.4 9.287 × 1029 894
1.201 × 1030 5.676 × 1011 8.0 82Fe + 2e− → 78Cr + 4 n + 2νe 22.1 1.098 × 1030 1.1 × 103

1.041 × 1029 7.973 × 1010 - 94Se Shell 11
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.337 × 1029 1.463 × 1011 6.1 94Se + 2e− → 94Ge + 2νe 25.5 1.261 × 1029 117
5.492 × 1029 2.949 × 1011 6.5 94Ge + 2e− → 94Zn + 2νe 25.4 4.416 × 1029 410
9.293 × 1029 4.663 × 1011 2.4 94Zn + 2 e− → 90Ni + 4 n + 2 νe 16.8 8.217 × 1029 763
1.084 × 1030 5.234 × 1011 7.0 94Zn + 2e− → 94Ni + 2νe 22.1 9.760 × 1029 907
1.372 × 1030 6.684 × 1011 15.4 94Ni + 4e− → 80Cr + 14 n + 4νe 54.7 1.264 × 1030 1.2 × 103

1.079 × 1029 8.242 × 1010 - 100Kr Shell 12
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
2.316 × 1029 1.462 × 1011 5.7 100Kr + 2e− → 100Se + 2νe 23.7 1.051 × 1029 83
5.256 × 1029 2.861 × 1011 6.1 100Se + 2e− → 100Ge + 2νe 23.6 3.992 × 1029 315
8.827 × 1029 4.481 × 1011 2.3 100Ge + 2 e− → 96Zn + 4 n + 2 νe 13.6 7.562 × 1029 597
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1.030 × 1030 5.034 × 1011 6.5 100Ge + 2e− → 100Zn + 2νe 22.7 9.039 × 1029 714
1.382 × 1030 6.683 × 1011 14.3 100Zn + 4e− → 86Fe + 14 n + 4νe 57.7 1.255 × 1030 992
1.269 × 1029 9.446 × 1010 - 96Se Shell 13
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
3.149 × 1029 1.869 × 1011 6.1 96Se + 2e− → 96Ge + 2νe 24.8 1.845 × 1029 141
6.630 × 1029 3.470 × 1011 4.3 96Ge + 2 e− → 94Zn + 2 n + 2 νe 19.5 5.327 × 1029 408
6.921 × 1029 3.584 × 1011 6.5 96Ge + 2e− → 96Zn + 2νe 24.8 5.618 × 1029 431
1.246 × 1030 5.935 × 1011 6.9 96Zn + 2e− → 92Ni + 4 n + 2νe 22.0 1.115 × 1030 855
1.307 × 1029 9.709 × 1010 - 102Kr Shell 14
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
3.076 × 1029 1.846 × 1011 5.7 102Kr + 2e− → 102Se + 2νe 23.1 1.322 × 1029 75
6.369 × 1029 3.372 × 1011 4.0 102Se + 2 e− → 100Ge + 2 n + 2 νe 19.6 4.616 × 1029 263
6.566 × 1029 3.449 × 1011 6.1 102Se + 2e− → 102Ge + 2νe 23.0 4.813 × 1029 274
1.178 × 1030 5.679 × 1011 6.4 102Ge + 2e− → 98Zn + 4 n + 2νe 18.5 1.003 × 1030 572
1.759 × 1029 1.237 × 1011 - 104Kr Shell 15
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
3.976 × 1029 2.282 × 1011 5.7 104Kr + 2e− → 104Se + 2νe 22.5 1.646 × 1029 70
7.340 × 1029 3.824 × 1011 4.1 104Se + 2 e− → 102Ge + 2 n + 2 νe 11.8 5.009 × 1029 214
8.051 × 1029 4.099 × 1011 6.1 104Se + 2e− → 104Ge + 2νe 22.5 5.720 × 1029 245
1.338 × 1030 6.369 × 1011 21.3 104Ge + 6e− → 86Fe + 18 n + 6νe 75.9 1.105 × 1030 473
2.337 × 1029 1.561 × 1011 - 106Kr Shell 16
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
5.025 × 1029 2.774 × 1011 5.7 106Kr + 2e− → 106Se + 2νe 22.0 2.037 × 1029 68
8.389 × 1029 4.309 × 1011 4.1 106Se + 2 e− → 104Ge + 2 n + 2 νe 11.2 5.401 × 1029 180
9.713 × 1029 4.811 × 1011 6.1 106Se + 2e− → 106Ge + 2νe 22.0 6.724 × 1029 225
1.385 × 1030 6.665 × 1011 21.1 106Ge + 6e− → 86Fe + 20 n + 6νe 83.6 1.086 × 1030 363
2.997 × 1029 1.886 × 1011 - 112Sr Shell 17
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
4.799 × 1029 2.686 × 1011 5.4 112Sr + 2e− → 112Kr + 2νe 20.5 1.784 × 1029 59
7.977 × 1029 4.147 × 1011 3.8 112Kr + 2 e− → 110Se + 2 n + 2 νe 10.4 4.962 × 1029 164
9.103 × 1029 4.579 × 1011 5.7 112Kr + 2e− → 112Se + 2νe 20.6 6.087 × 1029 201
1.344 × 1030 6.490 × 1011 19.6 112Se + 6e− → 92Ni + 20 n + 6νe 76.6 1.043 × 1030 345
3.024 × 1029 1.933 × 1011 - 114Sr Shell 18
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
5.865 × 1029 3.178 × 1011 3.6 114Sr + 2 e− → 112Kr + 2 n + 2 νe 19.4 2.091 × 1029 55
5.906 × 1029 3.195 × 1011 5.4 114Sr + 2e− → 114Kr + 2νe 20.1 2.131 × 1029 56
1.058 × 1030 5.218 × 1011 5.7 114Kr + 2e− → 114Se + 2νe 18.0 6.806 × 1029 180
1.270 × 1030 6.330 × 1011 12.3 114Se + 4e− → 98Zn + 16 n + 4νe 42.2 8.928 × 1029 236
3.786 × 1029 2.328 × 1011 - 116Sr Shell 19
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
6.694 × 1029 3.572 × 1011 3.6 116Sr + 2 e− → 114Kr + 2 n + 2 νe 13.0 2.039 × 1029 43
7.152 × 1029 3.753 × 1011 5.4 116Sr + 2e− → 116Kr + 2νe 19.7 2.496 × 1029 53
1.192 × 1030 5.807 × 1011 11.9 116Kr + 4e− → 106Ge + 10 n + 4νe 35.9 7.265 × 1029 156
4.669 × 1029 2.772 × 1011 - 118Sr Shell 20
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
7.587 × 1029 3.992 × 1011 3.6 118Sr + 2 e− → 116Kr + 2 n + 2 νe 9.7 1.948 × 1029 34
8.540 × 1029 4.362 × 1011 5.4 118Sr + 2e− → 118Kr + 2νe 19.3 2.901 × 1029 51
1.305 × 1030 6.322 × 1011 18.5 118Kr + 6e− → 100Zn + 18 n + 6νe 70.9 7.407 × 1029 131
5.656 × 1029 3.256 × 1011 - 120Sr Shell 21
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
8.543 × 1029 4.438 × 1011 1.9 120Sr + 2 e− → 116Kr + 4 n + 2 νe 12.1 1.953 × 1029 29
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1.004 × 1030 5.009 × 1011 5.4 120Sr + 2e− → 120Kr + 2νe 18.5 3.448 × 1029 52
1.272 × 1030 6.310 × 1011 18.4 120Kr + 6e− → 100Zn + 20 n + 6νe 61.2 6.134 × 1029 93
6.609 × 1029 3.714 × 1011 - 128Zr Shell 22
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
8.955 × 1029 4.666 × 1011 0.2 128Zr + 2 e− → 122Sr + 6 n + 2 νe 14.7 1.324 × 1029 17
1.067 × 1030 5.321 × 1011 5.1 128Zr + 2e− → 128Sr + 2νe 14.8 3.036 × 1029 39
1.150 × 1030 5.919 × 1011 5.2 128Sr + 2e− → 118Kr + 10 n + 2νe 16.5 3.871 × 1029 50
7.654 × 1029 4.212 × 1011 - 130Zr Shell 23
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
8.969 × 1029 4.744 × 1011 -1.4 130Zr + 2 e− → 122Sr + 8 n + 2 νe 14.6 9.688 × 1027 1.092
1.188 × 1030 5.860 × 1011 16.4 130Zr + 6e− → 112Se + 18 n + 6νe 54.0 3.009 × 1029 33
8.895 × 1029 4.787 × 1011 - 132Zr Shell 24
P (dyn/cm2) ρini (g/cm3) λ Reaction Q (keV) ∆ P (dyn/cm2) δP/P (in %)
1.248 × 1030 6.174 × 1011 16.2 132Zr + 6e− → 112Se + 20 n + 6νe 64.4 3.047 × 1029 32

The nuclei found in the originally catalyzed compressed outer crust are presented in
Fig. 4.5, with those of the accreted material part of the crust, and those of the catalyzed
outer crust. There are around 170 nuclei appearing in the originally catalyzed compressed
outer crust; they overlap with the catalyzed nuclei at the compression ∆P = 0, and also with
the accreted material nuclei when the stage of compression reaches the fully accreted crust
approximation.
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Figure 4.5: Abundance of nuclei in the partially accreted crust calculated in the
Mackie & Baym model, compared to laboratory measurements from the AME2016
table. (N, Z) for the catalyzed outer crust are shown in blue, (N, Z) for the accreted
material part of the crust (AMPC) are shown in red, and (N, Z) for the originally
catalyzed compressed outer crust (OCCOC) are shown in violet.
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The exothermic reactions leading to nuclei presented in Fig. 4.5 deposit heat in the orig-
inally catalyzed compressed outer crust. The first electron capture occurs for an increase in
pressure ∆P ≃ 7.5 × 1027 dyn/cm2; the largest energy release per nucleon due to electron
capture is of about 110 keV per nucleon and occurs at ∆P ≃ 4.6 × 1028 dyn/cm2. Pycnonu-
clear fusions are far more rare than electron captures, with a maximum energy release of
about 340 keV per nucleon for an increase in pressure ∆P ≃ 1.9 × 1030 dyn/cm2; this is also
the first pycnonuclear reaction and occurs in the first shell of the originally catalyzed com-
pressed outer crust for the parent nuclei (Acell = 56, Z = 10, N = 24).

The details of the exothermic reactions in the originally catalyzed compressed outer
crust up to the neutron drip point are presented in Table 4.1. Let us give a description of
what occurs for the shallowest shell of the catalyzed outer crust. Originally, that is when
no compression is applied, this shell is made of 56Fe and is 5.27 × 1023 dyn/cm2 thick in
pressure. Then, we apply compression until the neutron drip is reached: six pairs of elec-
tron captures occur in this shell until it reaches a pressure Pnd = 1.226 × 1030 dyn/cm2 (in
the single nucleus model approach), at which a total of ∼ 241 keV per nucleon has been
released. The compression applied to the original crust required to release this energy is
∆P = 1.226 × 1036 dyn/cm2. Let us note that no pycnonuclear fusions appear in Table 4.1,
because all of them occur above the neutron drip point.

The maximum heat release per nucleon, denoted Qmax, in each of the 24 shells during
the compression of the originally catalyzed outer crust is presented in Fig. 4.6. Generally,
Qmax decreases when considering shells initially located deeper in the original crust. In the
same figure, the total energy per nucleon released in a shell, denoted E/Acell, follows the
same trend. The energy per nucleon is only defined per one shell of the compressed outer
crust and not for the whole compressed outer crust: the energy per nucleon of different
shells cannot be summed directly. The decrease in energy release per nucleon as a function
of the depth in the star can be explained from the catalyzed composition of the outer crust
presented in Fig. 4.3. The nucleon number A is generally larger in deeper shells of the crust.
Large nuclei are more stable than small ones; applying a compression to the shells of the
catalyzed outer crust induces a state of local equilibrium that is closer to global equilibrium
for shells with high nucleon number. In other words, catalyzed shells of the outer crust
with large nucleon number are more stable with respect to compression related reactions
than shells with small nucleon number. Shells deeper in the crust release less energy per
nucleon than shells close to the surface. A few shells do not follow this trend of decrease
with the depth in the crust, and this can be explained with the same reasoning: in Fig. 4.6,
the third shell (very thin layer of 58Fe) presents a higher maximum energy per nucleon than
its shallower neighbor 62Ni; there is also a slight increase in Qmax for shells 6 (86Kr), 7 (84Se),
8 (82Se), and 9 (80Ge). These shells follow the catalyzed nucleon number logic stated above.
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Figure 4.6: Maximum energy release per nucleon Qmax in each shell of the origi-
nally catalyzed compressed outer crust for electron captures (upper left plot) and
pycnonuclear fusions (upper right plot), as well as the sum of all electron captures
and pycnonuclear fusion heat release E/Acell as a function of the shell number
(lower plot).

To compute the total energy released in the originally catalyzed compressed outer crust,
we allocated the exothermic reactions to the number of baryons that go through these reac-
tions in each shell. The number of baryons was calculated using the Tolman-Oppenheimer-
Volkoff equations approximated in the crust (where it is reasonable to consider that ϵ = ρc2),
as well as the expression for the baryon number in a thin spherical shell, dNb , of thickness
dr

dNb =
4πr2n√
1 − 2Gm

rc2

dr . (4.13)

Therefore, an approximate number of baryons ∆Ni in an i-th shell of pressure range Pi
bot − Pi

top

is

∆Ni =
4πR4

GMm0

√
1 − 2GM

Rc2

(
Pi

bot − Pi
top
)

, (4.14)

with m0 the mean bound nucleon mass in 56Fe. In contrast to the decreased energy per
nucleon, the number of nucleons per shell generally increases as we go deeper in the crust:
this can be explained by the gravitational mass of each shell presented in Fig. 4.4.

The formula for the total energy released in the compressed outer crust is given by

E =∑
i

∆Ni(ΣjEij) =
4πR4

GMm0

√
1 − 2GM

Rc2 ∑
i

∆Pi(ΣjEij) , (4.15)
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with Eij the j-th energy source located in the i-th shell, and ∆Pi = Pi
bot − Pi

top the thickness in
pressure of the i-th shell. For the accreted material part of the crust, Eq. (4.15) simplifies to

E =
4πR4

GMm0

√
1 − 2GM

Rc2 ∑
j

PjEj . (4.16)

In Fig. 4.7, we present the total energy Esh released in each of the 24 shells of the orig-
inally catalyzed compressed outer crust. The trend of decrease in maximum energy per
nucleon shown in Fig. 4.6 is overcompensated by the number of nucleons in the shells, thus
ensuring that most of the energy is released in the deepest shells of the compressed outer
crust. Shell 17 (112Sr) has a particularly small pressure range, which explains why this shell
in Fig. 4.7 presents a low total energy, as well as a low mass in Fig. 4.4. The total energy
released by the originally catalyzed compressed outer crust, up to ∆P = 1032 dyn/cm2, cor-
responds to the sum of sources displayed in Fig. 4.7 for a total of Etot = 4.25 × 1047 erg.
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Figure 4.7: Total energy per shell Esh released in each of the 24 shells of the orig-
inally catalyzed compressed outer crust for electron captures (left) and pycnonu-
clear fusions (right).

Our calculations for the heat release were established for an originally catalyzed outer
crust. Now let us compare it to the heat release if the compressed crust was accreted, which
would correspond to the fully accreted crust approximation. We compute the total energy
needed to sink the 24 shells of the originally catalyzed outer crust over their neutron drip
point from Eq. (4.15), and the five shells of an originally accreted outer crust over their
neutron drip point from Eq. (4.16). Results are respectively 7.8 × 1045 erg and 7.4 × 1045 erg.
These numbers indicate that the total energy available from the compression of the catalyzed
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and accreted crust are similar. Therefore, it is not reasonable to neglect the heat sources of
the originally catalyzed compressed outer crust when studying partially accreted crusts.

To compress the original outer crust (originally catalyzed or accreted) fully into the in-
ner crust, i.e. that the top part of the shallowest shell has been pushed over its neutron drip
point, an accretion of the amount of matter equal to the outer crust mass is needed. We de-
note ∆Poc the compression for this scenario. Pushing the initially catalyzed outer crust to the
point that the outer crust of the partially accreted crust is made of accreted matter, leads to a
pressure at the bottom of the original crust of around 1.5 × 1030 dyn/cm2. In addition to the
7.8 × 1045 erg released when each shell of the originally catalyzed outer crust are pushed to
the neutron drip point (see paragraph above), this scenario also leads to chains of reactions
above the neutron drip point: the additionally released energy is approximately 5× 1045 erg.
In total, the replacement of the outer crust by accreted matter releases 1.3 × 1046 erg in the
originally catalyzed compressed outer crust. The total energy released by the accreted ma-
terial part of the crust in this scenario is about 2.2 × 1046 erg.

Another crucial point needs to be raised with respect to heat sources in the partially
accreted crust. In a fully accreted crust and in the accreted material part of the partially
accreted crust, the energy release is continuous and the sources are located at fixed densi-
ties. For the originally catalyzed compressed outer crust, many energy sources exist, they
appear as long as the shell takes to be sunk to pressures beyond the reaction threshold,
then disappear. The heat sources are therefore temporary, and not located at fixed pres-
sures in the crust. This is illustrated in Fig. 4.8 for the 24 shells of the originally catalyzed
compressed outer crust at various values of the compression. Temporary as they are, the
sources of the originally catalyzed compressed outer crust last for a certain compression
range: the exothermic reaction associated to the heat source is first triggered in the deepest
part (bottom) of the shell, and then invades the shell progressively until the entire shell
i has been transformed from parent to daughter nuclei. In the left plot of Fig. 4.8, for
∆P = [0.5 − 1]1029 dyn/cm2, heat sources occur in the shallowest shells, which are thin:
there are periods of heat extinction. The shallowest shells have narrow pressure ranges. It
takes less compression to fill them with daughter nuclei, and they allow for more lull than
in the deepest shells. A timescale related to this phenomenon can be established: when a
reaction pressure threshold is reached at the bottom of the original shell i, the additional
compression required to ensure that the entire shell goes through this reaction is directly
related to the thickness in pressure of the shell. This "shell filling" timescale is denoted τsf,

τsf = 4.8 × 105 α∗
⟨Ṁ⟩−10

(Pi
bot,30 − Pi

top,30) yr . (4.17)

For deep shells, which present a wider pressure range
(

Pi
bot − Pi

top
)
, one exothermic reaction

sometimes has not yet filled the entire shell before another starts at the bottom end Pi
bot,

which results in an overlap of reactions within one shell. In the upper right plot, there is
no extinction because a reaction proceeds in at least one shell. For the highest values of the
compression, there are fewer heat sources, as presented in the lower right plot of Fig. 4.8.
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As the accreted material part of the crust invades the partially accreted crust, permanent
sources settle and then dominate at the fully accreted crust approximation.
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Figure 4.8: Heating activity expressed in terms of the compression ∆P required for
heat sources to transform each shell of the originally catalyzed compressed outer
crust from the parent to the daughter nuclei. The colors have no specific meaning
other than to distinguish between overlapping reactions in a shell.

The problem of the interplay of neutrino losses and matter heating deserves an addi-
tional discussion. The electron capture chain is initiated by the process described in Eq.(4.2)
after the chemical potential of electrons µe reaches the threshold µe = W1, with W the thresh-
old of the reaction, and the subscript 1 designating the first electron capture. This process
proceeds in a quasi-equilibrium way, i.e. with no heat release, because the electron cap-
ture that follows can be considered instantaneous. The nucleus (A, Z − 1) has odd neutron
number N and proton number Z, therefore has a significantly lower threshold for the sec-
ond electron capture because of the pair term: W2 < W1. Moreover, an odd-odd nucleus
(A, Z − 1) has a dense spectrum of excited states with excitation energies (relative to the
ground state) denoted Eexc, which follows 0 < Eexc < Ee − W2. An excited state denoted
(A, Z − 1)∗ decays to the ground state denoted (A, Z − 1)gs. The important effect connected
with the transition to the exited state of (A, Z − 1) nucleus is the increase in the threshold
pressure of the reaction due to the excitation energy. This also leads to a larger energy release
in the second electron capture [Chamel et al., 2021]. In Gupta et al. [2007], authors found
that the net contribution of excited states balances the neutrino losses. Therefore, the neu-
trino losses can be neglected, and our approximation for the heating of matter Q2 ≃ µe − W2

is valid.
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4.2.3 Onset of the neutron drip

Above a certain density, nuclei are subject to neutron emission: this is the neutron drip
phenomenon. In the framework of the single-nucleus model, the neutron drip point is given
by the solution to the equation

Gcell(Acell, A, Z) = Gcell(Acell, A − Nout, Z − 1) , (4.18)

with Nout the number of neutrons outside the nucleus, and Gcell the Gibbs energy per cell.
The timescale of strong interaction is much shorter than that of weak interaction. The former
fulfills the energy requirement imposed by the weak process, therefore neutron emission is
always triggered by an electron capture.

The single-nucleus model is equivalent to the assumption that Nout neutrons drip si-
multaneously in all Wigner-Seitz cells at given pressure Pnd. As a consequence, the number
density of the neutron gas outside nuclei nout is discontinuous at Pnd. For P > Pnd, nout is
larger by a factor Nout than the number density of nuclei nN = 1/Vcell, with Vcell the vol-
ume of the cell. To accurately determine the neutron drip point, one must go beyond the
single-nucleus model, as is presented in Chamel et al. [2015], later on referred to as the con-
tinuous approach. It considers that one nuclei first drips neutrons, in which case the density
of the neutron gas is assumed to be negligible at the neutron drip point, and the only energy
considered for free neutrons is their rest energy. The chain of reactions corresponds to

(Acell, A, Z) → (Acell − Nout, A − Nout, Z − 1) + Nout , (4.19)

for which the number of nucleons in the Wigner-Seitz cell decreases by Nout. The onset of
neutron drip occurs when the Gibbs energy of left and right nuclei in Eq. (4.19) follows

Gcell(Acell, A, Z) = Gcell(Acell − Nout, A − Nout, Z − 1) + mnc2Nout . (4.20)

In our model, we considered only ground-state to ground-state transitions driven by elec-
tron captures and associated with neutron emission. Electron captures leading to the excited
state daughter nucleus, which de-excites by neutron emission, were considered in Gupta
et al. [2008] and Lau and et al. [2018], but are not taken into account in this manuscript.
Neutron emission driven by photon absorption on nuclei can be neglected too, because
at temperature T ≃ 108 K and ρ ≃ 1011 g/cm3 (typical of our study’s conditions), plasmon
suppression of photons dominates, for details see Gupta et al. [2008].

The neutron drip point depends on the density and on the parent nucleus (Acell, Z, N).
Because the catalyzed outer crust is made of 24 shells, there are 24 different nuclei that un-
dergo neutron drip, such that the neutron drip point Pnd is different for each shell of the
originally catalyzed compressed outer crust. The compression at which neutrons start drip-
ping out of nuclei, as well as the additional compression needed to produce free neutrons
throughout the entire shell, is displayed in Fig. 4.9 for the 24 shells of the originally catalyzed
compressed outer crust; this is also presented in Table 4.1. The exothermic reactions up to
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the neutron drip point calculated in the single-nucleus model are shown in black, and those
calculated with the continuous approach are shown in blue.
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Figure 4.9: Compression ∆P required to reach the neutron drip point in the single-
nucleus model (black) and the continuous approach (blue) for each shell of the
originally catalyzed compressed outer crust. The error bars refer to the additional
compression needed for the entire shell to undergo neutron emission from bottom
(left end of the error bar) to top (right end of the error bar). The parent nuclei
undergoing electron capture that precedes the neutron emission are indicated with
the notation (Acell, Z, N). In the case of a continuous approach, it is presented only
if the parent nucleus is different than that in the single-nucleus models.

Because the onset of neutron drip occurs for lower compression in the continuous ap-
proach than in the single-nucleus model, the number of reactions in the compressed outer
crust is reduced: in the third shell, the neutron drip calculated in the continuous approach
occurs for the nucleus which is the parent of the nucleus for which the neutron drip occurs
in the single-nucleus model. In shell 18, it is the grandparent nucleus (see Table 4.1). For
the same reason, the last shell of the outer crust for which the neutron drip is calculated in
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the continuous approach is shell 23 (130Zr) of the outer crust, calculated within the single-
nucleus approach.

As an example, we considered the 19th shell of the originally catalyzed compressed
outer crust, which corresponds to an original (catalyzed) shell composed of 116Sr. In the
single-nucleus model, the neutron drip onsets at the bottom of the shell, after a compression
∆P ≃ 7.3 × 1029 dyn/cm2; an additional compression ∆P ≃ 8.8 × 1028 dyn/cm2 is required
for the entire shell to change from 116Kr to 106Ge. The process associated with this neutron
drip consists of four electron captures triggering the neutron drip at a pressure approxi-
mately 1.2 × 1030 dyn/cm2. The energy release associated with this process is about 35 keV
per nucleon (from Gcell/Acell = 940.471 → 940.435 MeV). The number density of neutrons
trapped in one Wigner-Seitz cell at the onset, denoted nout, is an order of magnitude larger
than the number density of nuclei nN , and about only one order of magnitude smaller than
the average baryon number density n. In the continuous approach, the neutron drip for
the 19th shell is triggered earlier, for a compression ∆P ≃ 2 × 1029 dyn/cm2, with a double
electron capture in the reaction 116Sr. The energy release per nucleon associated with the
reaction is about 13 keV. By construction, in this approach, the average number density of
free neutrons is negligibly small.

4.2.4 Applications for rotating neutron stars and magnetars

We have described a phenomenon that is related to the compression of the crust in
accreting binaries, but there are other astrophysical phenomena that are related to the crust
compression.

One of the scenarios leading to an increase in pressure in the neutron star crust is the
process of slowing-down of the stellar rotation. The theory behind neutron star spin down
is related to wave emission. The loss of rotation can be due to the emission of the magnetic
field of the star. Another source of rotation loss is the emission of continuous gravitational
waves: a neutron star can present non spherical features if it has, for example, accretion
induced mountains. The braking index is about three for magnetic field loss and five for
gravitational wave emission loss, and it can be used to estimate the timescale of the spin
down [Hamil et al., 2015, Haskell and Patruno, 2017]. If we consider that the loss of rota-
tional frequency is related to gravitational wave emission, the maximum quadrupolar de-
formation presented in Ushomirsky et al. [2000], Johnson-McDaniel and Owen [2013] leads
to a timescale of 106 years to decrease the rotational frequency by a factor of two.

The rotation of the star leads to axisymmetric deformation and an oblate shape of the
star. As the gravitational force and the centrifugal force balance one another, the spin de-
crease leads to a deformation. The star is deformed from an oblate shape to a more spherical
one, which is equivalent to a compression of the crust. This case has been studied by Iida
and Sato [1997] and Gusakov et al. [2015], and both their result give a relative increase in
pressure by some 25% for an initial frequency of 1 kHz. A similar conclusion can be drawn
from the consideration of the (baryon) mass of the outer crust for a rotating strange quark
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star, as is presented in [Zdunik et al., 2001]. The relative increase in pressure is approxi-
mately equal to the relative increase in baryon mass of a given shell, which is about 30% for
an initial rotation at 1 kHz, and about 100% at most for a spin-down from an initial rotating
configuration close to the Keplerian frequency. For such a relative increase in pressure, de-
tailed calculations show the existence of exothermic reactions in the very deep (Acell ∼ 100)
region of the outer crust. Assuming a 100% limit for the maximum relative increase in pres-
sure due to spin-down, only a few of the deepest shells can reach the onset of neutron drip
in our study, see Table 4.1.

The estimation of the rotation frequency of a newly born neutron star that is not spun
up by accretion is a complicated task that depends on many assumptions. The analysis of
observed pulsars gives initial rotation periods between ten and several hundreds of mil-
liseconds [Faucher-Giguère and Kaspi, 2006]; these results can be supported by theoretical
supernova modeling [Janka et al., 2022]. Even for the lower limit of this range, i.e. for pe-
riods around [10 − 20] ms, the relative increase in pressure after slowing down would be
less than 1%. A small increase like this would not trigger any exothermic reaction in the cat-
alyzed crust. This is not the case for a fully accreted crust when reactions occur continuously
with the pressure increase [Gusakov et al., 2015].

Another scenario hosting the compression of the crust are decaying magnetic fields in
magnetars. The gravitational force and the Lorentz force also counterbalance one another,
such that a decrease in magnetic field leads to a crust compression. Recently, Chamel et al.
[2021] proposed an analytical estimation, as well as numerical computation of heat sources
and their location for magnetars with a decreasing magnetic field. The timescale for the evo-
lution of the magnetic field in neutron star’s crust is of the order of 106 years. In this paper,
the authors conclude that the magnetic field, of the order 1016 to 1017 G, has no impact on
the maximum heat release of each reaction in the compressed crust. However, the magnetic
field has an almost linear impact on the location of the heat sources. The magnetic field also
has an impact on the relative compression required to trigger the reactions.

4.2.5 Properties of a compressed crust

The properties of the partially accreted crust differ from that of the fully accreted crust
and that of the catalyzed crust. In the following, we present the thermal and transport
properties of the originally catalyzed compressed outer crust, a peculiar neutron drip con-
figuration in the context of diffusing neutrons, and a density related instability source of
gravitational energy.

4.2.5.1 Composition and transport properties

Thermal and transport properties of the crust depend on the crust composition. For
example, the melting temperature and shear modulus are both proportional to Z2/A1/3

cell

[Chamel and Haensel, 2008]; this quantity is presented as a function of the pressure for
the catalyzed outer crust, the fully accreted crust and the originally catalyzed compressed
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outer crust calculated in the Mackie & Baym model in Fig. 4.10. The melting temperature
in the fully accreted crust is much lower than that of the originally catalyzed compressed
outer crust: for a range of temperatures, the fully accreted crust is liquid while the originally
catalyzed compressed outer crust is solid. The shear modulus is also larger for the originally
catalyzed compressed outer crust than for the fully accreted crust: the former is more rigid
than the latter.
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Figure 4.10: Z2/A1/3
cell as a function of the pressure P for the catalyzed outer crust

(blue), for the fully accreted crust (red), and for the originally catalyzed com-
pressed outer crust (purple).

The composition of the crust also affects the modeling of the thermal evolution of ac-
creting neutron stars. On the one hand, the thermal conductivity of the crust is mostly con-
tributed by the electrons; it is inversely proportional to the scattering frequency of electrons,
which is proportional to Z2. The proton number of the originally catalyzed compressed
outer crust being generally larger than that of the fully accreted crust at fixed density, ther-
mal conductivity is lower, and the crust exhibits a lower heat transfer rate for the originally
catalyzed outer crust than for the fully accreted crust. On the other hand, the heat capacity of
the crust enters the relativistic heat balance equations. In the crust, the electron contribution
scales as ∼ Z2/3/A2/9, and the lattice as A1/3 [Fortin et al., 2010].

The relation between the pressure P and the mass density ρ for the partially accreted
crust is presented in Fig. 4.11: P(ρ) is presented at the compression ∆P = 2.3 × 1029 and
1.1 × 1030 dyn/cm2. The equation of state for catalyzed matter is softer, as it corresponds
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to a global minimum of energy at a given pressure. The stiffest equation of state is ob-
tained in the fully accreted crust approximation. Nuclei have A smaller than in the case of
the catalyzed and also originally catalyzed compressed matter. As a result, matter in the
fully accreted crust is further away from global equilibrium (catalyzed matter), and of the
originally catalyzed compressed matter.
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Figure 4.11: Equation of state P(ρ) of the partially accreted crust for compression
∆P = 2.3 × 1029 dyn/cm2 and ∆P = 1.1 × 1030 dyn/cm2. The originally catalyzed
compressed outer crust is presented in violet, and the accreted material part of the
crust is presented in red. The catalyzed outer crust is presented in blue, and the
fully accreted crust is shown as dashed red lines.

4.2.5.2 Neutron drip anomaly

For the compressed crust, the neutron-drip point depends on the shell it occurs in. There
is a configuration represented in Fig. 4.12 of alternating shells with and without dripped
neutrons, which occurs for a range of compression ∆P = [8 × 1029 − 1.5 × 1030] dyn/cm2:
the shallower shell i presents a layer with free neutrons, and its deeper neighbor, shell i + 1
does not. In this case, shell i has started neutron drip at an earlier stage of compression than
shell i + 1. We are left with a layer in shell i + 1 without free neutrons surrounded by two
layers with free neutrons. This configuration emerges due to the compression of different
shells, therefore it cannot appear in a fully accreted crust approximation, nor in the accreted
material part of the partially accreted crust. It is referred to as the neutron drip anomaly.
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Figure 4.12: Schematic of the neutron-drip anomaly. Areas of the shells with free
neutrons are represented in gray.

For example, in the single-nucleus model, after a compression ∆P ∼ 1030 dyn/cm2,
(equivalently around 2.5 × 10−5 M⊙ accreted on the surface of the original crust), neutron
drip occurs at the bottom of the 14th shell when it has not yet in the deepest end of shell
15. This neutron-drip anomaly can be tracked in Fig. 4.9: from the deepest to the shallowest
shell, the global trend of the neutron-drip onset is from left (lowest compression) to right
(highest compression). When two neighbor shells do not follow this trend, the anomaly oc-
curs. In the continuous approach, the anomaly does occur, but not necessarily for the same
shells as in the single-nucleus model.

As the scheme of Fig. 4.12 suggests, the timescale described in Eq. (4.17) entails that
if shell i (shallower) starts neutron drip (at its deepest end) before shell i + 1 (deeper) has
ended emitting free neutrons, the layers of these shells will present an anomalous configu-
ration. This is the case for shells 21 and 22 in the continuous approach: in Fig. 4.9, shell 22
starts dripping at relative compression δP/P = 17%, while shell 21 starts at δP/P = 29%,
which is in accordance with the neutron-drip trend. However, the additional compression
required for the reaction to go through the entire shell after starting at its bottom implies
that shell 22 will finish filling up with free neutrons at δP/P = 35%, that is, well after shell
21 starts dripping neutrons.

For certain values of the compression, this phenomenon is repeated several times: at
∆P ≃ 9 × 1029 dyn/cm2 (in the single-nucleus model), no shell of the originally catalyzed
compressed outer crust has started to drip; at ∆P ≃ 1.56 × 1030 dyn/cm2, all shells have
been pushed to the inner crust. For ∆P ≃ 1.23 × 1030 dyn/cm2, six layers are involved in
the anomaly, thus alternating layers with and without free neutrons. In the single-nucleus
model, after a compression ∆P ≃ 1.6 × 1030 dyn/cm2, all shells of the originally catalyzed
compressed outer crust have undergone neutron drip and have been pushed to depth cor-
responding to the inner crust. In the continuous approach, the whole outer crust has been
pushed to the inner crust after a compression ∆P ≃ 1.1 × 1030 dyn/cm2, .

Now let us put this neutron drip anomaly outside of the single-nucleus model in order
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to assess how neutrons diffuse in the crust. Up to now, we considered a quasi-static scenario
for an anomalous neutron drip. From now on, the kinetics of dripped neutrons is included.
In the following, we focus on a layer of daughter nuclei from two successive electron cap-
tures, but the same reasoning can be applied to pycnonuclear fusion. The emitted neutrons
scatter on nuclei via strong interaction; scattering on electrons can be neglected because it
is due to magnetic moments coupling only. Under the gravitational field acceleration de-
noted g, neutrons drift downward (towards the center), with a flow velocity denoted Vn.
The neutron number current is denoted jn = nnVn, with nn the neutron number density. The
balance of the gravitational force mng with a resistance force from the scattering of neutrons
on nuclei results in the relation

Vn = bmng , (4.21)

with b the mobility parameter of the neutron gas in the lattice of nuclei, as presented in
Pitaevskii and Lifshitz [2012]. The neutron-nucleon scattering is treated as elastic: nuclei are
approximated by hard spheres of radius rA = 1.2 A1/3 fm, with 1.2 fm being the radius of
one nucleon. The transport cross-section for neutron scattering is given by σt = πr2

A. The
mass of a nucleus with nucleon number A ≃ 100, is two orders of magnitude higher than
the neutron mass mn. Moreover, the number density of the neutron gas nn is smaller than
the number density of nuclei nN . At a prevailing temperature of 108 Kelvin, the neutron gas
is non degenerate, such that the treatment presented in Pitaevskii and Lifshitz [2012] can be
applied: the diffusion of the Boltzmann gas of light particles in the gas of heavy particles
approximated by hard elastic spheres. We use the Stokes-Einstein relation for diffusion to
relate the diffusion coefficient D and the mobility parameter b as is presented in Landau and
Lifshitz [1987], such that

D = kBTb , (4.22)

with kB is the Boltzmann constant.

Neutrons drift downward under the action of the external gravitational force, such that
the formula for drift velocity [Pitaevskii and Lifshitz, 2012] gives

Vn =
gmnvn

T
3nAσtkBT

, (4.23)

with vT the mean microscopic (thermal) speed of neutrons given by

vn
T =

√
kBT
mn

= 9.1 × 107

√
T

108 K
cm/s . (4.24)

The mean free path of neutrons denoted λn, which is defined as the inverse of the product
between the nuclei density and the cross section for neutron scattering is

λn = 1.705 × 10−9 (A100)
1/3

ρ11
cm , (4.25)
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with ρ11 the density in 1011 g/cm3, and A100 the nucleon number divided by 100. The drift
velocity of neutrons gives

Vn = 478
(A100)

1/3

ρ11

(
T

108 K

)−1/2 g
g∗

m/yr , (4.26)

with g∗ = 1.3 × 1014M/M⊙/R2
6 the Newtonian surface gravitational acceleration of the star

in cm/s2.

The neutron drift process was considered in the reference frame associated with a lattice
of nuclei, which actually moves inwards due to compression. The radial velocity due to
accretion, denoted Vc, is given by

Vc =
Ṁ

4πR2ρ
= 1.5

Ṁ−10

R2
6ρ11

mm/yr , (4.27)

with ρ11 the density in 1011 g/cm3. Vc is negligibly small compared to Vn, therefore, neutrons
leave the layer right after their emission and thermal equilibration, and drift downward
through the outer crust to the inner crust.

Now, let us check a posteriori that the Boltzman condition is correct. The number density
of the gas of the emitted neutrons is

nn = knn
Vc

Vn
, (4.28)

with kn the number of neutrons emitted from the nucleus, such that the free neutron fraction
denoted xn is

xn =
nn

n
≃ 10−7kn . (4.29)

This corresponds to a diluted ideal neutron gas, described by Boltzmann statistics, because
the condition for the kinetic energy εp of a neutron of momentum p, and the chemical po-
tential (without rest energy) µn [Landau and Lifshitz, 1980] satisfies

e(µn−εp)/kBT ≪ 1 . (4.30)

For an ideal gas of neutrons, the chemical potential is given by

µn = kBT ln

nn

(
2πh̄2

mnkBT

)3/2
 , (4.31)

therefore a sufficient condition for the validity of Boltzmann statistics is that the dimension-
less parameter

nn

(
2πh̄2

mnkBT

)3/2

≪ 1 . (4.32)
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We find that at density ∼ 1011 g/cm3, this dimensionless parameter for neutron gas is in-
deed very small (∼ 10−3). Because the neutron number is conserved, the thickness of the
layer of neutron emission can be estimation at hydrostatic equilibrium. Let us introduce the
dimensionless variable

y =
µe − W

W
. (4.33)

An element of matter is pushed to the threshold pressure of the electron capture Pth, at
which the chemical potential of the electrons equals the threshold of the reaction W. If this
piece of matter is compressed further, the dimensionless variable y increases but can be
considered small (y ≪ 1). Assuming that the pressure is given by that of a ultra-relativistic
gas of degenerate particles (for which P ≃ µ4), above the pressure threshold the pressure
can be approximated by

P ≃ Pth(1 + 4y) . (4.34)

From the relativistic equations for hydrostatic equilibrium, the dimensionless variable is
also given by

y =
gρz
4Pth

, (4.35)

with z the depth relative to the capture threshold location and g ≃ 1014 cm/s2. Electron
captures with neutron emission involved in the neutron-drip anomaly occur typically at a
mass density ρ ≃ 1011 g/cm3, and at a pressure P ≃ 1030 dyn/cm2. From the drift and
radial velocity estimated in Eq. (4.26) and Eq. (4.27), and from the threshold energy of the
electron capture W ≃ 20 MeV, the dimensionless variable at the bottom of the neutron
emission layer gives y ≃ 10−5 and the thickness of the neutron emission layer is of around
three centimeters.

On the one hand, the shells from which free neutrons escape have a lower nucleon
number per cell: with the example of shells 14 and 15 at ∆P ≃ 1030 dyn/cm2, after neu-
tron drip the daughter nucleus (Acell = 102, A = 98, Z = 30) with four free neutrons is
present at pressure P = 1.2 × 1030 dyn/cm2. This nucleus, after losing its four free neutrons
that drifted downward, is stable at this pressure. On the other hand, the shells into which
the free neutrons have drifted will present a higher neutron number density. Overall, the
composition of the compressed crust must be reevaluated. However, treating the interac-
tion of drifting neutrons with deeper shells in the crust requires considerations outside the
single-nucleus approach, which is beyond the scope of this study.

4.2.5.3 Density inversion related instability

The final property of the compressed crust we shall mention is related to density inver-
sion triggered by reactions in the crust. Each exothermic reaction triggered at the bottom
of one shell of the originally catalyzed compressed outer crust is accompanied by a density
jump. After this reaction, the density of the layer just below this shell may be lower. This
density inversion can be subject to the Rayleigh-Taylor instability applied to a lattice, also
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referred to as the elastic Rayleigh-Taylor instability. The study of this type of instability in-
dicates that it develops when the density jump is larger than 10%, for details see Blaes et al.
[1990]. A 10% or more density jump appears in our study for an increase in pressure in the
range [8 × 1029 − 3 × 1030] dyn/cm2, or equivalently after ∼ 10−4 M⊙ has been accreted.

Because the instability must be corrected, the two shells involved in the unstable con-
figuration with a density jump will swap to ensure that the shell with the highest density
will be located deeper than the shell with the lowest density. The displacement of matter
related to this swapping will release gravitational energy ∆E that one can estimate using the
formula in Blaes et al. [1990]

∆E =
4πR4

GM
(

P1,bot − P1,top
)(

P2,bot − P2,top
)( 1

ρ2
− 1

ρ1

)
≃1044 R4

6
M/M⊙

(
P1,bot − P1,top

)
28

(
P2,bot − P2,top

)
28

(
1

ρ2,11
− 1

ρ1,11

)
erg , (4.36)

with
(

Pi,bot − Pi,top
)

28 the pressure thickness in 1028 dyn/cm2 of the layer i, and ρi,11 the
mean density in 1011 g/cm3 of the layer i. The pressure range of the layers subject to elastic
Rayleigh-Taylor instability is typically 1028 or 1029 dyn/cm2. This corresponds to a layer
mass of mass ∼ 10−6 M⊙, and to a timescale of the formation of these layers of approxi-
mately 104 yr for an accretion rate of 10−10 solar mass per year.

Overall, partially accreted crusts composed of the original crust under compression and
of freshly accreted material must be considered for neutron stars that have accreted small
amounts of matter. We have calculated the heat sources in an originally catalyzed outer
crust under compression, and showed that the total heat release is of the same order than
the heat released in a fully accreted outer crust. The properties of the compressed crust
are different from that of a fully accreted crust, and will have an impact on the modelling
of the thermal relaxation of some sources. The neutrons emitted from the nucleus in the
compressed crust travel to deeper layers in the star, an effect that has not been taken into
account in our calculations. Further results require including neutron diffusion in the crust
when establishing the equation of state and composition of the partially accreted crust. The
exothermic reactions triggered in the compressed outer crust lead to a density related insta-
bility; shells involved in this instability should swap and release gravitational energy, in a
mechanism which dynamics are beyond the scope of this manuscript.
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4.3 Layers of electron captures in accreting neutron stars

So far, we have treated the kinetics of exothermic reactions in a very simplistic approach:
reaction are instantaneous, so to be clear, we have not treated the kinetics at all. However,
the reaction rate affects the heat release in accreting crusts.

In this section, we concentrate on the role of electron capture rates in deep crustal heat-
ing. First, we present the derivation of the reaction rate of electron captures, and how nu-
clear data from β−-decay can be used for a few reactions in the outer crust of accreted neu-
tron stars. A simple approach for the equation of state of a mixture of nuclei is presented,
and the equation followed by the mixture of parent and daughter nuclei of electron captures
is established. Finally, the role of the reaction rate on heat release and cooling of the crust is
explored.

4.3.1 Electron captures

The β-decay family of reactions includes the β−-decay in Eq. (4.37), the β+-decay in
Eq. (4.38), and electron capture in Eq. (4.39)

(A, Z) → (A, Z + 1) + e− + νe− , (4.37)

(A, Z) → (A, Z − 1) + e+ + νe− , (4.38)

(A, Z) + e− → (A, Z − 1) + νe− , (4.39)

with Z the proton number, A the nucleon number, the notation e− and e+ designating elec-
trons and positrons respectively, and νe− and νe− designating electronic neutrinos and anti-
neutrinos. Historically, this family of reactions brought forth the role of neutrino particles
in radioactive channels. The puzzling continuous spectrum of β particles (e+, e−) was dis-
cussed by Wolfgang Ernst Pauli in a series of letters to Lise Meitner and discussions at the
Tübingen 1930 convention Gustafson [2010]. This led to the discovery of neutrinos, which
were first called neutrons, when those had not been discovered yet.

Let us consider a lattice of nuclei permeated by a sea of relativistic electrons. In the
heavy nucleus approximation, the energy of the nucleus (A, Z) is given by its nuclear mass
denoted M(A, Z) such that

M(A, Z)c2 = Mat(A, Z)c2 − Zmec2 + Bel(Z) , (4.40)

with Mat(A, Z) the atomic mass which can be extracted from tables of experimental data
presented in Wang et al. [2021b], me the electron mass, and Bel the total binding energy of
electrons approximated by the formula presented in Lunney et al. [2003]

Bel(Z) = 14.4381 × Z2.39 + 1.55468 × 10−6 × Z5.35 eV . (4.41)
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Neutrinos are considered massless, and we consider that they escape immediately after be-
ing emitted. In this framework, the electron capture is permitted when the energy of elec-
trons -or chemical potential- reaches the threshold denoted W, given by

W ≡ Mat(A, Z − 1)c2 −Mat(A, Z)c2 + Bel(Z − 1)− Bel(Z) + mec2 . (4.42)

4.3.1.1 Derivation of the reaction rate

In the following, we present the derivation of the rate of electron captures. Because
most experimental data of nucleus half-lives are presented for β−-decay, we shall derive the
reaction rate of both the β−-decay and electron captures. To do so, the Fermi golden rule is
used. Based on a perturbation theory derived by Paul Adrien Maurice Dirac [Dirac, 1927],
the formula for the probability of transition from one initial state to one final state Γi→f was
treated again by Enrico Fermi to give

Γi→f =
2π

h̄
|M |2ρ(Ef) , (4.43)

with ρ(Ef) the density of states with final energy Ef, and M the matrix element of the tran-
sition. Let us study the following electron capture and its corresponding β−-decay

(A, Z) + e− → (A, Z − 1) + νe , (4.44)

(A, Z − 1) → (A, Z) + e− + νe . (4.45)

The constituents k of the two processes are each defined by their momenta denoted pk.
The projection of the electron spin is denoted se, and the spin of the neutrino is denoted
sνe ; the spin of the nucleus is denoted M and its projection on the spin quantization axis is
denoted J. The matrix elements of the electron capture, denoted Mec, and of the β−-decay,
denoted Mβ, are given by

Mec = ⟨ p⃗νe , sν| ⟨ p⃗f, Mf Jf| Ĥw | p⃗i, Mi Ji⟩ | p⃗e, se⟩ , (4.46)

Mβ = ⟨ p⃗νe , sνe | ⟨ p⃗e, se| ⟨ p⃗f, Mf Jf| Ĥw | p⃗i, Mi Ji⟩ , (4.47)

with Ĥw the Hamiltonian of the weak interaction mediating the interaction between initial
and final states. The subscript notation i and f designate the initial nucleus and final nucleus
respectively. For Eq. (4.46), the initial nucleus is (A, Z) and the final nucleus is (A, Z − 1),
whereas for Eq. (4.47), the initial nucleus is (A, Z − 1) and the final nucleus is (A, Z); in the
following, the proton number is used in the notation. The transition probability from one
initial to one final state is not the quantity we are interested in, but rather its sum over all
final states, averaged over all initial states. In other words, the quantity of interest is the
reaction rate denoted R.

Rec =
2π

h̄

〈
∑
p⃗νe

∑
p⃗Z−1

∑
JZ−1

|Mec|2δ(Ee − W − Eνe)

〉
p⃗e,se ,⃗pZ ,JZ

, (4.48)
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Rβ =
2π

h̄

〈
∑
p⃗νe

∑
p⃗e

∑
se

∑
p⃗Z

∑
JZ

|Mβ|2δ(W − Ee − Eνe)

〉
p⃗Z−1,JZ−1

, (4.49)

with Ee and Eν/Eν the energy of electrons and (anti-)neutrinos respectively. Note that there
is no sum over the neutrino spin, because the direction of the spin of the (anti-)neutrino
which is a massless particle is determined by the direction of its momentum [Goldhaber
et al., 1958].

From now on, a number of approximations are used to drastically simplify the deriva-
tion:

1. The study follows the heavy nucleus approximation such that no transfer of momen-
tum between the parent and daughter nuclei is taken into account. Therefore

Rec =
2π

h̄

〈
∑
p⃗νe

∑
JZ−1

|Mec|2δ(Ee − W − Eνe)

〉
p⃗e,se,JZ

, (4.50)

Rβ =
2π

h̄

〈
∑
p⃗νe

∑
p⃗e

∑
se

∑
JZ

|Mβ|2δ(W − Ee − Eνe)

〉
JZ−1

. (4.51)

2. We shall only study reactions referred to as allowed, i.e. reactions which matrix ele-
ment does not vanish in the limit of state final nucleus

⟨Ψnuc
f | Ĥw |Ψnuc

i ⟩ = 0, (4.52)

with Ψnuc
i/f the wave function of initial and final nuclei, and Ĥw the weak interaction

operator. The concept of allowed and forbidden decays and electron captures can be
represented by a Taylor expansion of the electron and (anti-)neutrino wave functions,
assuming that they are plane wave. Let us denote q⃗ the sum or difference of the mo-
mentum of electrons p⃗e and the momentum of neutrinos p⃗νe . If we consider that the
quantity q⃗ · R/h̄ is small enough on the scale of nuclear energy, with R the radius of
the nucleus, the wave function of electrons and neutrinos can be expanded as

ei⃗q·⃗r/h̄ ≃ 1 +
i⃗q · r⃗

h̄
+

1
2!

(
i⃗q · r⃗

h̄

)2

+ ... ; (4.53)

for details, see chapter 17 of Povh et al. [2004]. The zero order term dominates the
contribution to the matrix element, and we refer to the reaction reduced to the zeroth

order term as allowed. However, if the inner product of the nuclei states at zero order
vanishes, higher order terms in the Taylor expansion must be considered, and the
reaction is referred to as forbidden.

In the following, we shall focus on allowed reactions, although forbidden reactions
are briefly mentioned in the next paragraph. Because the first order of the Taylor ex-
pansion around zero of the exponential function (for the plane waves) is 1, the matrix



129 4.3. Layers of electron captures in accreting neutron stars

element does not depend on the momenta of electrons and neutrinos but is constant,
so that

Rec =
2π

h̄

〈
∑
JZ−1

|Mec|2 ∑
p⃗νe

δ(Ee − W − Eνe)

〉
p⃗e,se,JZ

, (4.54)

Rβ =
2π

h̄

〈
∑
se

∑
JZ

|Mβ|2 ∑
p⃗νe

∑
p⃗e

δ(W − Ee − Eνe)

〉
JZ−1

. (4.55)

3. We suppose that the modulus of the matrix element does not depend on the spin of
leptons, such that

Rec =
2π

h̄
|Mec|2

〈
∑
p⃗νe

δ(Ee − W − Eνe) ∑
JZ−1

〉
p⃗e,se,JZ

, (4.56)

Rβ =
2π

h̄
|Mβ|2

〈
∑
p⃗νe

∑
p⃗e

δ(W − Ee − Eνe)∑
se

∑
JZ

〉
JZ−1

. (4.57)

Because electrons and (anti-)neutrinos have a continuous spectrum, the sums and aver-
ages over their momenta translates into three dimensional integrals3, such that

Rec =
2π

h̄
|Mec|2

〈∫ d3 pνe

(2πh̄)3

∫ d3 p⃗e

(2πh̄)3 δ(Ee − W − Eνe) ∑
JZ−1

〉
se,JZ

, (4.58)

Rβ =
2π

h̄
|Mβ|2

〈∫ d3 pνe

(2πh̄)3

∫ d3 p⃗e

(2πh̄)3 δ(W − Ee − Eνe)∑
JZ

〉
JZ−1

. (4.59)

We define the following integrals

Iec =
2π

h̄

∫ d3 pe

(2πh̄)3

∫ d3 pν

(2πh̄)3 δ
(
Ee − W − Eν

)
=

4m5
e c4

(2π)3h̄7

[
F (EF)−F (W)

]
, (4.60)

Iβ =
2π

h̄

∫ d3 pe

(2πh̄)3

∫ d3 pν

(2πh̄)3 δ
(
W − Ee − Eν

)
=

4m5
e c4

(2π)3h̄7

[
F (W)−F (1)

]
︸ ︷︷ ︸

f

, (4.61)

with the barred quantities defined as X = X/(mec2), EF the Fermi energy of electrons, and

F (x) =
√

x2 − 1
60

[
20W2(x2 − 1)+Wx(15− 30x2)+ x2(12x2 − 4)− 8

]
+

W
4

ln
(√

x2 − 1 + x
)

.
(4.62)

3To operate the average over the momentum of electrons, one must sum all possible infinitesimally small
states (in a discretization of the continuous spectrum) and divide by the total number of states available for the
electron. This average appears for the electron capture, in which the electron is an initial and only predefined
energy state.
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The reaction rates of allowed electron captures and β−-decay under the approximations
described above render

Rec =
2JZ−1 + 1
2(2JZ + 1)

|Mec|2
4m5

e c4

(2π)3h̄7

[
F (EF)−F (W)

]
, (4.63)

Rβ =
2JZ + 1

2JZ−1 + 1
|Mβ|2

4m5
e c4

(2π)3h̄7 f . (4.64)

Electron captures and β-decays are subject to selection rules [Povh et al., 2004] with respect
to the nuclear spin and parity denoted π. It defines whether the reaction is a Fermi process
or a Gamow-Teller process

J f = Ji = 0 and πi = π f → Fermi reaction (4.65)

J f = −Ji = 1,−1 and πi = π f → Gamow-Teller reaction (4.66)

Experimental data is usually available for β−-decays and not for electron captures. The
quantity provided in nuclear data sheets is f t1/2, with f the function given in Eq. (4.61)
which is linked to the reaction rate according to

Rβ =
ln(2)
t1/2

. (4.67)

To express the modulus of the matrix element of electron captures from that of the β−-
decays, one can use two fundamental symmetries:

• the charge conjugation transforms a particle onto its anti-particle; its related symmetry
states that diagrams presented in Fig. 4.13, with an horizontal time axis, are equivalent

(A, Z − 1) e−

ν

(A, Z)

(A, Z − 1) e−

ν (A, Z)

Figure 4.13: Equivalent diagrams for the weak interaction involving nuclei (A, Z)
and (A, Z − 1), through charge conjugation symmetry.

• the time reversal symmetry stating that diagrams presented in Fig. 4.14 are equivalent,

such that
|Mec| = |Mβ| . (4.68)
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(A, Z − 1) e−

ν (A, Z)

(A, Z) ν

e− (A, Z − 1)

Figure 4.14: Equivalent diagrams for the weak interaction involving nuclei (A, Z)
and (A, Z − 1), through time reversal symmetry.

We can finally write the reaction rate of electron captures per one nucleus using the experi-
mentally measured quantity f t1/2 as

Rec =
ln(2)
f t1/2

2Jec
Z−1 + 1

2(2Jec
Z + 1)

2Jβ
Z−1 + 1

2Jβ
Z + 1

[
F (EF)−F (W)

]
, (4.69)

with Jec and Jβ the spin projections for nuclei of the electron capture and β−-decay respec-
tively. We can introduce the timescale of the electron capture defined as

1
τec

=
ln(2)
f t1/2

2Jec
Z−1 + 1

2(2Jec
Z + 1)

2Jβ
Z−1 + 1

2Jβ
Z + 1

, (4.70)

such that the reaction rate is written as

Rec =
1

τec

[
F (EF)−F (W)

]
(4.71)

Before using this formula in the next section, let us make one final point about the plane
wave function assumption for the β-particles to realize that one element has been over-
looked. One should write the wave function of β-particles solving the Z-body Coulomb
effect that protons have on the electron. Instead of solving this quite involved problem, we
will consider that the momentum of the electron is affected by a charge factor which changes
the β-spectrum. This factor is however included in the experimental data for the β−-decay.

4.3.1.2 Application for the first few shells of an accreting crust

Assuming 56Fe type of ashes for an accreting neutron star in the fully accreted crust
approximation, the following chain of reactions occurs starting from the surface of the outer
crust

56
26Fe W = 4.31−−−−→ 56

25Mn∗ W = 2.13−−−−→ 56
24Cr W = 9.61−−−−→ 56

23V W = 7.27−−−−→ 56
22Ti W = 14.42−−−−−→ 56

21Sc W = 12.51−−−−−→ 56
20Ca ,

with W the energy threshold of the reaction given in MeV, and the index ∗ designating an
excited state. Because of the disfavor of odd proton number nuclei, the kinetics of the first,
third and fifth reaction in this chain will dominate the study: the second electron capture
occurs so fast after the first one that it can be considered instantaneous. In this section,
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we present the reaction rate of the three electron captures that dominate the kinetics of the
chain.

For each electron capture:

• the energy level diagrams are drawn for its corresponding β−-decay, such that the
quantity f t1/2 extracted from nuclear data sheets on β−-decays in the ENSDF website
[National Nuclear Data Center, 2022] can be used;

• all channels of the β−-decay are not presented, only the channel through which most
of parent nuclei go through;

• the projection of the spin of the nucleus X and its parity Jπ
X , as well as the energy level

EX in keV (denoted 0.0 for the ground state) are presented in the diagram.

The diagram takes the generic form

Jπ
X

A
Z−1X

EX

Jπ
X′

A
Z X′

EX′

Figure 4.15: Generic energy level diagram of the β−-decay.

4.3.1.3 For the process: 56
26Fe → 56

25Mn → 56
24Cr

1+
56
25Mn

110

2+ 26

3+ 0.0

2+ 846

0+
56
26Fe

0.0

Figure 4.16: Energy level diagram for the Gamow-Teller transition 56
25Mn → 56

26Fe.

This first process is the most peculiar of our reaction chain. The allowed transition is not
energetically favorable, such that an allowed electron capture operated on 56Fe produces an
excited state 56Mn∗, with a 110 keV excitation energy. The most energetically favorable tran-
sition would be a doubly forbidden transition, for which the final nucleus is in its ground

https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html
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state. However, the time required for the doubly forbidden reaction to occur is particularly
long4. As we are studying an accreting crust for which the pressure is continuously in-
creased during the active phase of accretion, the chemical potential of electrons increases as
well. Assuming an active accretion rate of 10−8 solar mass per year, the time required for the
chemical potential to reach the threshold of the next electron capture is of ∼ 0.3 years. Given
the time required for the doubly forbidden transition to occur, the chemical potential of elec-
trons shall reach the threshold for the allowed transition in a much shorter timescale than it
takes for the forbidden decay to operate. Therefore, we consider the reaction 56Fe →56 Mn∗;
the daughter nucleus being in its excited state will decay through γ rays in a very short
timescale (of the order of ∼ 10−10s).

The nuclear data sheets of this β−-decay is provided for the allowed Gamow-Teller tran-
sition from the ground state nucleus 56Mn3+ to the excited state 56Fe2+, whereas we need
data for the allowed Gamow-Teller electron capture from the ground state 56Fe0+ to the ex-
cited state nucleus 56Mn1+. As both transitions are allowed, and we approximate that the
matrix element of the transition does not depend on the recoil momentum of nuclei, the
timescale of both reactions is approximated to be the same such that

1
τec

=
ln(2)
f t1/2

21
10

= 1.154 × 10−7 s , (4.72)

with
f t1/2 = 107.101 s . (4.73)

The diagram of the second electron capture is

0+
56
24Cr

0.0

1+
56
25Mn∗

110.0

Figure 4.17: Energy level diagram for the Gamow-Teller transition 56
24Cr → 56

25Mn.

4.3.1.4 For the process: 56
24Cr → 56

23V → 56
22Ti

1+
56
23V

0.0

0+
56
24Cr

0.0

Figure 4.18: Energy level diagram for the Gamow-Teller transition 56
23V → 56

24Cr.

4A quick estimation of the half-time for a forbidden β−-decay of order l can be done using the half-life for
the allowed β−-decay, and the Taylor expansion of electron and neutrino plane wave functions in the matrix
element of the reaction [Povh et al., 2004].
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The timescale of the reaction rate for this electron capture gives

1
τec

=
ln(2)
f t1/2

9
2
= 7.482 × 10−5s , (4.74)

with
f t1/2 = 104.62 s . (4.75)

The diagram of the second electron capture is

0+
56
22Ti

0.0

1+
56
23V

0.0

Figure 4.19: Energy level diagram for the Gamow-Teller transition 56
22Ti → 56

23V.

4.3.1.5 For the process: 56
22Ti → 56

21Sc → 56
20Ca

1+
56
21Sc

0.0

0+
56
22Ti

0.0

Figure 4.20: Energy level diagram for the Gamow-Teller transition 56
21Sc → 56

22Ti.

The timescale of the reaction rate for this electron capture gives

1
τec

=
ln(2)
f t1/2

9
2
= 1.107 × 10−3s , (4.76)

with
T1/2 = 26 ms , (4.77)

defined as the half time for all channels of the reaction, whose value was taken from Craw-
ford et al. [2010]. Assuming that the one channel presented in Fig.4.20 dominates all other
channels of the reaction, we approximate

f t1/2 = 103.45 s . (4.78)

The diagram of the second electron capture is represented as



135 4.3. Layers of electron captures in accreting neutron stars

0+
56
20Ca

0.0

0+
56
21Sc

0.0

Figure 4.21: Energy level diagram for the Fermi transition 56
20Ca → 56

21Sc.

4.3.2 The linear mixing rule approach to a mixture of nuclei

In order to assess the role of the kinetics of electron captures on deep crustal heating,
we must first establish an equation of state model for a mixture of two nuclei. The mixture
is made of even proton number parent nuclei of the first electron capture, and the daugh-
ter nuclei of the next electron capture, later on referred to as the grand-daughter nuclei.
Because odd proton number nuclei are unstable, the electron capture from an odd proton
number nucleus to an even proton number nucleus is considered instantaneous, such that
the mixture does not contain the daughter nuclei of the first electron capture.

A simple approach is taken to establish the relation between the pressure and the den-
sity -equation of state- in the outer crust: a lattice allowing for the mixture of two nuclei is
permeated by a gas of electrons. It is a reasonable approximation to consider that the con-
tribution to the outer crust pressure is dominated by the pressure of degenerate electrons,
denoted Pe. The total pressure in the crust is given by

P = Pe + Plat , (4.79)

with Plat the pressure associated to the lattice correction. The pressure of a degenerate gas
of relativistic electrons is derived in chapter 2 of Shapiro and Teukolsky [1986] such that

Pe =
(mec2)4

(h̄c)3 ϕ

(
n1/3

e
(3π2)1/3h̄

mec

)
. (4.80)

The dimensionless function ϕ(x) is given by

ϕ(x) =
x
(
1 + x2)1/2

(
2x2

3 − 1
)
+ ln

(
x +

(
1 + x2)1/2

)
8π2

=
1

12π2

(
x4 − x2

)
+

ln(2x)
8π2 − 1

16π2 +O
(

1
x4

)
, (4.81)

with O
( 1

x4

)
designating terms of order x−4 or lower. The quantity x is the relativity param-

eter and is defined as the ratio between the Fermi momentum of the particle over its mass
energy.

The lattice correction pressure, or in other words the Coulomb correction to a rigid elec-
tron background, must be established for a mixture of parent and grand-daughter ions with
proton number Z and Z − 2 respectively. According to the linear mixing rule discussed in
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section 2.4.7 of Haensel et al. [2007a], the Coulomb correction energy density denoted Elat is
given by

Elat(Z, ne) ≃
1
nI

(
nI,Z ECoul(Z) + nI,Z−2 ECoul(Z − 2)

)
, (4.82)

with nI the density of ions, nI,Z the density of ions with proton number Z. The Coulomb
correction energy density for the ion with proton number Zis given by

ECoul(Z) = −0.9n4/3
I,Z

(
4π

3

)1/3

Z2e2 . (4.83)

We introduce the quantity denoted X, which corresponds to the ratio between the num-
ber of parent nuclei, over the total number of nuclei. The relation between the electron
density ne, and the ion density for a rigid electron background is given by

ne = nI (X0Z0 + X2Z2) ; (4.84)

Z0 and Z2 designate the proton number of the parent and grand-daughter nuclei. X0 desig-
nates the ratio of the parent nucleus over the total number of nuclei, and X2 designates the
ratio of the grand-daughter nucleus over the total number of nuclei. In the zero temperature
limit, the relation between the lattice correction pressure and the Coulomb correction for a
mixture of nuclei with proton number Z and Z − 2 gives

Plat =
Elat

3
= −0.3

(
4π

3

)1/3

n4/3
e e2F (X) , (4.85)

with the linear mixing rule function

F (X) =

(
Z − 2

)5/3
+ X

(
Z5/3 −

(
Z − 2

)5/3
)

Z + 2(X − 1)
. (4.86)

The relation between the baryon density, denoted n, and the density of electrons is given
by

n =
ne A

XZ +
(
1 − X

)(
Z − 2

) , (4.87)

such that the expression for the equation of state renders

P =
(mec2)4

(h̄c)3 ϕ
(

α(X)n1/3
)
+ β(X)n4/3 , (4.88)

with

α(X) = (3π2)1/3 h̄c
mec2A1/3

[
XZ +

(
1 − X

)(
Z − 2

)]1/3 , (4.89)

β(X) = −0.3
(

4π

3

)1/3

e2F (X)

[
XZ +

(
1 − X

)(
Z − 2

)]4/3

A4/3 . (4.90)
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The chemical potential of a degenerate gas of electrons in a lattice is

µe(X) =
√

n2/3[α(X)mec2]2 + (mec2)2 + 4β(X)n1/3 , (4.91)

with EF,e the energy density of electrons on their Fermi surface. The relation between the
chemical potential and the baryon density, assuming that the electron captures are instanta-
neous (X = 1 for each shell), is presented in Fig. 4.22 for the first three shells of the accreted
outer crust with 56Fe ashes. In this figure, we also present the relative difference between the
above mentioned approach (relativistic approach), and the ultra-relativistic approach. For
the shallowest shell of the outer crust, the ultra-relativistic approximation leads to an error
of ∼ 13%, for the lowest densities, which falls to 1% at the upper boundary density of the
shell. We are interested in designing the equation of state for a mixed layer of nuclei after
the threshold that leads to the next shell, therefore, at densities around ∼ 10−6 fm−3. Using
the ultra-relativistic approach is therefore reasonable.

10−9 10−8 10−7 10−6 10−5
n (fm−3)

10−3

10−2

10−1

|P
−
P U

ltr
a|/
P

Z=26
Z=24
Z=22

10−9 10−8 10−7 10−6 10−5

n (fm−3)

0

5

10

15

μ 
(M

eV
)

W=4.3134

W=9.6099

W=14.4157

Figure 4.22: Relation between the chemical potential µ and the baryon density
n in the first three shells of the accreted outer crust, in the bottom panel. Relative
difference between the equation of state calculated in the relativistic approach, and
the ultra-relativistic approach in the upper panel.

In the above mentioned mixture of nuclei approach, the properties of the six electron
captures of the chain we study are presented in Table 4.2.
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Z0 Pth (MeV/fm−3) nth (fm−3) W1 (MeV) W2 (MeV)

26 3.776 × 10−7 7.872 × 10−7 4.313 2.135

24 9.547 × 10−6 9.521 × 10−6 9.610 7.269

22 4.824 × 10−5 3.491 × 10−5 14.416 12.514

Table 4.2: Properties of the electron capture pairs (56, 26) → (56, 24),
(56, 24) → (56, 22) and (56, 22) → (56, 20) calculated in the framework of the lin-
ear mixing rule equation of state. The pressure threshold Pth of the reaction, the
equivalent baryon density nth and the reaction energy of the first and second elec-
tron capture, respectively W1 and W2, are presented for three parent proton num-
ber Z0.

4.3.3 The continuity equation

In the previous section, we have introduced the quantity X: the ratio of the number of
parent nuclei of an electron capture on nucleus (A, Z), over the total number of nuclei (sum
of parent and grand-daughter nuclei). In the accreting crust of a neutron star, X depends
on the depth in the star, and on the time variable t through the accretion rate of the binary
system. In the following, we present and solve the equation followed by X during the active
and quiescence phases of accretion.

4.3.3.1 Formulation of the continuity equation

During accretion, for a spherically symmetric accretion rate, freshly accreted matter is
flowing and sinking towards the core with a velocity

v(z) =
Ṁ

4πR2mBn(z)
, (4.92)

with Ṁ the accretion rate, R the total radius of the star, mB the mass of a baryon, z the
radial variable defined as z = R − r (the variable r is oriented towards the surface), and n
the baryon density. The product of the ratio X with the baryon density is governed by the
continuity equation

∂t(nX) + ∂z(vnX) = −nXR , (4.93)

with R the reaction rate of the first electron capture defined as the number of reactions
per unit time, and per nucleus. Using the Tolman-Oppenheimer-Volkoff equations approxi-
mated in the crust, cut to the Newtonian limit5, we operate a change from the radial variable
z to the pressure

∂P
∂r

= −GM
R2 ϵ , (4.94)

with M the total mass of the star, and ϵ the energy density which is considered equivalent
to the mass density ρ such that ϵ ≃ ρ = m0n with m0 the mass of a baryon. The continuity

5The Newtonian limit of the Tolman-Oppenheimer-Volkoff equations falls to the Poisson’s equation.
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equation is therefore given by

∂

∂t
ln
(
n X

)
+

GMṀ
4πR4

∂ ln X
∂P

= −R(X, P) . (4.95)

The reaction rate was explicitly derived in section 4.3.1.1, and depends on the pressure
through the dependence of the function F on the Fermi energy of electrons, see Eq. (4.69)
in section 4.3.1.1. The accretion timescale is defined in the Newtonian limit, as the time
required to push accreted matter to the pressure threshold Pth of the reaction

τacc(t) =
4πR4

GMṀ(t)Pth
. (4.96)

The continuity equation can be rewritten in a dimensionless form as

τec
∂

∂t
ln
(
nX
)
+

τec

τacc(t)
∂ ln X

∂P̃
= −

[
F (EF(P))−F (W)

]
, (4.97)

with P̃ = P/Pth.

4.3.3.2 Astrophysically motivated accretion rate

We intend to study a realistic accretion rate motivated by X-ray observations of various
sources in accreting low-mass X-ray binaries. Several sources have been observed alter-
nating between active accretion stages lasting from weeks to years, and quiescence stages
lasting from months to decades. The typical duration of active accretion can be informed by
the observation of X-ray outbursts (lasting surge in luminosity) of quasi-persistent sources
EXO 0748−676 (see Parikh et al. [2020] and reference therein), KS 1731−260 (see Merritt
[2017] and reference therein), XTE J1701−462 Fridriksson et al. [2010] and IGR J17480−2446
(see Ootes et al. [2019] and reference therein) which lasted respectively 24 years, 12.5 years,
1.6 years and 10 weeks.

Because the field of X-ray astronomy in transient neutron star observations flourished
only a few decades ago, we have not observed many stars repeating the alternation of active
accretion and quiescence. However, the source MXB 1659−29 (see Parikh et al. [2019] and
reference therein) presented two well monitored outbursts lasting respectively 2.5 and 1.7
years interspersed by a quiescence period of 14 years; this source was first observed in 1976
during an outburst estimated to last between 2 and 2.5 years. In this study, we use the active
accretion time of four years, and consider that the duration of quiescence is one order of
magnitude larger than the active accretion time, such that tq = 10ta.

The average accretion rate during active phases were estimated for the sources XTE
J1701−462 Fridriksson et al. [2010] and IGR J17480−2446 Degenaar and Wijnands [2011] to
be respectively 1.7 × 10−8 M⊙ per year and 3 × 10−9 M⊙ per year. The observation of X-ray
bursts indicate a luminosity variability in the active phase from which the accretion rate as a
function of time during active phases can be inferred, however we do not intend to discuss
such variability, but rather to use a mean value of the accretion rate in the active phase. The
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active accretion rate, denoted Ṁa, is described by an exponential onset and offset such that

Ṁa(t) = Ṁmax

(
1

1 + eα(t−ta+to)
+

1
1 + e−α(t−to)

− 1
)

, (4.98)

with Ṁmax the accretion rate outside the onset and offset of active accretion, to the time
allocated to the onset and offset chosen to be 5% of the active time, and α a constant set such
that after t0, the maximum accretion is reached. In this study, unless otherwise stipulated,
the accretion rate is Ṁmax = 10−8 M⊙ per year, a reasonable value with respect to observed
mean accretion rate during active accretion.

4.3.3.3 Heat release

The heat release per nucleus of each process of the pair of electron captures, respectively
denoted q1 and q2, assuming that the neutrinos escape the system immediately, is given by

q1 = M(A, Z)c2 −M(A, Z − 1)c2 + µe , (4.99)

q2 = M(A, Z − 1)c2 −M(A, Z − 2)c2 + µe , (4.100)

with µe the chemical potential of electrons. The heat per nucleus released by the pair of
electron captures is the sum of the heat release of the two electron captures

q(X, P) = 2µe(X, P)− (W1 + W2) , (4.101)

with W1 and W2 the reaction thresholds of the first and second electron capture respectively.
In the instantaneous approach, all the heat is released at exactly the pressure threshold such
that µe(Pth) = W1, and

qinstan = W1 − W2 . (4.102)

Less than the heat release per nucleus, we are interested in the heat released in the whole
layer of electron capture during a cycle of accretion. To that purpose, we define the heating
rate per unit volume at given pressure and given time as follows

q̇(P, t) = q(X, P)R(P)
n
A

X(P, t) , (4.103)

with n/A the density of nuclei (required because the reaction rate is defined per nucleus).
Because spherical symmetry is considered, the integral over the volume corresponds to the
heating rate in the layer as a function of time

Q̇(t) =
4πR4Pth

GMmB

∫ P(X=0)/Pth

1

q̇(P, t)
n

dP . (4.104)

Finally, the total heat released during one cycle of accretion, denoted Q, is given by

Q =
∫ ta+tq

0
Q̇(t)dt . (4.105)
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To compare our results to the instantaneous approach, it is convenient to define this quantity
per baryon, by dividing Q by the number of accreted baryons during the cycle of accretion

Nb =
∫ ta

0

Ṁa(t)
mB

dt . (4.106)

In the following, neutrino losses are neglected in our study of matter heating in the crust.

4.3.4 Stationary solution

As a first step, let us solve a simplified version of Eq. (4.97), in which the solution does
not depend on the time variable: X(P, t) → X(P). Therefore, we solve the stationary form
of the continuity equation in the active phase of accretion

τec

τacc

∂ ln X
∂P̃

= −
[
F (EF(P))−F (W)

]
, (4.107)

with the accretion timescale defined by the accretion rate at peak activity 10−8 M⊙ per year.
One boundary condition is required to solve this equation: X(P = Pth) = 1, which is equiva-
lent to stating that right before the threshold pressure is reached, all nuclei are parent nuclei.
Results are presented in Fig. 4.23, Fig. 4.24 and Fig. 4.25:

• For the shallowest shell, with parent nuclei proton number Z0 = 26:
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Figure 4.23: Solution to the stationary form of the continuity equation for parent
proton number Z0 = 26.

The range of pressure required for the parent nuclei fraction X to fall to zero is referred
to as the layer of electron capture. It is defined by the pressure at which the ratio X
numerically vanishes (10−10), such that the range of pressure for the layer is [3.78 ×
10−7 − 5.51 × 10−7] Mev/fm−3.
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• For the reaction with parent proton number Z0 = 24:
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Figure 4.24: Solution to the stationary form of the continuity equation for parent
proton number Z0 = 24.

The range of pressure for the layer is: [9.55 × 10−6 − 9.63 × 10−6] Mev/fm−3.

• For the reaction with parent proton number Z0 = 22:

1.0000 1.0002 1.0004 1.0006 1.0008 1.0010

0

0.2

0.4

0.6

0.8

1.0

P/Pth

X
(P
)

P(X=10
-10)≃ 4.86 × 10

-5
MeV/fm-3

Figure 4.25: Solution to the stationary form of the continuity equation for parent
proton number Z0 = 22.

The range of pressure for the layer is: [4.82 × 10−5 − 4.86 × 10−5] Mev/fm−3.

The layer of electron captures is non negligible for the reaction with parent proton number
Z0 = 26, and is relatively thinner for the reaction with parent proton number Z0 = 22.
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The steepness of the decrease of X can be anticipated from the reaction rate formula. The
constant quantity 1/τec presented in Eq. (4.72), Eq. (4.74), and Eq. (4.76) established from
experimental data on β−-decay reactions, dictates the pressure derivative in the continuity
equation (4.107): the larger this quantity, the steeper the decrease of X.

It is interesting to note that the absolute thickness of the electron capture layers are quite
similar for the three shells we study. For Z0 = 26, Z0 = 24 and Z0 = 22, this layer is of the
order of 10−7 MeV/fm3 in pressure thickness. In terms of mass of the layer which can be
calculated from Eq. (4.9), it corresponds to approximately 10−8 M⊙. The number of baryons
in the layer of electron captures are also approximately the same for all three shells studied.

Now let us discuss the heat release associated to those results: in the following, we as-
sume that the stationary solution prevails during the whole of the active accretion. From
Eq. (4.103), the dependence on the pressure of the heating rate q̇ implies that reactions trig-
gered deeper in the layer, release more heat. Therefore, the thicker the layer of electron
captures, the larger the heat release. In Fig. 4.26, we present the heating rate per unit vol-
ume, as a function of the pressure in the star for Z0 = 26 and Z0 = 22. To assess the role of
the pressure dependence on the heating rate per unit volume, we also represent the value of
the heating rate for q = qinstan; note that this is not the heating rate per unit volume for the
instantaneous approach, as the heat should entirely be released at the pressure threshold.
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Figure 4.26: Heating rate per volume q̇ as a function of the pressure in the crust for
the parent nuclei with proton number Z0 = 26 and Z0 = 22.

From Fig. 4.26a and Fig 4.26b, we can conclude the following:

• The heating rate per volume peaks to a higher value for the reaction with parent proton
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number Z0 = 22 than for Z0 = 26: this can be explained by the value of the heat release
per nucleus, which is higher for deeper shells.

• The pressure dependence affects the heating rate relatively more for the reaction with
parent proton number Z0 = 26 than Z0 = 22: the thickness of the layer capture is
relatively thicker for Z0 = 26 than for Z0 = 22, therefore, nuclei can go through the
reaction deeper in the shell, and release more heat. It is also interesting to note that
in Fig. 4.26a, while the q = qinstan approach has the shape of a perfectly symmetric
Gaussian, our mixed layer approach is ever so slightly asymmetric.

In the stationary approach to the equation, we can estimate the total heat release.

• For Z0 = 26: in the instantaneous approach, 38.91 keV per accreted nucleon is re-
leased, and in the mixed layer approach, 50 keV per accreted nucleon is released; this
is equivalent to a ∼ 30% increase of the heat release in the mixed layer approach.

• For Z0 = 24: in the instantaneous approach, 41.81 keV per accreted nucleon is re-
leased, and in the mixed layer approach, 47.21 keV per accreted nucleon is released;
this is equivalent to a ∼ 13% increase of the heat release in the mixed layer approach.

• For Z0 = 22: in the instantaneous approach 33.96 keV per accreted nucleon is released,
and in the mixed layer approach 38.26 keV per accreted nucleon is released; this is
equivalent to a ∼ 11% increase in the mixed layer approach.

In overall, the heat release in the first few shells of the outer crust of accreting neutron
stars is affected by the treatment of electron capture’s kinetics. The thicker the layer of
electron capture, the larger the heat release.

4.3.5 Solution to the full continuity equation

To solve the full continuity equation, we specify an accretion cycle of four years of active
accretion with a 0.2 years onset and offset, followed by forty years of quiescence. In addition
to the boundary condition X(t, P = Pth) = 1, an initial condition is required to solve the
equation: we choose X(t = 0, P) = 1, a condition that shall have no consequence after
the first accretion cycle. In the following, results are presented for the second cycle: active
accretion starts at 44 years and ends at 48 years, and is followed by quiescence until the next
cycle starts at 88 years.

The solution for the active phase of the second cycle is presented in Fig. 4.27 as a contour
representation of the two variable solution X(t, P), for the parent proton number Z0 = 26.
During the onset of accretion, i.e. between 44 years and 44.2 years, the value of the accretion
rate is not large enough to increase the profile of X(t, P) which remains at its pre-active phase
level. When the accretion rate peaks at its maximum value, around 0.7 years are required
to reach the stationary profile: from 0.2 to 0.7 years, the time derivative and the pressure
derivative of Eq. (4.97) battle one another, the pressure derivative increasingly dominating
the time derivative, until the latter can be completely neglected at 0.7 years. The stationary
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profile continues until the offset of the active phase is triggered at 47.8 years. The total heat
released during the active phase is 41 keV per accreted nucleon for the first four years of
the cycle, which corresponds to an increase of around 7% compared to the instantaneous
approach.

Figure 4.27: Solution X(t, P) of the continuity equation during the active phase of
the second cycle for the reaction with parent proton number Z0 = 26.

Contrary to the instantaneous approach, reactions can also occur during the quiescence
phase; from the solution established at the end of the active phase X(t = 48, P), the follow-
ing differential equation must be solved

τec
∂

∂t
ln
(
nX
)
= −

[
F (EF(P))−F (W)

]
. (4.108)

The solution of the mixed layer approach during the quiescence phase is presented in Fig. 4.28.
The total heat released during the quiescence phase is 4.1 keV per accreted nucleon. During
one cycle (active phase and quiescence), a total energy of approximately 45 keV per accreted
nucleon is released, i.e. an 18% increase from the instantaneous approach.
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Figure 4.28: Solution X(t, P) of the continuity equation during the quiescence
phase of the second cycle for the reaction with parent proton number Z0 = 26.

The solution X(t, P) at the end of the quiescence phase is not step like: the cycles of
accretion are not completely independent. The quiescence time required for the solution
X(t, P) to reach a profile which is at most 1% of the thickness of the stationary solution is of
the order of a few hundred years.

The heat released during one cycle of accretion depends on the active phase, and whether
or not it is long enough to reach the stationary profile. In Fig. 4.29, we present the con-
tour representation of X(t, P) during two cycles of 0.2 years of active accretion followed by
2 years of quiescence. The stationary profile is not reached before the accretion stops; the
quiescence is not long enough to ensure that the profile at the start of the next cycle is step-
like. The total heat released per accreted nucleon during one cycle is 43.39 keV, which is
equivalent to an 11% increase from the instantaneous approach. Reaching the stationary
profile is therefore very important to attain a large heat release; this stationary profile is
reached as fast as the electron capture timescale τec will allow.
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Figure 4.29: Solution X(t, P) of the continuity equation for the reaction with parent
proton number Z0 = 26 for two accretion cycles of 0.2 years of active accretion
followed by 2 years of quiescence.

Finally, the accretion rate influences the heat release. We present the stationary solution,
as well as the solution X(t, P) to the continuity equation for the cycle of 4 years of active
accretion followed by 40 years of quiescence with a peak accretion rate of 10−10 M⊙ per
year, respectively in Fig. 4.30a and Fig. 4.30b. Although the times for active accretion and
quiescence are the same as the first accretion scenario studied in this section, the lower
value of the accretion rate leads to a smaller layer of electron captures in the stationary case.
When the full continuity equation is solved, we can see that the stationary solution is not
reached during the active phase. The heat released associated this scenario is 45.73 keV
in our approach and 44.41 keV in the instantaneous approach. We can conclude that even
though reaching the stationary profile increases the heat release more significantly, even
small layers of electron captures lead to an increase in the heat release compared to the
instantaneous approach.
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(a) Stationary solution.

(b) Solution to the full continuity equation.

Figure 4.30: Solution X of the continuity equation for the reaction with parent pro-
ton number Z0 = 26 for an accretion cycle of 4 years of active accretion followed
by 40 years of quiescence, with a peak accretion rate of 10−10 M⊙ per year.

Overall, the instantaneous approach to electron captures in accreting neutron stars un-
derestimates the heat release in the shallowest shells of the outer crust; for example, taking
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into account the layer of electron capture 56Fe → 56Mn∗ leads to an 20% increase of the heat
release in the shell. Including the reaction rate of electron captures in the study of deep
crustal heating leads to a pressure dependent heat release, which has most of its effect when
the layer with a mixture of parent and grand-daughter nuclei is large. In this approach, heat
is also released during the quiescence phase.

The heat release increase found in the mixed layer approach leads us to discuss an im-
portant mystery of X-ray transient thermal relaxation: the shallow heating. The cooling data
suggests that the shallowest parts of the crust is missing heat sources to explain the thermal
relaxation of accreting neutron stars. The amount of heat required depends on the source
and ranges from 0.1 MeV to 10 MeV, see Ootes et al. [2016], Chamel et al. [2020]. Some
mechanisms that could explain shallow heating were explored, for example, convection in
the envelope or differential rotation can lead to an increase of the heat in the shallowest part
of the star, but not to the extent of the shallow heating mystery, see Medin and Cumming
[2015]. It is also possible to partially explain shallow heating by varying the initial tempera-
ture and superfluidity of neutron stars, as well as the accretion rate of the binary, see Ootes
et al. [2016]. In the context of layers of electron captures, although the increase of heat re-
lease in the shallowest shells of the crust in our study is significant, it is still not sufficient to
explain the shallow heating phenomenon observed in X-ray transient thermal relaxation.
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5 Modified Urca neutrino emission at
finite temperature

Emitted in the core and in the crust of neutron stars through a large number of processes,
neutrinos are crucial actors of neutron star cooling. As they move in the star with a mean
free path that depends on the age of the neutron star, they take away energy from the inte-
rior of the star. The role of neutrino emission processes in cooling, particularly concerning
processes in the core, has been confirmed by X-ray observations of the thermal relaxation
of neutron stars. This chapter focuses on one neutrino emission process, that involves both
weak interaction and strong interaction: the Modified Urca process.

In the following, we present the derivation of the neutrino emissivity of the Modified
Urca process, which plays an important role in the cooling of "adult" neutron stars, as well
as neutron stars in temperature dependent stages (proto-neutron star or merger). In sec-
tion 5.1, we introduce the Direct and Modified Urca processes, and present an overview of
the previously established neutrino emissivity calculations for the Modified Urca process.
The theoretical framework for our derivation is introduced in section 5.2. The hadronic part
of the process is derived in details in section 5.3. In section 5.4, details on the numerical
method used to compute the hadronic part of the process are given, and results are pre-
sented in section 5.5.
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5.1 Direct and Modified Urca processes

In this section, the Direct Urca and Modified Urca processes are introduced. First, the
Direct Urca process is presented. A simple estimation of the Direct Urca process’s kinetics
for degenerate fermions is briefly discussed. The Modified Urca process is introduced, and
a quick overview of already available calculations for the Modified Urca neutrino emissivity
is presented. For an extensive discussion of the Direct Urca and Modified Urca process and
their role in neutron star cooling, we refer to Yakovlev et al. [2001].

5.1.1 The Direct Urca process

As a fast cooling process, the Direct Urca (DUrca) process [Lattimer et al., 1991] plays a
crucial role in neutron star’s thermal relaxation. The Direct Urca process corresponds to the
following set of reactions B1 ↔ B2 + l± + ν±l ,

B2 + l± ↔ B1 + νl± ,

with l designating a lepton either negatively or positively charged and νl its corresponding
neutrino such that νl = νl− = νl+ and νl = νl− = νl+ . In this reaction, B1 and B2 designate
two baryons of opposite isospin quantum number. Direct Urca is mediated by the weak
interaction.

Depending on the leptons and baryons present in the core of neutron stars, the Direct
Urca process can involve many different particles. In the following, we present a few of
them:

• neutrons, protons and electrons/positronsn ↔ p + e− + νe ,

p + e− ↔ n + νe ,

p ↔ n + e+ + νe ,

n + e+ ↔ p + νe ,

In this chapter, we shall focus on reactions involving these particles.

• neutrons, protons and muons µ−/µ+

n ↔ p + µ− + νµ ,

p + µ− ↔ n + νµ ,

p ↔ n + µ+ + νµ ,

n + µ+ ↔ p + νµ ,

• protons, leptons and neutral charge hyperon Λ:Λ ↔ p + l− + νl− ,

p + l− ↔ Λ + νl− ,
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• neutrons, leptons and charged hyperon Σ±:Σ± ↔ n + l± + νl± ,

n + l± ↔ Σ± + νl± ,

• leptons, charged hyperons Σ± and neutral charge hyperons Λ and Σ0 :Σ± ↔ Λ + l± + νl± ,

Λ + l± ↔ Σ± + νl± ,

Σ± ↔ Σ0 + l± + νl± ,

Σ0 + l± ↔ Σ± + νl± .

The above mentioned reactions can be classified in terms of the efficiency of the neutrino
emission. To do so, a factor normalized to the nuclear Direct Urca process is introduced in
Prakash et al. [1992] and discussed in Providência et al. [2019].

5.1.2 The Direct Urca threshold

Depending on the equation of state and the mass of the neutron star, the Direct Urca
process does not systematically occur in the core; we refer to the discussion in section 3.3.2
for equations of state which allow the Direct Urca process at zero temperature. There are
conditions for the kinetics of the particles involved which forbid this reaction from proceed-
ing. The conservation of energy and momentum of particles in play leads to a threshold
above which this reaction is permitted and below which it is not. The Direct Urca thresh-
old can be easily assessed at zero temperature for a process with degenerate nucleons and
electrons from the derivation presented in Shapiro and Teukolsky [1986].

The process must respect the following conservation laws

• the conservation of the momentum p of particles in play

| p⃗n| ≤ | p⃗p|+ | p⃗e− | , (5.1)

if we consider that the neutrinos escape immediately after being emitted,

• the charge conservation1:

ne− = np → | p⃗n| ≤ 2| p⃗p| , (5.2)

with ne− and np the electron and proton densities respectively. From the assumption
that particles are on their Fermi surface, we obtain

yp ≥
np

np + nn
= 1/9 , (5.3)

1The charge conservation should include considerations of muons even if they do not take part in the reac-
tion, but they are neglected here.
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with yp the proton fraction.

The Direct Urca reactions are allowed only if the proton fraction is sufficiently high. In con-
ditions for which the Direct Urca process is not allowed, the kinetics of the weak interaction
can be "saved" by adding a spectator nucleon in the so-called Modified Urca process.

5.1.3 State of the art of Modified Urca derivations

The Modified Urca (MUrca) process is permitted below the DUrca threshold by the pres-
ence of a spectator baryon N. The spectator transfers energy via the strong interaction to
baryons B1 and B2 which are involved in the Urca part mediated by the weak interaction

N + B1 ↔ N + B2 + l± + νl± ,

N + B2 + l± ↔ N + B1 + νl± .

This set of reactions was first discussed in Chiu and Salpeter [1964]. If the process occurs
with a neutron as a spectator baryon, it is referred to as the MUrca neutron branch, and the
process with a proton as a spectator baryon is referred to as the MUrca proton branch. In
this reaction, both the weak interaction and the strong interaction are in play. Contrary to
the Direct Urca which is a fast cooling process, the Modified Urca process is considered to
be a slow cooling process [Page, 2009].

Let us give a quick overview of the state of the art of Modified Urca neutrino emissivity
calculations. The pioneer study is that of Friman and Maxwell [1979], in which the neutron
branch of the reaction is treated for cold matter at β-equilibrium. The strong interaction
is approximated to be mediated by the exchange of one free pion, corrected to include a
Fermi liquid contribution resulting from short range correlations. Nucleons are treated as
non-relativistic degenerate particles such that they are on their Fermi surface. The nucleon
propagator is the first order of an expansion in the nucleon mass. The weak interaction is
treated in the non-relativistic approximation, and the momentum of neutrinos is neglected
compared with that of electrons and nucleons. And finally, the function expressing the
conservation of momenta only includes the conservation of neutron momentum. The MUrca
proton branch was treated by Yakovlev and Levenfish [1995] in the same framework. This
approach is revised in Yakovlev et al. [2001] for the neutron and proton branch.

In medium effects brought forth by the neutron star medium are discussed e.g. in Blaschke
et al. [1995] using the T-matrix method. The neutrino emissivity of the Modified Urca pro-
cess is not computed because authors focus on the Bremsstrahlung process, but they con-
clude that including in medium effects should reduce the neutrino mean free path for any
process concerned by neutron-neutron interaction (and by extension, by neutron-proton
interaction). Collective effects in the context of in medium One Pion Exchange (OPE) are
discussed in Senatorov and Voskresensky [1987] and references therein; loop effects on the
strong interaction and resonances are also discussed, see Voskresensky [2001] for a review.
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Shternin et al. [2018] took into account in medium effects on the nucleon’s energy in the
framework of the quasi-particle approximation. In their study, the authors treat nucleons as
non-relativistic particles on their Fermi surfaces; the nucleon propagator includes effective
masses and chemical potentials. In medium nucleon scattering is treated in the framework
of the non-relativistic Bruckner–Hartree–Fock theory (with a G-matrix) for β-equilibrated
matter. The authors conclude that including in medium effects directly in the propagator of
nucleons results in an increased MUrca rate for high mass neutron stars.

In Alford and Harris [2018], the authors focus on the role of finite temperature effects in
an effort to accurately compute Urca neutrino emission processes for the merger of neutron
stars, and to study the conditions for achieving β-equilibrium. They emphasize that dur-
ing the merger, neutron star matter is heated such that neutrinos are not trapped in some
regions of the star, and the full neutrino transport must be solved, with the help of a finite
temperature equation of state.

In all previously mentioned calculations of the Modified Urca neutrino emissivity, one
point has not been fully addressed: the role of momentum transfer and the full momentum
dependence of the matrix element. Moreover, we intend to adress the Modified Urca pro-
cess at finite temperature without considering particles on their Fermi surface. In the next
section, we present the detailed derivation of the neutrino emissivity of this process at finite
temperature, by taking the following approximations

• nucleons are non-relativistic,

• the strong interaction is represented by a One-Pion-Exchange matrix,

• we use a perturbative approach, in which the propagator of nucleons is not dressed in
the derivation, and we propose a correction to this approximation in section 5.5.1 of
this chapter.
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5.2 Modified Urca neutrino opacity at finite temperature

Similarly to the Direct Urca process presented in section 5.1.1, the Modified Urca process
operates on nucleons, electrons, positrons, muons and hyperons. In the following, we focus
on the Modified Urca process involving nucleons n (neutron), p (proton), charged leptons
e− (electron), e+ (positron), and electronic neutrino νe, anti-neutrino νe.N + n ↔ N + p + e− + νe ,

N + p + e− ↔ N + n + νe ,
(5.4)

N + p ↔ N + n + e+ + νe ,

N + n + e+ ↔ N + p + νe .
(5.5)

The (anti-)neutrino emissivity is the integral of the change over time in the distribution
function of (anti-)neutrinos. The quantities of interest for our derivation are therefore

∂

∂t
Fνe and

∂

∂t
Fνe , (5.6)

with Fνe and Fνe the distribution function of electronic neutrinos and anti-neutrinos. The
(anti-)neutrino opacity which has the dimension of an inverse length can be derived from
the quantity 1/c ∂tFνe/νe , for details see Pascal et al. [2022]. The opacity is particularly inter-
esting if the distribution of neutrinos over time is not constant, i.e. when the (anti-)neutrino’s
mean free path changes. Integrated over the four-momentum of (anti-)neutrinos, it corre-
sponds to a variation of (anti-)neutrino number with time, i.e the emissivity of neutrinos.

While Quantum Field Theory has been very successful in predicting properties of the
Standard Model particles, it does so at zero-temperature. Fortunately, Thermal Quantum
Field Theory offers a framework to design the thermal Green’s function whose explicit ex-
pression depends on the choice of integration contour relating the initial and final time. To
calculate the emissivity of the reaction, we use two different but equivalent formalisms:

• The real-time Schwinger-Keldysh [Kadanoff et al., 1963] formalism: the real axis is
included in the contour treated separately for advanced and retarded times, and a
"ghost" unphysical field must be treated alongside the physical one, which involves
treating double the number of fields and operators. This approach is used for the
lepton part of the study.

• The Matsubara formalism [Matsubara, 1955]: the time is replaced by a purely imagi-
nary quantity which assumes discrete values and is proportional to the inverse of the
temperature. An analytical continuation is required, for more details see Appendix B.
The hadron part of our study is treated with this approach for convenience.

For a detailed review of both formalisms, we refer to Lundberg and Pasechnik [2021].



Dense matter properties and neutron star modelling 158

In the real-time formalism, the Green’s function of leptons close to equilibrium corre-
sponds to the superposition of the forward and reverse Green’s functions respectively de-
noted G>

l and G<
l , and defined as

iG>
l =

π

El

(
/p + ml

)((
1 −Fl

)
δ
(

p0 − El
)
−Fl δ

(
p0 + El

))
, (5.7)

iG<
l = − π

El

(
/p + ml

)(
Fl δ

(
p0 − El

)
−
(
1 −Fl

)
δ
(

p0 + El
))

; (5.8)

with:

• p the lepton four-momentum,

• the Dirac operator notation /p = γα pα using the Dirac γ matrices,

• El the energy of the lepton,

• ml the mass of the lepton.

νl l νl

W W

Π

Figure 5.1: Diagram of the (anti-)neutrinos self-energy in the MUrca process; the
hadronic part of the diagram is accounted for by the polarization function Π, and
the weak interaction mediated by the boson W is represented in dashed lines.

The second quantity crucial to assess the change in the (anti-)neutrino distribution is
their self-energy, i.e. how the energy of (anti)-neutrinos is affected by the reaction it is in-
volved in. The self-energy of (anti-)neutrinos denoted Σν is represented as a diagram in
Fig. 5.1. In the real-time formalism, the expression of the forward and reverse self-energy of
neutrinos is given by

i Σ>/<
ν =

G2
FV2

ud
2

∫ d4 p
(2π)4 γα

(
1 − γ5)G>/<(p)γβ

(
1 − γ5)Π</>

αβ (Q) , (5.9)

with Π a tensor related to hadrons of the process, which we also refer to as the hadron
polarisation function. Q is the four-momentum of the weak boson, and G(p) is the Green’s
function of the charged lepton. The constants that appear in the following derivation are
taken from Zyla and et al. [2020], or the website of the Particle Data Group [Workman and
et al., 2022]. GF is the Fermi coupling constant in MeV−2; the propagator of the weak boson is
hidden in this constant (the moment of the weak boson is neglected with respect to its mass).
Vud is the up/down component of the electroweak Cabibbo-Kobayashi-Maskawa mixing
matrix [Cabibbo, 1963, Kobayashi and Maskawa, 1973] which enters the coupling between

https://pdg.lbl.gov/
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the quarks and the weak boson. Performing the integral over the zeroth component of the
charged lepton’s momentum, the Dirac δ-function in Eq. (5.7) and Eq. (5.8) ensures that the
particles are on-shell i.e. that particles follow the conservation laws of momentum, and are
therefore real particles (as opposed to virtual particles).

In the following, electronic neutrinos and anti-neutrinos are denoted ν and ν. The self-
energy of electronic neutrinos can be rewritten as

Σ>
ν = −

G2
FV2

ud
2

∫ d3 p⃗
(2π)4

π

Ee

((
1 −Fe−

)
γα(1 − γ5)(/p− + me)γβ(1 − γ5)Π<;αβ(Q−)

−Fe+γα(1 − γ5)(/p+ + me)γβ(1 − γ5)Π<;αβ(Q+)

)
, (5.10)

Σ<
ν =

G2
FV2

ud
2

∫ d3 p⃗
(2π)4

π

Ee

(
Fe−γα(1 − γ5)(/p− + me)γβ(1 − γ5)Π>;αβ(Q−)

−
(
1 −Fe+

)
γα(1 − γ5)(/p+ + me)γβ(1 − γ5)Π>;αβ(Q+)

)
, (5.11)

with Ee the energy of the charged lepton. The notation /p+ and /p− corresponds to the four-
momenta of the charged leptons respectively positively and negatively charged. A similar
notation is used for the weak boson four-momentum Q which also depends on the four-
momenta of the charged lepton; expression for those quantities are defined later on in this
section. The Fermi distribution of the electrons and positrons are denoted Fe− and Fe+

respectively.

The time variation of the (anti-)neutrino distribution function can be obtained from the
kinetic equation for reverse and forward Green’s function

i
∂λ

∂X
Tr
[
γλG</>

ν (X, pν)
]
= −Tr

[
G>/<

ν (X, pν)Σ</>
ν − Σ>/<

ν G</>
ν (X, pν)

]
, (5.12)

with X the space-time domain. A few words can be said about these equations:

• The reverse and forward kinetics equation are equivalent because

Tr[G>
ν Σ<

ν ] = Tr[Σ<
ν G>

ν ] and Tr[G<
ν Σ>

ν ] = Tr[Σ>
ν G<

ν ] . (5.13)

• The trace on the right hand side can be separated into two parts: leptons are involved
in a loop (in the Feynman diagram sense), nucleons are also involved in a loop, but
there is no loop connecting the hadron and lepton parts, only the weak boson acts as a
mediator. This leads us to define the lepton tensor2

Lαβ = Tr
[(

γµ pµ + ml±
)
γα

(
1 − γ5

)
γλqλγβ

(
1 − γ5

)]
= 8

(
pαqβ + qα pβ + p · q gαβ − iϵρλαβ pρqλ

)
, (5.14)

2Traces and commutation properties of Dirac matrices were used.
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with q the four-momentum of (anti-)neutrinos, gαβ the metric of the system (later on
chosen to be Minkowski), and ϵ the Levi-Civita tensor3.

• The neutrino Green’s function includes Dirac δ-functions to ensure that (anti-)neutrinos
are real particles. Similarly to what was introduced for charged leptons, after integrat-
ing Eq. (5.12) on both sides over the zero component of the neutrino momentum, the
neutrinos have been put on-shell.

We introduce the notation
[
LΠ>/<(Q)

]
to designate the contraction with respect to indices

α and β of the lepton and hadron tensors

[
LΠ>/<(Q)

]
=̂ LαβΠαβ . (5.15)

We introduce the index notation to the contraction to designate which reaction is studied,
and rewrite

∂

∂t

[(
1 −Fν

)
+Fν

]
= i

G2
FV2

ud
16

∫ d3 p⃗
(2π)3

1
EeEν

(5.16)

×
((

1 −Fe−
)(

1 −Fν

)[
LΠ<(Q)

][e−ν] −Fe−Fν

[
LΠ>(Q)

][e−ν]

+Fe−
(
1 −Fν

)[
LΠ>(Q)

][e−ν] −
(
1 −Fe−

)
Fν

[
LΠ<(Q)

][e−ν]

−
(
1 −Fe+

)(
1 −Fν

)[
LΠ>(Q)

][e+ν]
+Fe+Fν

[
LΠ<(Q)

][e+ν]

−Fe+
(
1 −Fν

)[
LΠ<(Q)

][e+ν]
+
(
1 −Fe+

)
Fν

[
LΠ>(Q)

][e+ν]
)

,

with Eν the energy of neutrinos. In this expression, all processes of Eq. (5.4) and Eq. (5.5) are
represented: terms proportional to the distribution function correspond to incoming parti-
cles, and terms proportional to (1 − distribution function) correspond to outgoing particles.

To simplify the treatment of Eq. (5.16), we implement the approximation that neutri-
nos and anti-neutrinos are treated independently: no interaction between neutrinos and
anti-neutrinos, nor neutrino oscillations are taken into account. Moreover, the forward and
reverse hadron polarisation tensors are related to the retarded polarisation tensor denoted
Παβ according to

Παβ;> = −2i
(
1 + nBE(Q0)

)
Im Παβ(Q) ,

Παβ;< = −2inBE(Q0) Im Παβ(Q) ,

with the boson distribution function denoted nBE, and Q0 the energy of the weak boson (or
zero component of the four-momentum). The time derivative of the distribution function of

3Let us note that the first two terms of the lepton tensor are symmetric together, the term with the metric is
also symmetric, and the last term is anti-symmetric.
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(anti-)neutrinos finally writes as

∂Fν

∂t
= −

G2
FV2

ud
8

∫ d3 p⃗
(2π)3

1
EeEν

((
1 + nBE(Q

[e−ν]
0 )

)
Fe−

(
1 −Fν

)[
L Im Π(Q)

][e−ν]

− nBE(Q
[e−ν]
0 )

(
1 −Fe−

)
Fν

[
L Im Π(Q)

][e−ν]

−
(
1 + nBE(Q

[e+ν]
0 )

)(
1 −Fe+

)(
1 −Fν

)[
L Im Π(Q)

][e+ν]

+ nBE(Q
[e+ν]
0 )Fe+Fν

[
L Im Π(Q)

][e+ν]
)

, (5.17)

∂Fν

∂t
=

G2
FV2

ud
8

∫ d3 p⃗
(2π)3

1
EeEν

(
nBE(Q

[e−ν]
0 )

(
1 −Fe−

)(
1 −Fν

)[
L Im Π(Q)

][e−ν]

−
(
1 + nBE(Q

[e−ν]
0 )

)
Fe−Fν

[
L Im Π(Q)

][e−ν]

− nBE(Q
[e+ν]
0 )Fe+

(
1 −Fν

)[
L Im Π(Q)

][e+ν]

+
(
1 + nBE(Q

[(e+ν]
0 )

)(
1 −Fe+

)
Fν

[
L Im Π(Q)

][e+ν]
)

. (5.18)

This derivation is intended to provide results that can be used in a neutrino transport
solver for proto-neutron stars such as presented in Pascal et al. [2022]: the distribution func-
tion of the (anti-)neutrinos is calculated. Therefore, as is presented for Direct Urca calcula-
tions in Oertel et al. [2020], we shall focus on computing each factor proportional to Fν/ν

and (1 −Fν/ν) in Eq. (5.17) and Eq. (5.18). The final form of the integrals accounting for the
eight reactions studied are given by:

• For the first set of reactions, which corresponds to a modified neutron decay and its
inverse

N + p + e− + ν → N + n , (5.19)

N + n → N + p + e− + ν , (5.20)

represented in Fig. 5.2, gives

I1 = −
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

(
1 + nBE(Q0)

)
Fe−

[
L Im Π(Q)

][e−ν] , (5.21)

I2 =
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

nBE(Q0)
(
1 −Fe−

)[
L Im Π(Q)

][e−ν] . (5.22)

At this point, a choice must be made in how the diagram is drawn around the weak
boson. We choose the convention that the weak boson is oriented from left to right in
the diagram of the Modified Urca process. If we choose to align the neutrino along the
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z axis such that the angle ( p⃗, q⃗) is denoted θe, the conservation of four-momenta gives
|Q⃗|2 = | p⃗|2 + |⃗q|2 + 2 cos(θe)| p⃗||⃗q| ,

Q0 = Ee − µe + |⃗q|+ µν ,

Qmin
0 = me − µe + |⃗q|+ µν ,

(5.23)

with Qmin
0 the minimum value of the energy of the weak boson, and µe and µν the

chemical potential of electrons and neutrinos.

e−

ν

W−

n

p

n

p W−

ν

e−

Figure 5.2: Diagram of reactions presented in Eq. (5.19) (on the left) and Eq. (5.20)
(on the right). The strong interaction part of the diagram is represented in grey.

• For the second set of reactions which corresponds to a modified electron capture and
its inverse

N + p + e− → N + n + ν , (5.24)

N + n + ν → N + p + e− , (5.25)

represented in Fig. 5.3, gives

I3 = −
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

(
1 + nBE(Q0)

)
Fe−

[
L Im Π(Q)

][e−ν] , (5.26)

I4 =
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

nBE(Q0)
(
1 −Fe−

)[
L Im Π(Q)

][e−ν] . (5.27)

Through the conservation of four-momenta
|Q⃗|2 = | p⃗|2 + |⃗q|2 − 2 cos(θe)| p⃗||⃗q| ,

Q0 = Ee − µe − |⃗q|+ µν ,

Qmin
0 = me − µe − |⃗q|+ µν .

(5.28)

• For the third set of reactions which corresponds to a modified positron capture and its
inverse

N + n + e+ → N + p + ν , (5.29)

N + p + ν → N + n + e+ , (5.30)
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Figure 5.3: Diagram of reactions presented in Eq. (5.24) (on the left) and Eq. (5.25)
(on the right).

represented in Fig. 5.4, gives

I5 = −
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

nBE(Q0)Fe+
[
L Im Π(Q)

][e+ν] , (5.31)

I6 =
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

(
1 + nBE(Q0)

)(
1 −Fe+

)[
L Im Π(Q)

][e+ν] , (5.32)

Through the conservation of four-momenta
|Q⃗|2 = | p⃗|2 + |⃗q|2 − 2 cos(θe)| p⃗||⃗q| ,

Q0 = −Ee − µe + |⃗q|+ µν ,

Qmax
0 = −me − µe + |⃗q|+ µν ,

(5.33)

with Qmax
0 the maximum value of the energy of the weak boson

e+

ν

W−

n

p

n

p W−

ν

e+

Figure 5.4: Diagram of reactions presented in Eq. (5.29) (on the right) and Eq. (5.30)
(on the left).

• For the fourth set of reactions which corresponds to a modified proton decay and its
inverse

N + p → N + n + e+ + ν , (5.34)

N + n + e+ + ν → N + p . (5.35)

represented in Fig. 5.5, gives

I7 = −
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

nBE(Q0)(1 −Fe+)
[
L Im Π(Q)

][e+ν] (5.36)

I8 =
G2

FV2
ud

8(2π)3

∫ d3 p⃗
EeEν

(
1 + nBE(Q0)

)
Fe+

[
L Im Π(Q)

][e+ν] , (5.37)
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Through the conservation of four-momenta
|Q⃗|2 = | p⃗|2 + |⃗q|2 + 2 cos(θe)| p⃗||⃗q| ,

Q0 = −Ee − µe − |⃗q|+ µν ,

Qmax
0 = −me − µe − |⃗q|+ µν .

(5.38)
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Figure 5.5: Diagram of reactions presented in Eq. (5.34) (on the right) and Eq. (5.35)
(on the left).

Let us note that for cold matter neutron stars, the neutrinos escape immediately after
being emitted such that reactions presented in Eq. (5.20), Eq. (5.25), Eq. (5.30) and Eq. (5.35)
can be disregarded. However, this is not the case for proto-neutron stars, in regions where
neutrinos are trapped [Pons et al., 1998].

In the remaining part of this chapter, results are presented only for the hadronic part of
the Modified Urca process. The hadronic polarization function Παβ depends on the four-
momentum of the weak boson (Q0, Q⃗), which is different for each of the eight reactions
presented in Fig. 5.2, Fig. 5.3, Fig. 5.4 and Fig. 5.5. Results in section 5.5 are presented only
for the electronic capture and its inverse (see Eq. (5.24) and Eq. (5.25)) to which corresponds
a specific Q⃗; the value of the weak boson energy Q0 is an input of the function Παβ(Q0, Q⃗) in
the presentation of our results. We will show in section 5.5.2 that the location of the hadronic
polarization function maxima is not significantly affected by the value of Q⃗.

We present in Fig. 5.6 and Fig. 5.7 the different regions of Q0 for which each of the eight
reactions considered above is favored by the presence of charged leptons in the medium. In
this figure, we present the incoming and outgoing electron and positron distribution func-
tions Fe− , Fe+ , (1 − Fe−) and (1 − Fe+), as a function of Q0. The energy of neutrinos is
Eν = |⃗q| = 10 MeV. Values of the chemical potentials of the leptons are extracted from the
equation of state RG(SLy4)4 as can be found in the database CompOSE CompOSE [2022];
all results in this chapter are established using this equation of state. Results are given for
different values of the temperature (5 and 30 MeV) and of the baryonic density nB (10−5

and 0.3 fm−3). The electron fraction is fixed at 0.3: although the positron and electron abun-
dances depend on ye, the reasoning presented in the following is the same for a different
value of the charged lepton fraction.

4RG(SLy4) is a three parameter equation of state; it depends on the baryonic density, but also on the temper-
ature and the electron fraction.

https://compose.obspm.fr/eos/134
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Figure 5.6: Fermi distribution of incoming F and outgoing (1 − F ) electrons e−

and positrons e+ as a function of the energy of the weak boson Q0, at temperature
T = 30 MeV, for the eight reactions studied in this chapter.
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Figure 5.7: Fermi distribution of incoming F and outgoing (1 − F ) electrons e
and positrons e as a function of the energy of the weak boson Q0, at temperature
T = 5 MeV, for the eight reactions studied in this chapter.

If the distribution functions of charged leptons is close to zero, the phase factor inhibits
the reaction, whereas if the distribution function is large the reaction is favored.
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Let us present the results for one example at high temperature (30 MeV) and high den-
sity (0.3 fm−3), as is presented in the lower plot of Fig. 5.6. The inverse neutron decay
and electron captures (in orange and grey plain lines) are favored from a minimum value
Q0 = −71.4 MeV and Q0 = −81.5 MeV respectively. In the range Q0 = [−81.5;−71.4] MeV,
the electron capture is favored and not the inverse neutron decay. Note that when the in-
verse neutron decay is favored, it always dominates the electron capture. For electronic
reaction, between Q0 = Qmin

0 and Q0 ≃ 50 MeV, only the electron capture and inverse
neutron decay are favored; for larger values of Q0, the Fermi distribution of their inverse
reaction evolves from zero to one, whereas the neutron decay and electron capture Fermi
distributions evolve from one to zero. In other words, we can distinguish the following
domains:

• for Q0 = [Qmin
0 ; 50 MeV], the electron captures and inverse neutron decays are favored,

but not the inverse electron captures and neutron decays;

• for Q0 ≃ [50; 300] MeV electron captures, inverse electron captures, neutron decays
and inverse neutron decays are all favored;

• for Q0 > 300 MeV, only the inverse electron captures and the neutron decays are fa-
vored.

With respect to positronic reactions, the conditions are such that Q0 is small. Only the
positron captures and inverse proton decays are favored, and not the inverse positron cap-
tures and proton decays for any value of Q0. This result can be anticipated by defining
a ∈ [0; 1] the value that the distribution of positron should reach; let’s take the example of
the proton decay

nF(Ee + µe) ≥ a ⇔ Q0 ≥ µν − |⃗q| − T ln
(

1 − a
a

)
. (5.39)

By imposing the limit that the Fermi distribution of positrons must be under the value a for
values of Q0 under the maximum value of Q0, we can establish the limit

me + µe < T ln
(

1 − a
a

)
. (5.40)

Under the conditions T = 30 MeV, nB = 0.3 fm−3 and ye = 0.3, the chemical potential of
electrons is 262.66 MeV. Assuming that the Fermi distribution of positrons must be above
the value a = 0.2, we have

T ln
(

1 − a
a

)
= 41.59 MeV and me + µe = 263.17 MeV , (5.41)

such that the inequality presented in Eq. (5.40) does not hold. Another way to anticipate this
result is to realize that the neutrino energy |⃗q| must be negative for the Fermi distribution of
positrons to be above a = 0.2, which makes no physical sense.
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Similarly, we can discuss results at high temperature and low density (10−5 fm−3) from
the upper plot of Fig. 5.6. There are the following domains

• the inverse positron capture and proton decay are favored for Q0 = [−400 : −180] MeV,

• the positron capture, proton decay, inverse proton decay and inverse positron capture
are favored for Q0 = [−180 : −40] MeV,

• for Q0 = [−40 : −10] MeV, only the captures and their inverse are favored,

• for Q0 = [−10 : 100] MeV, the neutron decay, inverse neutron decay, electron capture
and inverse electron capture are favored,

• for Q0 = [100 : 400] MeV the neutron decay and inverse electron capture are favored.

On the one hand, we note that results of Fig. 5.6 and Fig. 5.7 for low density present a
region where the Fermi distribution of leptons change from the favoring of positronic reac-
tions to electronic reactions, centered around the zero value of Q0. Indeed, at low densities,
the chemical potential of electrons and neutrinos are small, therefore Qmax

0 for positronic
reactions and Qmin

0 for electronic reactions are relatively small. For low densities, the region
where electronic reactions and positronic reaction are favored is small, and proton decay
and neutron decay are both inhibited (and similarly for their inverse). On the other hand,
for high densities there are domains of Q0 in which all reactions are favored. Those regions
are rather large at high temperature (Fig. 5.6) because the Fermi distribution function is not
steep, and rather small at low temperature because the Fermi distribution function is steep.

Although Fig. 5.6 and Fig. 5.7 are helpful to understand the regions where each reaction
is favored, we shall abandon studying the lepton part of the Modified Urca process from
now on. In this manuscript, numerical results are restricted to the hadronic part of the
Modified Urca process. The next section focuses on the derivation of the imaginary part
of the retarded polarisation function which describes the hadronic part entering the MUrca
rate calculation.
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Figure 5.8: Diagram of the first self-energy correction to the weak boson in the
MUrca process. The strong interaction matrix is represented in grey with dashed
contours. This diagram is equivalent to diagram (3a) in Bacca et al. [2012].

5.3 Hadronic part of the Modified Urca process

The hadronic current denoted jµ
c presents a vector part and axial vector part such that

jµ
c = ψhγµ

(
CV − CAγ5

)
ψh , (5.42)

with CA and CV the coupling constants for the charged current respectively [Horowitz and
Pérez-García, 2003]. In the following, the derivation of the hadronic part is presented as a
correction to the weak boson self-energy.

5.3.1 Derivation of the spin and isospin terms

The hadronic polarisation function, denoted Παβ, for the Modified Urca process corre-
sponds to how the strong interaction affects the weak interaction part of the process; it can
be separated into

• the corrections to the nucleon propagators associated with the weak boson self-energy,

• and the corrections to the nucleon-nucleon- weak boson vertex.

The retarded hadronic polarisation function can be written as

Παβ(Q) =

( 4

∏
j=1

∫ d4 pj

(2π)4

)
∑
X

IXXαβ
spin(Q)δ4(p1 + p2 − p3 − p4) , (5.43)

with j the index of the nucleon, and X = Da,b,c,d, Ea,b,c,d, V1a,b,c,d, V2a,b,c,d, V3a,b,c,d presented in
the following.
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5.3.1.1 Self-energy correction

W (6) (4) (5) W

(1)

(3)

(2)

Figure 5.9: Diagram of the second self-energy correction to the weak boson in the
MUrca process. This diagram is equivalent to diagram (3b) in Bacca et al. [2012].

There are two diagrams of self-energy, presented in Fig. 5.8 and Fig. 5.9, respectively
denoted D and E. In order to collect all contributions of those diagrams, one must think
of the different ways the strong interaction can couple the nucleons in play. By naming all
vertices of the diagram, four self-energy contributions can be listed

Dαβ
1

Dαβ
2

Dαβ
3

Dαβ
4

= Γα
±;baΓβ

∓;cdSam(p1)Set(p2)Sv f (p3)Sng(p4)Shc(p5)Sdb(p6) (5.44)

×



Tmn;tv(p1, p4; p2, p3)Tgh; f e(p4, p5; p3, p2)

Tmv;tn(p1, p3; p2, p4)Tge; f h(p4, p2; p3, p5)

Tmn;tv(p1, p4; p2, p3)Tge; f h(p4, p2; p3, p5)

Tmv;tn(p1, p3; p2, p4)Tgh; f e(p4, p5; p3, p2)

, (5.45)



Eαβ
1

Eαβ
2

Eαβ
3

Eαβ
4

= Γα
±;abΓβ

∓;dcSbd(p1)Stg(p2)Shv(p3)S f n(p4)Sce(p5)Sma(p6) (5.46)

×



Tmn;tv(p6, p4; p2, p3)Tgh; f e(p2, p3; p4, p5)

Tmv;tn(p6, p3; p2, p4)Tge; f h(p2, p5; p4, p3)

Tmn;tv(p6, p4; p2, p3)Tge; f h(p2, p5; p4, p3)

Tmv;tn(p6, p3; p2, p4)Tgh; f e(p2, p3; p4, p5)

. (5.47)

Each diagram represented in Fig. 5.8 and Fig. 5.9 leads to four sub-diagrams related to the
different combinations of the strong nucleon-nucleon interaction matrix; the sub-diagrams
are presented in Fig.5.10 and Fig. 5.11 for the diagrams D and E respectively.
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Figure 5.10: Feynman representation of the first self-energy sub-diagrams, within
the One-Pion-Exchange approximation. Dashed lines represent a pion, and plain
lines represent a nucleon.
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Figure 5.11: Feynman representation of the second self-energy sub-diagrams,
within the One-Pion-Exchange approximation. Dashed lines represent a pion, and
plain lines represent a nucleon.



Dense matter properties and neutron star modelling 172

Let us detail the quantities introduced. Γ expresses the vertex between the weak boson
and nucleon-nucleon coupling

Γµ
±;ab =

[
γµ(cV − cAγ5)τ±

]
ab and τ± =

1
2
(τ1 ± τ2) , (5.48)

with γ and τ respectively the Dirac and Pauli matrices for isospin, and CA ≃ 1.267 and
CV ≃ 1 the axial and vector coupling constants. The weak interaction imposes that particles
(1) and (6) in Fig. 5.10 or Fig. 5.11 are of opposite isospin nature: if nucleon (1) is a neutron,
then nucleon (6) is a proton and vice-versa. This is equivalent to saying that a τ+ at the ver-
tex implies an incoming nucleon with isospin −1/2 and an outgoing nucleon with isospin
+1/2, whereas a τ− at the vertex implies an incoming nucleon with isospin +1/2 and an
outgoing nucleon with isospin −1/2.

T is the strong interaction matrix, which we choose to express in the One-Pion-Exchange
(OPE) approximation: the interaction between two nucleons is mediated by the exchange of
a pion π± or π0. The matrix T is the product of:

• the pion-nucleon-nucleon vertex5

fπNN

mπ
γ5γµkµτα , (5.49)

with k the four-momentum of the pion, mπ the pion mass, fπNN the coupling constant
of the OPE strong interaction,

• the propagator of the pion:
1

k2 − m2
π

. (5.50)

This quantity can be expressed in terms of the outgoing/ingoing four-momenta of the nu-
cleons involved with the pion

Tab;cd(p1, p3; p2, p4) =

(
fπNN
mπ

)2

(p3 − p1)2 − m2
π

(
− γ5γµ(p3 − p1)µτi

)
ab

(
γ5γν(p4 − p2)ντi

)
cd

.

(5.51)
The strong interaction in the OPE approximation can either be:

• mediated by π0: nucleons (1) and (4) in Fig. 5.10 are of the same isospin nature (either
both neutrons or both protons), then so are (2) and (3),

• mediated by π±: nucleons (1) and (4) are of different nature, then so are (2) and (3).

5Giving the physical sense of the isospin, we use latin indices for the (1,2,3) components of the Pauli matrix
τ, contrary to the derivation for the spin for which greek indices are used for the components (0,1,2,3).



173 5.3. Hadronic part of the Modified Urca process

Last (but not least) quantity to be introduced is the nucleon propagator S; we project it
in isospin space with the isoscalar SS and isovector SV propagators

S = SS + τ3SV with Ss =
Sn + Sp

2
and SV =

Sn − Sp

2
; (5.52)

Sn and Sp are the relativistic proton and neutron fermionic propagators

Sx(l) =
γαlα;x + m∗

x

k2
0;x − E 2

k⃗;x

, (5.53)

with m∗ the effective mass of the particle, x = {n, p} the isospin nature of the nucleon. In
the following, for nucleons (1), (2), (3), (4), (5) and (6) it will respectively be denoted x, y, z,
u, v and w; the isospin sign of nucleons is denoted s with s = 1 for neutrons and s = −1 for
protons. The isospin nature of the six nucleons depends on whether a τ+ or a τ− are chosen
in the left hand side and right hand side of the diagram; in the following, we refer to this
convention as the vertex combination. Exchanging the τ+ to a τ− and the τ− to a τ+, or in
other words exchanging the vertex combination, simply inverses the isospin nature of the
incoming and outgoing nucleons involved in the weak boson vertex; as such, the isospin
sign of all six nucleons in play will be opposite for the complementary vertex combination.

Because spin and isospin spaces are orthogonal, the derivation can be conducted sepa-
rately for the spin and isospin part. We choose to neglect the time component of the pion
four-momentum and define the spin quantities

Γab =

(
CV

−CA⃗σ

)
ab

, Tab(p1, p2) =
fπNN

mπ

√
1

( p⃗2 − p⃗1)2 + m2
π

[
σi(p2 − p1)i

]
ab ; (5.54)

the quantity T is related to the strong interaction matrix according to

Tab;cd(p1, p2; p3, p4) = Tab(p1, p2)Tcd(p3, p4) (5.55)

We choose to treat nucleons as non-relativistic particles and redefine the energy and
propagator of nucleons such that

E⃗l;x =
l⃗ · l⃗
2m∗

x
+ m∗

x , Sab
x (l) =

δab

l0;x − ϵ⃗l;x
, (5.56)

with δab the Krönecker-δ in spin space. In Eq. (5.44), traces immediately appear via the
contraction of indices involved in loops of nucleons in the diagrams: this corresponds to the
trace presented in the kinetics equation Eq. (5.12) which appears naturally from the nucleon
loops in the hadronic part of the process.

By conservation of four-momentum, S1 = S5 for the first self-energy diagram, and
S6 = S5 for the second self-energy diagram, such that the different terms of the self-energy
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corrections write as

Dαβ
1

Dαβ
2

Dαβ
3

Dαβ
4

=
1
64 ∑

x,y,z,u,w
S2

x(p1)Sy(p2)Sz(p3)Su(p4)Sw(p6)



D1;isoDαβ
1;spin

D2;isoDαβ
2;spin

D3;isoDαβ
3;spin

D4;isoDαβ
4;spin

, (5.57)



Eαβ
1

Eαβ
2

Eαβ
3

Eαβ
4

=
1
64 ∑

x,y,z,u,w
Sx(p1)Sy(p2)Sz(p3)Su(p4)S2

w(p6)



E1;isoEαβ
1;spin

E2;isoEαβ
2;spin

E3;isoEαβ
3;spin

E4;isoEαβ
4;spin

. (5.58)

and the four-momenta of nucleons in play are presented in Table. 5.1.

Nucleon
four-momentum

D E
(1) p1 p1
(2) p2 p2
(3) p3 p3
(4) p1 + p2 − p3 p1 − Q + p2 − p3
(5) p1 p1 − Q
(6) p1 − Q p1 − Q

Table 5.1: Conservation of four-momenta of nucleons of the self-energy corrections
to MUrca.

On the one hand, let us treat the isospin part of the first diagram of the self-energy cor-
rections. We chose to present the derivation for the nucleon-weak boson vertex combination
with a τ+ on the left hand side of the diagram, and a τ− on the right hand side of the dia-
gram. As was discussed above, choosing the other vertex combination only means that all
nucleons in play have opposite isospin quantum number, or in other words, that protons
are changed into neutrons and vice-versa. In the chosen convention, the isospin part is given
by the following traces

D1;iso = Tr
[
τ+(1 + sxτ3)τi(1 + suτ3)τ j(1 + sxτ3)τ−(1 + swτ3)

]
Tr
[
(1 + syτ3)τi(1 + szτ3)τj

]
,

(5.59)

D2;iso = Tr
[
τ+(1 + sxτ3)τi(1 + szτ3)τ j(1 + sxτ3)τ−(1 + swτ3)

]
Tr
[
(1 + syτ3)τi(1 + suτ3)τj

]
,

(5.60)

D3;iso = Tr
[
τ+(1 + sxτ3)τi(1 + szτ3)τ j(1 + syτ3)τi(1 + suτ3)τj(1 + sxτ3)τ−(1 + swτ3)

]
,

(5.61)

D4;iso = Tr
[
τ+(1 + sxτ3)τi(1 + suτ3)τ j(1 + syτ3)τi(1 + szτ3)τj(1 + sxτ3)τ−(1 + swτ3)

]
.

(5.62)
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After operating the isospin traces with the Mathematica algebra software, we operate the
sum over the nucleon isospin nature to define the quantity I:

ID1

ID2

ID3

ID4

=
1
64 ∑

x,y,z,u,w
S2

x(p1)Sy(p2)Sz(p3)Su(p4)Sw(p6)×



Di,j
1;iso

Di,j
2;iso

Di,j
3;iso

Di,j
4;iso

(5.63)

=



Sp(p1)
2
[
Sp(p2)Sp(p3)Sp(p4) + Sn(p2)

(
4Sp(p3)Sn(p4) + Sn(p3)Sp(p4)

)]
Sn(p6)

Sp(p1)
2
[
Sp(p2)Sp(p3)Sp(p4) + Sn(p2)

(
4Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

)]
Sn(p6)

Sp(p1)
2
[
Sp(p2)Sp(p3)Sp(p4)− 2Sn(p2)

(
Sp(p3)Sn(p4) + Sn(p3)Sp(p4)

)]
Sn(p6)

Sp(p1)
2
[
Sp(p2)Sp(p3)Sp(p4)− 2Sn(p2)

(
Sp(p3)Sn(p4) + Sn(p3)Sp(p4)

)]
Sn(p6)

.

and similarly for the second diagram of the self-energy correction

IE1

IE2

IE3

IE4

=
1

64 ∑
x,y,z,u,w

Sx(p1)Sy(p2)Sz(p3)Su(p4)S2
w(p6)×



Ei,j
1;iso

Ei,j
2;iso

Ei,j
3;iso

Ei,j
4;iso

(5.64)

=



Sp(p1)
[
Sn(p2)Sn(p3)Sn(p4) + Sp(p2)

(
4Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

)]
S2

n(p6)

Sp(p1)
[
Sn(p2)Sn(p3)Sn(p4) + Sp(p2)

(
4Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

)]
S2

n(p6)

Sp(p1)
[
Sn(p2)Sn(p3)Sn(p4)− 2Sp(p2)

(
Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

)]
S2

n(p6)

Sp(p1)
[
Sn(p2)Sn(p3)Sn(p4)− 2Sp(p2)

(
Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

)]
S2

n(p6)

.

On the other hand, let us treat the spin part of the self-energy corrections

Dαβ
1;spin = Tr

[
ΓµT(p1, p4)T(p4, p1)Γν

]
Tr
[
T(p2, p3)T(p3, p2)

]
, (5.65)

Dαβ
2;spin = Tr

[
ΓµT(p1, p3)T(p3, p1)Γν

]
Tr
[
T(p2, p4)T(p4, p2)

]
, (5.66)

Dαβ
3;spin = Tr

[
ΓµT(p1, p3)T(p3, p2)T(p2, p4)T(p4, p1)Γν

]
, (5.67)

Dαβ
4;spin = Tr

[
ΓµT(p1, p4)T(p4, p2)T(p2, p3)T(p3, p1)Γν

]
, (5.68)

Eαβ
1;spin = Tr

[
ΓνT(p6, p4)T(p4, p6)Γµ

]
Tr
[
T(p2, p3)T(p3, p2)

]
, (5.69)

Eαβ
2;spin = Tr

[
ΓνT(p6, p3)T(p3, p6)Γµ

]
Tr
[
T(p2, p4)T(p4, p2)

]
, (5.70)

Eαβ
3;spin = Tr

[
ΓνT(p6, p4)T(p4, p2)T(p2, p3)T(p3, p6)Γµ

]
, (5.71)

Eαβ
4;spin = Tr

[
ΓνT(p6, p3)T(p3, p2)T(p2, p4)T(p4, p6)Γµ

]
. (5.72)

The traces operated on the spin Pauli matrices include terms related to the weak boson ver-
tex Γ and the strong interaction matrices T but not the nucleon propagator thanks to the
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Krönecker-δ in spin space appearing in the non-relativistic approach of the nucleon propa-
gator. The spin 4× 4 matrix Xαβ

spin can be decomposed into vector (proportional to C2
V), axial

(proportional to C2
A) and cross (proportional to CACV) terms such that

Xαβ
spin =


∼ C2

V ∼ CACV ∼ CACV ∼ CACV

∼ CACV ∼ C2
A ∼ C2

A ∼ C2
A

∼ CACV ∼ C2
A ∼ C2

A ∼ C2
A

∼ CACV ∼ C2
A ∼ C2

A ∼ C2
A

 =

(
XCV Xi

CV CA

X j
CV CA

Xij
CA

)
, (5.73)

with the indices i, and j accounting for the space components. The detailed expression of the
spin part is presented in Appendix A. The axial terms can be presented using two different
projections

• terms projected on δij and terms projected on QiQj/|Q⃗|2, as is the case in Appendix A;

• terms projected along the transverse projector δij − QiQj/|Q⃗|2 and on the longitudinal
projector QiQj/|Q⃗|2, as will be used to present the results.

5.3.1.2 Vertex corrections

Three contributions to the vertex correction, denoted in the following V1, V2 and V3 and
presented in Fig. 5.12, Fig. 5.13 and Fig. 5.14 respectively, must be taken into account. It is
easily noticeable that vertex contributions 1 and 2 correspond exactly to the same integrated
contribution, such that we shall present the derivation only for V2. The conservation of
four-momenta for the three vertex contributions is presented in Table 5.2.

Nucleon
four-momentum

V1 V2 V3

(1) p1 p1 p1
(2) p2 p2 p2
(3) p3 p3 p3
(4) p1 + p2 − p3 p1 + p2 − p3 p1 + p2 − p3
(5) p1 − Q p1 − Q p1 − Q
(6) p1 − Q + p2 − p3 p3 − Q p2 + Q

Table 5.2: Conservation of four-momenta of nucleons in the vertex contributions
to MUrca.

For diagrams V2 and V3, we can distinguish four different ways the strong interaction
can couple nucleons in play per diagram, such that

Vαβ
2a

Vαβ
2b

Vαβ
2c

Vαβ
2d

=
1
64 ∑

x,y,z,u,v,w
Sx(p1)Sy(p2)Sz(p3)Su(p4)Sv(p5)Sw(p6)



V2a;isoVαβ
2a;spin

V2b;isoVαβ
2b;spin

V2c;isoVαβ
2c;spin

V2d;isoVαβ
2d;spin

,
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Figure 5.12: Diagrams of the first vertex correction of MUrca denoted V1, corre-
sponding to diagram (3d) in Bacca et al. [2012].
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Figure 5.13: Diagrams of the second vertex correction of MUrca denoted V2, corre-
sponding to diagram (3e) in Bacca et al. [2012].



Vαβ
3a

Vαβ
3b

Vαβ
3c

Vαβ
3d

=
1
64 ∑

x,y,z,u,v,w
Sx(p1)Sy(p2)Sz(p3)Su(p4)Sv(p5)Sw(p6)



V3a;isoVαβ
3a;spin

V3b;isoVαβ
3b;spin

V3c;isoVαβ
3c;spin

V3d;isoVαβ
3d;spin

,
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Figure 5.14: Diagrams of the third vertex correction of MUrca denoted V3, corre-
sponding to diagram (3c) in Bacca et al. [2012].

On the one hand, let us treat the isospin part of the V2 and V3 contributions, again
presented for a τ+ nucleon-weak boson vertex on the left of the diagram, and a τ− nucleon-
weak boson vertex on the right of the diagram. For the contribution V2

IV2a = 2Sp(p1)
[
Sp(p2)Sp(p4) + Sn(p2)Sn(p4)

]
Sp(p3)Sn(p5)Sn(p6) ,

IV2b = −Sp(p1)
[
Sp(p2)Sp(p4) + Sn(p2)Sn(p4)

]
Sp(p3)Sn(p5)Sn(p6) ,

IV2c = Sp(p1)
[
2Sp(p2)Sp(p4)− Sn(p2)Sn(p4)

]
Sp(p3)Sn(p5)Sn(p6) ,

IV2d = Sp(p1)
[
2Sn(p2)Sn(p4)− Sp(p2)Sp(p4)

]
Sp(p3)Sn(p5)Sn(p6) ,

(5.74)

and for the contribution V3

IV3a = −2Sp(p1)Sn(p2)
[
Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

]
Sn(p5)Sp(p6) ,

IV3b = −2Sp(p1)Sn(p2)
[
Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

]
Sn(p5)Sp(p6) ,

IV3c = Sp(p1)Sn(p2)
[
4Sn(p3)Sp(p4) + Sp(p3)Sn(p4)

]
Sn(p5)Sp(p6) ,

IV3d = Sp(p1)Sn(p2)
[
4Sp(p3)Sn(p4) + Sn(p3)Sp(p4)

]
Sn(p5)Sp(p6) .

(5.75)

On the other hand, we treat the spin part of the V2 and V3 contributions

Vαβ
2a;spin = Tr

[
ΓαT(p1, p4)T(p4, p5)

]
Tr
[
ΓβT(p6, p2)T(p2, p3)

]
, (5.76)

Vαβ
2b;spin = Tr

[
ΓαT(p1, p3)ΓβT(p6, p5)

]
Tr
[
T(p2, p4)T(p4, p2)

]
, (5.77)

Vαβ
2c;spin = Tr

[
ΓαT(p1, p3)ΓβT(p6, p2)T(p2, p4)T(p4, p5)

]
, (5.78)

Vαβ
2d;spin = Tr

[
ΓαT(p1, p4)T(p4, p2)T(p2, p3)ΓβT(p6, p5)

]
, (5.79)

Vαβ
3a;spin = Tr

[
ΓαT(p1, p3)T(p3, p5)

]
Tr
[
ΓβT(p2, p4)T(p4, p6)

]
, (5.80)

Vαβ
3b;spin = Tr

[
ΓαT(p1, p4)T(p4, p5)

]
Tr
[
ΓβT(p2, p3)T(p3, p6)

]
, (5.81)
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Vαβ
3c;spin = Tr

[
ΓαT(p1, p3)T(p3, p6)ΓβT(p2, p4)T(p4, p5)

]
, (5.82)

Vαβ
3d;spin = Tr

[
ΓαT(p1, p4)T(p4, p6)ΓβT(p2, p3)T(p3, p5)

]
; (5.83)

details are presented in Appendix A.

5.3.2 The hadronic polarization function treated in the Matsubara formalism

In Eq. (5.43), the conservation of four-momentum in the hadronic part of the diagrams
introduces the Dirac δ-function, which can reduce the number of integrals to operate

Παβ(Q) =

(
4

∏
j=1

∫ d4 pj

(2π)4

)
∑
X

IXXαβ
spin(Q)δ4(p1 + p2 − p3 − p4) . (5.84)

Because we neglect the time component of the pion, only the isospin part of the deriva-
tion is concerned with the integral over the time component of the four-momenta. The four
dimensional integrals over the nucleon four-momenta can be replaced by three dimensional
integrals and summed via the Matsubara formalism. In this formalism, an analytical con-
tinuation is used, and thankfully the expression is simple enough that this continuation
can be performed. We introduce the Matsubara frequencies denoted ω (for details, see Ap-
pendix B), and the time component of the nucleon with four-momentum l such that

l0,x = iω + µ∗
x , (5.85)

with µ∗ the effective chemical potential of the nucleon of isospin nature x; including the
chemical potential of particles allows us to include in medium effects. The integral is trans-
formed such that

1
2π

∫
d4k → 1

β ∑
ωl

∫
d3k , (5.86)

with β the inverse of the temperature. By introducing the Matsubara frequencies, the nu-
cleon propagator takes the form

Sab
x (l) =

δab

iω − Ẽ⃗l;x + iη
, with Ẽ⃗l;x = E (⃗l)− µ∗

x , (5.87)

and with η a small quantity permitting the analytical continuation for a retarded function; in
practice, we operate an analytical continuation of Q0 from a bosonic frequency. We denote
ω1, ω2 and ω3 the Matsubara frequencies referring to p1, p2 and p3 respectively. The retarded
hadronic polarisation function can therefore be written as

Παβ(Q) =

(
3

∏
j=1

∫ d3 p⃗j

(2π)3

) ∫ d3 p4

(2π)4 δ3( p⃗1 + p⃗2 − p⃗3 − p⃗4)∑
X

(
1
β3 ∑

ω1

∑
ω2

∑
ω3

IX

)
Xαβ

spin , (5.88)
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The sum operated over Matsubara frequencies introduces distribution functions de-
noted nF and nBE, respectively for the Fermi distribution and the Bose-Einstein distribution.
Details on the derivation of the sum over Matsubara frequencies are given in Appendix B;
the MATHEMATICA package MatsubaraSum is also a very useful tool to rapidly compute
those sums. Using Table 5.1 and Table 5.2, the sums are given by

1
β3 ∑

ω1

∑
ω2

∑
ω3

IX =
1
β3 ∑

{x,y,z,u,v,w}=iso

[
∑
ω1

∑
ω2

∑
ω3

Sx(p1)Sy(p2)Sz(p3)Su(p4)Sv(p5)Sw(p6)

]
X

≡ ∑
iso

MX , (5.89)

with the sum over isospin indices given by Eq. (5.63), Eq. (5.74) and Eq. (5.75). Details on
the derivation of the M functions are given in Appendix C. In our derivation, only the
imaginary part of the retarded polarization function is of interest, such that

Im Παβ(Q) =

(
3

∏
j=1

∫ d3 p⃗j

(2π)3

) ∫ d3 p4

(2π)4 ∑
iso

δ3( p⃗1 + p⃗2 − p⃗3 − p⃗4)

(
ImMD ∑

X=D1,2,3,4

Xαβ
spin

(5.90)

+ ImME ∑
X=E1,2,3,4

Xαβ
spin + 2 ImMV2 ∑

X=a,b,c,d
Vαβ

2X,spin + ImMV3 ∑
X=a,b,c,d

Vαβ
3X,spin

)

with ImMD, ImME ImMV2 and ImMV3 explicitly given in Appendix C.

Taking the imaginary part of the M functions introduces a Dirac δ-function similar to
a conservation of the time component of the four-momentum (energy) of particles. Let us
note that it is an additional Dirac δ-function that reduces one more integral in the imaginary
part of the retarded polarization function, not to be confused with the Dirac δ-function used
in Eq. (5.88). Taking the imaginary part of the M functions puts the particles on their mass
shell. Let us introduce the notation

G(α, β, γ, δ) = nF(α)nF(β)
(
1 − nF(γ)

)(
1 − nF(δ)

)
−
(
1 − nF(α)

)(
1 − nF(β)

)
nF(γ)nF(δ) ,

(5.91)
and

ND = π
G(Ẽp⃗6;w, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)(

Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗4;u
)2 , (5.92)

NE = π
G(Ẽp⃗1;x, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)(

Ẽp⃗6;w + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗4;u
)2 , (5.93)

N (1)
V2

= −π
G(Ẽp⃗5;v, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗5;v + Ẽp⃗2;y − Ẽp⃗4;u − Ẽp⃗6;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗4;u)
, (5.94)

N (1)
V2

= π
G(Ẽp⃗1;x, Ẽp⃗2;y, Ẽp⃗4;u, Ẽp⃗6;w)

(Ẽp⃗5;v + Ẽp⃗2;y − Ẽp⃗4;u − Ẽp⃗6;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗4;u)
, (5.95)

https://github.com/EverettYou/MatsubaraSum
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N (1)
V3

= −π
G(Ẽp⃗1;x, Ẽp⃗6;w, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗3;z + Ẽp⃗4;u − Ẽp⃗5;v − Ẽp⃗6;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗4;u)
, (5.96)

N (1)
V3

= π
G(Ẽp⃗2;y, Ẽp⃗5;v, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗3;z + Ẽp⃗4;u − Ẽp⃗5;v − Ẽp⃗6;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗4;u)
; (5.97)

later on referred to as the N functions. Once summed over the different diagrams, the N
functions correspond to the matrix element of the reaction multiplied by the distribution
functions of incoming and outgoing particles with the propagator of what we call the inter-
mediary particles. Intermediary particles are particles that would lead to Direct Urca cuts
correcting the dominant Direct Urca contribution in the diagrams drawn in section 5.3.1;
note that the Direct Urca cuts were neglected when we established the N functions in Ap-
pendix C, because we present the derivation for the Modified Urca process only. The N
functions can be easily deduced by cutting the diagrams presented in Fig. 5.10, Fig. 5.11,
Fig. 5.13 and Fig. 5.14 either vertically or with diagonals. The imaginary part of the retarded
polarization function can be expressed as

Im Παβ(Q) =

(
3

∏
j=1

∫ d3 p⃗j

(2π)3

) ∫ d3 p4

(2π)4 ∑
iso

δ3( p⃗1 + p⃗2 − p⃗3 − p⃗4)

×
(

δ(Ẽp⃗6;w + Ẽp⃗2;y + Q0 − Ẽp⃗3;z − Ẽp⃗4;u)ND ∑
X

Xαβ
spin

δ(Ẽp⃗1;x + Ẽp⃗2;y − Q0 − Ẽp⃗3;z − Ẽp⃗4;u)NE ∑
X

Xαβ
spin

+ 2
[
δ(Ẽp⃗5;v + Ẽp⃗2;y + Q0 − Ẽp⃗3;z − Ẽp⃗4;u)N

(1)
V2

+ δ(Ẽp⃗1;x + Ẽp⃗2;y − Q0 − Ẽp⃗4;u − Ẽp⃗6;w)N
(2)
V2

]
∑

X=a,b,c,d
Vαβ

2X,spin

+
[
δ(Ẽp⃗6;w + Ẽp⃗1;x − Q0 − Ẽp⃗3;z − Ẽp⃗4;u)N

(1)
V3

+ δ(Ẽp⃗5;v + Ẽp⃗2;y + Q0 − Ẽp⃗3;z − Ẽp⃗4;u)N
(2)
V3

]
∑

X=a,b,c,d
Vαβ

3X,spin

)
. (5.98)

In Appendix C, we present the details of a change of variables to reduce the number of
integrals with the help of the Dirac δ-functions. Numerical results associated to the expres-
sion of the imaginary part of the hadronic polarization function are presented in the next
section.
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5.4 Numerical treatment of the momenta integrations with the Monte-
Carlo method

At this stage of the derivation, we are left with an integration of dimension eight, which
is operated in spherical coordinates such that the norm, and altitude and azimuthal angles
for the momentum of particles are the variables to integrate over. To treat this integral,
we use the Monte-Carlo integration numerical recipe [Metropolis, 1985]. The use of the
Monte-Carlo integration is warranted because we know the behavior of all particles in play,
or in other words the integrand. We want to treat the variables that are the momenta of
independent particles in the Modified Urca diagrams, as random quantities such that the
result can be interpreted as a probabilistic entity numerically solvable.

A simple first approach to the Monte-Carlo integration technique would be to generate
N number of the random variable x in the domain [a, b] along a uniform probability density
such that

I =
∫ b

a
f (x)dx =

b − a
N

N

∑
i=1

f (xi) . (5.99)

A uniform probability density is constant such that all random generation of the variable x
has the same probability in the domain [a, b]. Such sampling is called elementary. However,
imagine that you know that in a part of the domain the integrand is very small: a uniform
sampling allocates too many points to a part of the integral that is small and virtually does
not matter, and too few points to a part of the integrand which dominates the value of the
integral; the convergence of the numerical integration is therefore rather slow.

Therefore, we turn to a biased Monte-Carlo method called importance sampling: ran-
dom sampling follows a non-uniform distribution denoted ρ which we know how to ana-
lytically integrate. The integration can be estimated according to

I =
∫ f (x)

ρ(x)
ρ(x)dx =

b − a
N

N

∑
i=1

f (zi)

ρ(zi)
, (5.100)

with z the random variable sampled with the density probability ρ and b − a the interval of
the non-uniform sampling. To sample N variables according to the density probability ρ,
one can use the formula linking two variables z and x following the density probability ρ(z)
and ω(x) respectively

ρ(z)dz = ω(x)dx . (5.101)

Let us give a simple example of an integral which resemble the one we want to discuss
in Modified Urca calculations but with a smaller number of variables. The density of particle
i denoted ni is calculated from the expression

ni =
2

(2π)3h̄c

∫ ∞

0
dp
∫ π

0
dθ
∫ 2π

0
dϕ p2 nF(Ep⃗ − µi) sin(ϕ) (5.102)

=

√
2

π2h̄c
(m∗

i T)3/2
∫ ∞

0
dx

√
x

1 + ex−ηi
, (5.103)
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with x = p2/(2mT) , ηi = (µ∗
i − m∗

i )/T, m∗
i the effective mass of the particle, µ∗

i the effective
chemical potential of the particle and T the temperature. The density of particles can be
extracted from an equation of state, and we present this example for the equation of state
(RG)SLy4. The integral over dx is not trivial analytically, therefore we shall treat it with a
Monte-Carlo method with random sampling.

Let us choose the non-uniform distribution for the variable x to be

ρ(x) =
A

1 + ex−η
, (5.104)

with A a constant to be determined by ensuring that the distribution (density probability) is
normalized6

∫ ∞

0
ρ(x)dx ≡ 1 → A

[
− ln

(
1 + eη−x)]∞

0
= 1 ↔ A =

1
ln(1 + eη)

. (5.105)

We denote x the variable distributed uniformly such that

z = η − ln
(

e−x/A (1 + eη)− 1
)

. (5.106)

Results of this integration are presented in Fig. 5.15 as the absolute difference between the
value extracted from the (RG)SLy4, and the one calculated from the elementary Monte-Carlo
and random-sampling Monte-Carlo, as a function of the number of points. We present
results at temperature T = 4.7 MeV, baryon density nB = 0.2 fm−3 and electron fraction
ye = 0.3. The random-sampling method converges much quicker than the elementary
method.

6This allows us to randomly throw x between 0 and 1 and not care further for boundaries of the integral.
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Figure 5.15: Absolute difference between the exact value for the neutron density
in EoS (RG)SLy4 and the calculation by Monte-Carlo with elementary and random
sampling method, at T ∼ 4.7 MeV, nB ∼ 0.2 fm−4 and ye ∼ 0.3.
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5.5 Results of the Monte-Carlo integration for the hadronic part of
Modified Urca

The results presented in this section are focused on the hadronic polarization function.
Establishing the Modified Urca neutrino emissivity requires treating the lepton part of the
process, which is beyond the scope of this manuscript. Our goal is to discuss our results
for the hadronic part of the diagrams, and how it will affect the neutrino emissivity of this
process.

5.5.1 Numerical divergence above the Direct Urca threshold

The N functions described in section 5.3.2 can be rewritten using the conservation of
energy as follows

ND = π
G(Ẽp⃗6;w, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)(

Ẽp⃗1;x − Ẽp⃗6;w − Q0
)2 , (5.107)

NE = π
G(Ẽp⃗1;x, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)(

Ẽp⃗6;x − Ẽp⃗1;w + Q0
)2 , (5.108)

N (1)
V2

= −π
G(Ẽp⃗5;v, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗5;v − Ẽp⃗1;x + Q0)(Ẽp⃗6;w − Ẽp⃗3;z + Q0)
, (5.109)

N (1)
V2

= π
G(Ẽp⃗1;x, Ẽp⃗2;y, Ẽp⃗4;u, Ẽp⃗6;w)

(Ẽp⃗5;v − Ẽp⃗1;x + Q0)(Ẽp⃗6;w − Ẽp⃗3;z + Q0)
, (5.110)

N (1)
V3

= −π
G(Ẽp⃗1;x, Ẽp⃗6;w, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗2;y − Ẽp⃗6;w + Q0)(Ẽp⃗1;x − Ẽp⃗5;v − Q0)
, (5.111)

N (1)
V3

= π
G(Ẽp⃗2;y, Ẽp⃗5;v, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗2;y − Ẽp⃗6;w + Q0)(Ẽp⃗1;x − Ẽp⃗5;v − Q0)
. (5.112)

The energy of the weak boson Q0 is fixed by the weak interaction part of the diagram,
i.e. by the energies of the leptons involved in the reaction. Close and beyond the threshold
of the Direct Urca process, which exact location in terms of Q0 is extracted from the Direct
Urca calculations [Oertel et al., 2020, Pascal et al., 2022], the N functions present a pole. This
translates into numerical divergence of the integration. There are jumps in the Monte-Carlo
integral, and the convergence is impossible. In Eq. (5.107), Eq. (5.108), Eq. (5.109), Eq. (5.110),
Eq. (5.111) and Eq. (5.112), the denominator includes only intermediary particles (particles
that corresponds to the Direct Urca cuts in the diagrams drawn in section 5.3.17). For condi-
tions of the weak boson energy Q0 and momentum Q⃗ which are below the DUrca threshold,
the denominator of the N functions can never reach zero, as the conditions of the Direct
Urca process are not allowed: below the DUrca threshold, the Modified Urca calculations

7Direct Urca cuts were neglected when we established the N functions from the Matsubara sums, because
we presented the derivation for the Modified Urca process only.
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do not diverge. However, the numerical divergence can appear close and beyond the DUrca
threshold.

This is illustrated in Fig. 5.16, in which we present the imaginary part of the hadronic
polarization function of the first self-energy diagram, for different values of the number of
points in the Monte-Carlo integration. Results are presented for a temperature T = 10 MeV,
a baryonic density nB = 0.2 fm−3, and an electron fraction ye = 0.3.

• In the top of this figure, the conditions for the leptonic part of the reaction are below
the DUrca threshold of the reaction (Q0;th, |Q⃗|th) ≃ (−45, 19) MeV. In this case, the
numerical method converges well to a value around nine. We can note that the curve
stops before 3× 104 points: that means that for almost half of the points of the integra-
tion, the kinematics conditions randomly thrown for the nucleon’s momenta do not
permit the reaction, such that the Heaviside function in Eq. (C.18) of the Appendix
leads to zero.

• In the bottom figure, the conditions for the leptonic part of the reaction are above
the DUrca threshold. It is clear from the scale on the y axis that the jumps lead to
numerical divergence. Moreover from the last jump around 104 points to the last point
for an integration with 5 × 105 points, the curve is slowly decreasing, suggesting that
the convergence is not reached.

0 10000 20000 30000 40000 50000
Number of Points for Monte-Carlo

103

105

107

Im
 

D
 (M

eV
2 )

Q0 = 20 MeV
|Q| = 48 MeV

Over the DUrca Threshold

5

7

9

Im
 

D
 (M

eV
2 ) Q0 = 60 MeV

|Q| = 8 MeV

Under the DUrca Threshold

Figure 5.16: Imaginary part of the hadronic polarization function for the first self-
energy diagram Im ΠD, as a function of the number of points in the Monte-Carlo
integration.

The emergence of this numerical divergence beyond the Direct Urca process threshold
can be explained from an approximation taken in Eq. (5.56), when we established the prop-
agator of the nucleons. Strictly, the nucleon propagator in spectral representation is defined
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by the formula

Sab
x (k) = − 1

π

∫
dΩ

Im Sx(Ω, k⃗)
k0 − Ω

δab , (5.113)

with k the four-momentum of the nucleon, and k0 its time component. The variable Ω can
be understood as the energy states of the particle within the propagator with a weight given
by Im S. For bare nucleons, the quantity in the numerator Im Sx(Ω, k⃗) is reduced to a Dirac
δ-function δ(Ω − ω); in this case, the nucleon propagator only has the Krönecker-δ δab in the
numerator after the integration is operated. This is the approach that we have chosen from
Eq. (5.56) until the end of the derivation.

Now, let us try to dress the nucleons a posteriori of the derivation. Because the numerical
challenge is focused on the denominator of the N functions, we dress nucleon propagators
only for the intermediary particles of the diagrams. The sums over Matsubara frequencies
leading to the function G in Eq. (5.107), Eq. (5.108), Eq. (5.109), Eq. (5.110), Eq. (5.111) and
Eq. (5.112) are not affected by our treatment of dressed nucleons: indeed, the function G
does not include intermediary particles. For example, for the vertex diagram V2, one of the
terms of the imaginary part of the N function presented in Eq. (5.109) and Eq. (5.98), when
taking into account the dressed nature of intermediary particles can be rewritten as

ImM = − 1
π
G(Ẽp⃗5;v, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)

∫
dΩ1

∫
dΩ6δ(Ẽp⃗5;v + Ẽp⃗2;y + Q0 − Ẽp⃗3;z − Ẽp⃗4;u)

1
(Ω1 − Ẽp⃗5;v − Q0)(Ω6 − Ẽp⃗3;z + Q0)

Im Σ1

(Ω1 − Ẽp⃗1;x)2 + Im Σ2
1

Im Σ6

(Ω1 − Ẽp⃗6;w)2 + Im Σ2
6

.

(5.114)

with particles (1) and (6) the intermediary nucleons associated to the variables Ω1 and Ω6

respectively. The quantities Im Σ1 and Im Σ6 designate the self-energy of the intermediary
nucleons (1) and (6).

For our calculation to be complete, we should know the functions Im Σ(k0, k⃗), but we do
not. One way would be to solve a self-consistent equation for these functions. In Hannestad
and Raffelt [1998], the authors have used a sum rule to evaluate the functions of the particles
self-energy. In Bacca et al. [2012], the authors present results for pure neutron matter, which
does not allow for the Modified Urca process. For our calculations, the following approxi-
mation is taken: Im Σ1 and Im Σ6 are both constant quantities. In that framework, we can
rewrite

ImM = − 1
π
G(Ẽp⃗5;v, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)δ(Ẽp⃗5;v + Ẽp⃗2;y + Q0 − Ẽp⃗3;z − Ẽp⃗4;u)

Ẽp⃗1;x − Ẽp⃗5;v − Q0

(Ẽp⃗1;x − Ẽp⃗5;v − Q0)2 + Γ2
1

Ẽp⃗6;w − Ẽp⃗3;z + Q0

(Ẽp⃗6;w − Ẽp⃗3;z + Q0)2 + Γ2
6

, (5.115)

with Γ1 and Γ6 the constant for the self-energy of intermediary nucleons. A similar for-
mula can be established for the self-energy diagram and the other vertex diagrams. In the
following, Γi are parameters of our calculations and results.
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The parameters Γi and their role in avoiding numerical divergence in the polarization
function was discussed in Hannestad and Raffelt [1998]. Unless otherwise stipulated, results
are presented for Γi = 10. This value allowed us to avoid the numerical divergence close to
and beyond the threshold of the Direct Urca process, while not polluting the results below
the threshold. To be clear, the results presented in the following well below the DUrca
threshold do not depend on the value of Γi; on the other hand, results presented around
and beyond the DUrca threshold depend on Γi, and should be taken with extreme caution.
When results beyond the DUrca threshold will be discussed, our intent is to present general
trends and not exact calculations.

In overall, our derivation of the Modified Urca hadronic polarization function in Ther-
mal Quantum Field theory allows us to establish calculations at finite temperatures. How-
ever, our treatment of the nucleon propagators in the perturbative theory of Feynman dia-
grams, in which the Direct Urca is the one particle-one hole order in the perturbation, and
Modified Urca is the two particles-two holes, leads to issues for Modified Urca calculations
close and beyond the DUrca threshold. The role of the bareness of the nucleon propagators
in the calculations of the Modified Urca process implies that a careful calculation of the nu-
cleon’s self-energy must be established to have an exact value of the parameter (function)
Γi. This is however beyond the scope of this manuscript.

5.5.2 The vector contribution

The role of the vector contribution in the neutral current of the weak interaction is dis-
cussed in Timmermans et al. [2002]. In this paper, the authors propose the soft Bremsstrahlung
theorem: the vector part of the neutral weak current vanishes for a "soft" process, i.e. when
the momentum of the weak boson is negligible. In Friman and Maxwell [1979], both the
Bremsstrahlung and Modified Urca reactions are discussed. They found, phenomenologi-
cally, that in the One Pion Exchange approximation, the vector part of the weak interaction
vanishes for the Bremsstrahlung process. In this paper, the authors use a particularly sim-
plistic form of the nucleon propagator in the Modified Urca process. However, it is not
true to consider that the vector part of the charged weak current vanishes per definition.
For example, in Yakovlev et al. [2001], the authors present the derivation of the vector con-
tribution in Eq. (136), but do not discuss its value beyond the Friman and Maxwell [1979]
approximation. In the following, the vector part is treated as completely as the axial part.

In Fig.5.17, we present the vector, axial longitudinal and axial transverse parts of the
imaginary part of the hadronic polarization function for the modified electron capture pre-
sented in Eq. (5.24). In this figure, results are presented with the coupling constants set as
CV = CA = 1; such will be the case for all the results of this section. The temperature, bary-
onic density and electron fraction are selected to be 10 MeV, 0.2 fm−3 and 0.3 respectively.
For the lepton part of the reaction, the neutrino energy is chosen to be 5 MeV. The energy of
the weak boson Q0 ranges from its minimum value defined by Eq. (5.28), to zero. The space
component of the weak boson is selected by calculating the electron momentum from the
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value of Q0, and finding the maximum value |Q⃗|max determined by electron and neutrino
momenta with aligned directions.
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Figure 5.17: Vector and axial part of the imaginary part of the hadronic polariza-
tion function Im Π as a function of the energy of the weak boson Q0. The space
momentum of the weak boson is chosen to be Q⃗ = Q⃗max except for the curve
representing the vector contribution for Q⃗ = 0. The Monte Carlo integration is
performed with 5 × 104 points, and the band for each curve represent an estima-
tion of the error for this number of points.

First, let us discuss the results presented in Fig. 5.17 below the DUrca threshold (repre-
sented as a dashed black line in the figure). The vector part of the Modified Urca process
represented in red in the figure, is much smaller than the axial parts such that neglecting it
with respect to the axial longitudinal and axial transverse part is reasonable. It is however
not zero, as it would be for the Bremsstrahlung process. The vector part calculated with the
momentum of the weak boson set to zero is represented in the figure in violet. It is much
smaller than the vector part calculated for Q⃗ = Q⃗max, but still not zero. From this, we can
also conclude that the value of Q⃗ does not affect the maximum of the hadronic polarization
function. Let us note that the error of the Monte-Carlo method represented as bands in the
figure is similar for vector and axial parts, only the logarithmic scale of the y axis seems to
enlarge it.

With respect to the results close and beyond the DUrca threshold, the vector and axial
part seem to be much more of the same order. This can be explained because the results be-
yond the DUrca threshold depend on Γi. Therefore, the different terms of the imaginary part
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of the hadronic polarization function are dominated by the denominator which is subject to
numerical divergence, and not by the element matrix of the reaction.

5.5.3 The role of the denominator of N functions

In our study, the denominator in Eq. (5.107), Eq. (5.108), Eq. (5.109), Eq. (5.110), Eq. (5.111)
and Eq. (5.112), referred to in the following as the "full denominator", include the effective
masses and chemical potential of the intermediary particles. In the work of Friman and
Maxwell [1979], Yakovlev and Levenfish [1995], Yakovlev et al. [2001], Alford and Harris
[2018], the denominator is reduced to the energy of the electrons. In-medium effects are
therefore only taken into account in the energy of the nucleons that appear in the distri-
bution functions of G. To assess the role of the denominator in the hadronic polarization
function, we compute our results with the full denominator in the N functions, and also
by reducing the denominator to the square of the electron energy E2

e . Results in Fig. 5.18
are only presented below the DUrca threshold. We also present results for the calculation
operated with the denominator Q2

0, as is presented in Bacca et al. [2012].
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Figure 5.18: Vector and axial parts of the imaginary part of the hadronic polariza-
tion function Im Π as a function of the energy of the weak boson Q0, calculated
with a 5 × 104 points Monte-Carlo method. Results are presented for our calcu-
lation (full denominator), and by replacing the denominator by the energy of the
electrons (1/E2

e ) and by the energy of the weak boson (1/Q2
0).

From Fig. 5.18, we compare results from calculations with the full denominator and the
denominator E2

e :
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• In the case of the denominator E2
e , the axial and vector terms have a very large value

close to the minimum value of the energy of the weak boson. At Q0 = Qmin
0 , the energy

of the electrons is reduced to their mass, such that the denominator is small and the
result for the imaginary part of the hadronic polarization function is large.

• Calculations with the full denominator present values which are much smaller than
for the denominator E2

e : for the axial terms, there is an order of magnitude and a half
of difference. Moreover, for the denominator E2

e , the axial terms present a trend of
decrease which can be grossly associated to a square function, thus suggesting that
the denominator plays an important role (more important than the matrix element) in
the results.

The results for the imaginary part of the hadronic polarization function with a denom-
inator Q2

0 seem to underestimate the value of the hadronic polarization function. Note that
the condition of the temperature, density and electron fraction presented in Fig. 5.18 corre-
spond to low values of the weak boson energy in the range between the minimum energy
of the weak boson and the DUrca threshold. The differences between the full denominator
approach and the one with the denominator Q2

0 would not be as exacerbated if the DUrca
threshold is close to zero.

In Shternin et al. [2018], the role of the denominator of the N functions is discussed
in section 2.1. The authors estimate analytically the enhancement factor that appears when
including the nucleon in medium energy in the denominator of the N functions compared
to the simple approach of 1/E2

e . They also discuss the pole that appears in the denominator
and conclude that it leads to an enhancement of the results close to the DUrca threshold.
In our approach with the full denominator, we have introduced the quantity Γi to avoid
the divergence that is related to this pole. In order to assess the enhancement discussed in
Shternin et al. [2018], we present results of calculations with Γi = 0 in Fig. 5.19. The diver-
gence related to the pole in the denominator of the N functions is clear. The enhancement
of the Modified Urca hadronic polarization function occurs close to the DUrca threshold.
This is no longer the case when the Γi is introduced, as is presented in Fig. 5.18: considering
dressed nucleons therefore avoids this enhancement.
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Figure 5.19: Vector and axial contributions to the imaginary part of the hadronic
polarization function Π as a function of the energy of the weak boson Q0 with the
parameters Γi = 0, calculated with a 5 × 104 points Monte-Carlo method. Results
are presented for our calculation (full denominator) and by replacing the denomi-
nator by the energy of the electrons (1/E2

e ).

5.5.4 Modified Urca suppression above the Direct Urca threshold

Let us now discuss the Modified Urca calculations close to and above the DUrca thresh-
old. In Yakovlev et al. [2001], Schmitt and Shternin [2018], simple formulas for the neutrino
emissivity of the Direct Urca and Modified Urca processes are presented. For example,
the neutrino emissivity of the Direct Urca process denoted QDu is presented in Eq. (120) of
Yakovlev et al. [2001] and the neutrino emissivity of the Modified Urca process denoted QMu

is presented in Eq. (140) of Yakovlev et al. [2001]. It is important to note that those formulas
are established for strongly degenerate electrons and nucleons, such that particles are on
their Fermi surfaces. This is an approach which is valid in the low temperature and high
density regime, later on referred to as LtHd. From the formulas presented in Yakovlev et al.
[2001], we can establish an approximation of the ratio between the neutrino emissivity of
the Modified Urca process and the Direct Urca process in the LtHd regime

QMu

QDu ≃ 2 × 10−6
(

T
109K

)2
(m∗

n)
2

mnmp
, (5.116)

with m∗
n the effective mass of neutrons. This ratio is small, such that the Modified Urca pro-

cess can be neglected with respect to the Direct Urca process once the latter is kinematically
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allowed. The Direct Urca process is referred to as fast cooling process, whereas the Modified
Urca process is referred to as a slow cooling process. In other words, the Modified Urca pro-
cess is suppressed above the DUrca threshold, to the point that there is no need to compute
the Modified Urca process beyond the DUrca threshold.

Now let us make a crude approximation of the ratio between the neutrino emissivity of
the Modified Urca and Direct Urca processes outside of the above mentioned regime, i.e. for
high temperatures and low density. The integrand related to the hadronic part for the Direct
Urca and Modified Urca processes are denoted IDu and IMu respectively. While the Direct
Urca process involves one incoming particle and one outgoing particle, the Modified Urca
process involves two incoming particles and two outgoing particles, such that

IMu ∝
(m∗

1T)3/2(m∗
2T)3/2(m∗

3T)3/2

(2π2)3 n1n3(1 − n2)(1 − n4) , (5.117)

IDu ∝
(m∗

1T)3/2

2π2 n1(1 − n2) , (5.118)

with m∗
i the effective mass of the nucleon i. We remind that ni is the Fermi distribution of

particle i and is given by

ni =
1

1 + eβϵi−ηi
, (5.119)

with ηi = (µ∗
i − m∗

i )/T and ϵi the energy of the particle. In Fig. 5.20 and Fig. 5.21, the quan-
tities ηn (for neutrons) and ηp (for protons) are presented as a function of the temperature
T and the baryonic density nB; the calculations were established only for ηi ≤ 300, which
explains the white areas in the lower right corners of the figures.
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Figure 5.20: Contour representation of the quantity ηn = (µ∗
n − m∗

n)/T as a
function of the temperature T and baryonic density nB, for the electron fractions
ye = 0.07 and ye = 0.3.



195 5.5. Results of the Monte-Carlo integration for the hadronic part of Modified Urca

10−5 10−4 10−3 10−2 10−1

nB (fm−3)

5

10

15

20

25

30

35

40

T 
(M

eV
)

ye = 0.07

−12.5

−7.5

−2.5

0.0

2.5

7.5

35.0

75.0

150.0

300.0

(μ
* p

−
μ

p
*)

/T
 (M

eV
)

10−5 10−4 10−3 10−2 10−1

nB (fm−3)

5

10

15

20

25

30

35

40

T 
(M

eV
)

ye = 0.30

−12.5

−7.5

−2.5

0.0

2.5

7.5

35.0

75.0

150.0

300.0

(μ
* p

−
μ

p
*)

/T
 (M

eV
)

Figure 5.21: Contour representation of the quantity ηp = (µ∗
p − m∗

p)/T as a
function of the temperature T and baryonic density nB, for the electron fractions
yq = 0.07 and yq = 0.3.

In the high temperature and low density regime, later on referred to as HtLd, ηn and ηp

are negative or small. The quantity e−η is sufficiently large so that the Fermi distribution can
be approximated to be

nHtLd
i = e−βϵi eηi . (5.120)

In the HtLd regime, the Fermi distribution can be neglected with respect to 1, such that the
ratio of the Modified Urca and Direct Urca integrand presented in Eq. (5.117) and Eq. (5.118)
can be approximated by

IMu

IDu ∝ eηi
(m∗

2T)3/2(m∗
3T)3/2

(2π2)2 e−βϵi (5.121)

The exponential factor eηi gives us an indication of the order of magnitude of the ratio
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IMu/IDu. Using results presented in Fig. 5.20 and Fig. 5.21, we can anticipate the follow-
ing

• In the HtLd regime, i.e. the upper left corner of the figures, the factor eηi is very small,
such that the Modified Urca should be suppressed relative to the Direct Urca process.

• In the figures, the quantity ηi can be around zero, such that the exponential eηi would
be equal to one. Let us note that in this case, the approximation is strictly speaking
no longer valid, but we will keep it here for the purpose of a rough estimation. If the∫

e−βϵi dϵ is approximated to be one, the Modified Urca and Direct Urca process are of
the same order of magnitude for eηi ∼ 1, i.e. close to the zero contour line in the figures.
We can deduce that there might be a temperature and density regime in the vicinity of
the zero contour line of Fig. 5.20 and Fig. 5.21, for which the Modified Urca process is
not suppressed compared to the Direct Urca process. This regime shall be referred to
as the moderate regime, as it refers to densities around 10−2 fm−3 and temperatures
above a few MeV.

• In the LtHd regime, i.e. the lower right corner of the figures, our approximation of
the Fermi distribution is no longer valid. The estimation of the ratio IMu/IDu can be
estimated from the approach taken in Yakovlev et al. [2001]: the Modified Urca process
is suppressed with respected to the Direct Urca process.

To illustrate the different regimes of Modified Urca suppression with respect to the Di-
rect Urca process, we present results for the imaginary part of the hadronic polarization
function for various temperatures, baryonic densities and electron fractions. In Fig. 5.22,
results are presented for a temperature of 30 MeV; in Fig. 5.23, results are presented for a
temperature of 5 MeV.
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Figure 5.22: Comparison between the MUrca vector and axial terms of the
imaginary part of the hadronic polarization function, and the imaginary part
of the hadronic polarization function of the DUrca process, at high temperature
T = 30 MeV, with Γi = 10. The Monte-Carlo integration is operated with 5 × 104

points.

On the one hand, in the HtLd regime (T = 30 MeV and nB = 10−5 fm−3) presented in
the upper plots of Fig. 5.22, the Direct Urca process dominates the Modified Urca process
by several orders of magnitude, as is suggested in the upper left corner of Fig. 5.20 and
Fig. 5.21. Note that from Fig. 5.22, the trend of which reaction dominates the other is similar
for the two values of the electron fraction ye = 0.07 or ye = 0.3; for that reason, only one
value of the electron fraction is presented per temperature and baryonic density conditions
in the remaining figures. This suppression is also illustrated in the left plot of Fig. 5.23: the
temperature is not particularly high (T = 5 MeV) but the baryonic density is low (nB =

10−4), and the contour lines in those conditions follows that of the HtLd regime presented
in Fig. 5.20 and Fig. 5.21.

On the other hand, in the moderate regime which is represented in the lower plots of
Fig. 5.22 (T = 30 MeV and nB = 0.3 fm−3) or in the right plot of Fig. 5.23 (T = 5 MeV and
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nB = 0.3 fm−3), the Modified Urca dominates the Direct Urca process by a factor of two to
four, or in other words, both processes are of the same order.
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Figure 5.23: Comparison between the MUrca vector and axial terms of the imag-
inary part of the hadronic polarization function, and the imaginary part of the
hadronic polarization function of the DUrca process, at temperature T = 5 MeV.
The parameter Γi are selected to be five. The Monte-Carlo integration is operated
with 5 × 105 points.

In overall, we can distinguish three different regimes for the Modified Urca process: it is
suppressed with respect to the Direct Urca process in the low temperature and high density
regime, as well as the high temperature and low density regime. Our results, however,
indicate that there is a moderate regime in which the Direct Urca and Modified Urca process
are of the same order, or in other words for which

IMu

IDu ≃ 1 . (5.122)

The approach to Modified Urca suppression can be discussed for the next order reaction.
Our derivation for the Modified Urca process is treated with a perturbative approach: the
first order corresponds to the Direct Urca process (vertical cuts in the diagrams presented
for example in Fig. 5.10), and the second order to the Modified Urca process. Our results
show that the Modified Urca is not necessarily suppressed beyond the DUrca threshold in
the moderate regime. Moreover, for such conditions the Modified Urca process seems to
dominate by a factor of ∼ 3 the Direct Urca process, which means that the second order in
the perturbation is higher than the first. At this point, in order for the perturbative theory
to converge, we must ensure that a factor suppresses the higher order terms in front of the
first order term. In the same spirit as Eq. (5.121), the third order in the perturbative theory
(the Modified Modified Urca process) will introduce an additional factor eηi . In the HtLd
regime, the suppression is now proportional to (eηi)2 such that the Modified Modified Urca
process would be suppressed with respect to the Modified Urca process. In the moderate
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regime however, the perturbative approach is not assured to converge because (eηi)2 ∼ 1.
This probable lack of convergence shows again that in the moderate regime the perturbative
approach has limits.

Let us quickly go back to the domain of occurrence of electronic and positronic reac-
tions presented in Fig. 5.6 and Fig. 5.7 of section 5.2. From the lower right plot of Fig. 5.22
presented for T = 30 MeV, nB = 0.3 fm−3 and ye = 0.3, it can be seen that the axial parts
of the hadronic polarization function have their maxima at two values of the weak boson
energy Q0 ≃ −80 and Q0 ≃ −60. From Fig. 5.6, we can conclude that for the maximum
at Q0 ≃ −80 the modified electron capture dominates the Direct Urca for these conditions
of temperature, density and electron fraction. In the assumption that the maxima of the
hadronic function is not strongly affected by the quantity Q⃗, we can also state that the Mod-
ified inverse positron capture dominates the Direct Urca reaction. For the maximum value
at Q0 ≃ −60, the electron capture and inverse neutron decay dominate the Direct Urca
processes. Similarly, we can conclude from the plot on the right hand side of Fig. 5.23 and
the lower plot of Fig. 5.7 which presents a maximum of the hadronic polarization function
in the interval Q0 = [−70 : −60] MeV for T = 5 MeV, nB = 0.3 fm−3 and ye = 0.3, that
the Modified electron captures and inverse positron decays dominate the Direct Urca in the
assumption that the hadronic polarization function maximum does not depend on Q⃗.

In conclusion, we have presented the calculation of the imaginary part of the hadronic
polarization function for the Modified Urca process involving electrons, protons and nu-
cleons. We do so at finite temperature and alleviate the commonly used approximations
of Fermi surface, and simple intermediary propagator denominator. In our approach, the
intermediary nucleons are dressed using a parameter which we chose to be constant, but
should ideally be consistently calculated from the self-energy of nucleons; this is however
beyond the scope of this manuscript. By extending the approximation to the Fermi distri-
bution of nucleons in the high temperature regime, we put into light a moderate regime
in which the Modified Urca process could be of the same order as the Direct Urca process,
above the DUrca threshold. Our results are presented for various conditions of temperature,
density and electronic fraction. We can distinguish three regimes:

• the low temperature and high density regime in which the Modified Urca process is
suppressed,

• the high temperature and low density regime in which the Modified Urca process is
suppressed,

• a moderate regime for which the difference of the effective chemical potential and the
effective mass of nucleons over the temperature are close to zero: the Modified Urca
process might not be suppressed.

These new findings for the Modified Urca process might be relevant for the cooling
of proto-neutron stars or the neutrino emission from a binary merger remnant, or in other
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words, for finite temperature neutron stars. Work to include the leptonic part in the calcula-
tion to obtain the neutrino emission rates is in progress.



201

6 Conclusion and perspectives

During my PhD studies, I explored different aspects of ultra dense matter and how it
affects neutron star modelling.

I evaluated the impact of non-unified constructions of catalyzed matter equations of
state on the modelling of neutron star’s macroscopic parameters. By reconstructing non-
unified equations of state that can be found in the literature, I evaluated the relative error
on the mass, the radius, the tidal deformability and the moment of inertia with respect to
unified constructions. This error is not negligible in the prospect of current and future de-
tections of neutron star’s observables, which leads us to conclude that unified constructions,
or at least smartly constructed non-unified equations of state, are important to explore ultra
dense matter properties. Non-unified equations of state have an impact on the precision of
some relations between macroscopic parameters that depend only slightly on the equation
of state, also referred to as quasi-universal relations. In order to provide accurate relations
for neutron star modelling, fits for quasi-universal relations based on a variety of unified
and modern equation of state should be established, for example with the set of equations
of state discussed in this manuscript. It would also be interesting to explore this universality
beyond the framework of general relativity, and establish those fits in alternative theories of
gravitation; this would allow to get a better understanding of the underlying physics lead-
ing to this quasi-universality.

I also worked on establishing analytical representations of modern equations of state
for neutron star modelling based on more than fifty unified models. The parameters for
the piecewise polytropic fits are publicly available. In the future, I will work as a mem-
ber of the Virgo group LUTH/Caen, in collaboration with members of the Ligo scientific
collaboration, on implementing unified equations of state, in the form of tables or analyt-
ical representations, into the simulation tool of the LVK collaboration LalSuite. Within the
LUTH/Caen group, I will also work on revising Bayesian analysis for neutron star mat-
ter using unified constructions of the equation of state prior, and assess how non-unified
constructions impact what can be learned on ultra dense matter properties from astrophys-
ical data; for example, how non-unified constructions impact the neutron star radius value
extracted from gravitational wave data for the tidal deformability.

The thermal relaxation of transient accreting sources can help us explore the composi-
tion of the crust of neutron stars. I established the equation of state, the composition and the
heat deposition in the crust of accreting neutron stars for sources which have accreted only
small amounts of matter, or in other words beyond the fully accreted crust approximation.
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The heat sources of the original crust under the compression provided by accreted material
is not negligible with respect to the heat sources of the accreted material part of the crust.
The properties of the compressed crust are also very different than that of a fully accreted
crust. The next step of this study would be to evaluate the thermal relaxation of a neutron
star with a partially accreted crust using the relativistic equations of cooling and transport
that are coded for example by Dany Page [Page, 2006] or Morgane Fortin [Fortin, 2020].
However, a reevaluation of the partially accreted crust’s equation of state and composition
must be made by including the neutron diffusion by hand, or by stepping outside of the
single nucleus model.

I also evaluated the impact of the kinetics of electron captures on the heat release in the
crust of accreting neutron stars. It was shown for a few shells in the outermost part of the
outer crust that the layers of electron captures have an impact on heat release that can be as
high as 20%. The absolute thickness of the layer of electron captures being approximately
the same for all three shells that were studied, the thickness of those layers for deeper shells
in the crust should be evaluated to check whether it is the same throughout the whole crust.
In that case, it would allow for a simple approximation of the reaction rate correction to the
accreting crust heat deposition. To push this study beyond the three shallowest shells of the
crust, an analytical estimation of the reaction thresholds is required, whereas this quantity
was extracted from measurements of atomic masses in this manuscript.

Neutrino emission processes play a crucial role in the thermal evolution of neutron stars
at different stages of their life. Therefore, it is important to establish accurate calculations of
the neutrino emissivity for finite temperature stars. I focused on the neutrino emission of the
Modified Urca process, which includes the presence of a spectator nucleon. By setting the
derivation in a perturbative approach based on Thermal Quantum Field theory, I established
the full derivation of the hadronic part of the Modified Urca process. The approximation of
Fermi surface for the nucleons and of a simple nucleon propagator for intermediary particles
were removed, and it was shown that the latter has an impact on the value of the hadronic
polarization function. A simple approximation of the ratio between the emissivity of the
Direct Urca and the Modified Urca processes using the effective mass and chemical potential
of nucleons was established. This put into light the possible existence of different regimes
of suppression of one process with respect to the other, which depends on the temperature
and on the density. The perturbative approach chosen to derive the neutrino emissivity
leads to an enhancement of the rate close to and above the Direct Urca threshold. We have
introduced a quasi-particle width for the intermediate propagators to avoid the numerical
divergence related to the enhancement, however the results depend on that parameter. To
provide accurate calculations, the self-energies of the intermediary nucleons, which were
reduced to a constant for the parameter in our study should be carefully assessed. If the
non-suppression of the Modified Urca process with respect to the Direct Urca process is
confirmed, our results will be interesting for proto-neutron star cooling, and in general for
finite temperature neutron stars. The leptonic part of the process will also be computed to
provide results for the neutrino emissivity of the reaction at finite temperature.
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A Details for the spin part of the
Modified Urca derivation

In this Appendix, we present details of the derivation of the spin part of the hadronic
polarization function, which are not presented in the main text of Chapter 5.

The space momentum of the six nucleons in play define the pion space momentum
denoted k. We introduce the following notation

k⃗1 = p⃗4 − p⃗1 , (A.1)

k⃗′1 = p⃗4 − p⃗6 , (A.2)

k⃗2 = p⃗3 − p⃗1 , (A.3)

k⃗′2 = p⃗3 − p⃗6 , (A.4)

k⃗3 = p⃗5 − p⃗3 , (A.5)

k⃗4 = p⃗5 − p⃗4 . (A.6)

For the first self-energy diagram, the different components of the spin tensor are presented,
and details about the projection on the different components of the weak boson four-momentum
Q are given. For the other diagrams, we present directly the results projected on Q.

A.1 Self-energy contributions

D00
1;spin =

(
fπ

mπ

)4 4k⃗1
4
C2

V

(⃗k2
1 + m2

π)
2

, E00
1;spin =

(
fπ

mπ

)4 4k⃗′1
4
C2

V

(⃗k′21 + m2
π)

2
(A.7)

Dij
1;spin =

(
fπ

mπ

)4 4k⃗1
4
C2

A

(⃗k2
1 + m2

π)
2

δij , Eij
1;spin =

(
fπ

mπ

)4 4k⃗′1
4
C2

A

(⃗k′21 + m2
π)

2
δij (A.8)

Di0
1;spin = D0j

1;spin = Ei0
1;spin = E0j

1;spin = 0 , (A.9)

D00
2;spin =

(
fπ

mπ

)4 4k⃗2
4
C2

V

(⃗k2
2 + m2

π)
2

, E00
2;spin =

(
fπ

mπ

)4 4k⃗′2
4
C2

V

(⃗k′22 + m2
π)

2
(A.10)

Dij
2;spin =

(
fπ

mπ

)4 4k⃗2
4
C2

A

(⃗k2
2 + m2

π)
2

δij , Eij
2;spin =

(
fπ

mπ

)4 4k⃗′2
4
C2

A

(⃗k′22 + m2
π)

2
δij (A.11)

Di0
2;spin = D0j

2;spin = Ei0
2;spin = E0j

2;spin0 , (A.12)
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D00
3;spin =

(
fπ

mπ

)4 2C2
V
[
2(⃗k1 · k⃗2)2 − k⃗2

1k⃗2
2
]

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
= D00

4;spin , (A.13)

E00
3;spin =

(
fπ

mπ

)4 2C2
V
[
2(⃗k′1 · k⃗′2)

2 − k⃗′21 k⃗′22
]

(⃗k′21 + m2
π)(⃗k′22 + m2

π)
= E00

4;spin , (A.14)

Dij
3;spin =

(
fπ

mπ

)4 2C2
A
[(

2(⃗k1 · k⃗2)2 − k⃗2
1k⃗2

2
)
δij − 2⃗k1 · k⃗2

(
ki

1kj
2 − kj

1ki
2
)]

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
= Dij

4;spin , (A.15)

Eij
3;spin =

(
fπ

mπ

)4 2C2
A
[(

2(⃗k′1 · k⃗′2)
2 − k⃗′21 k⃗′22

)
δij − 2⃗k′1 · k⃗′2

(
k′i1 k′j2 − k′j1 k′i2

)]
(⃗k′21 + m2

π)(⃗k′22 + m2
π)

= Eij
4;spin , (A.16)

Di0
3;spin = −

(
fπ

mπ

)4 4iCACV⃗k1 · k⃗2(k1 ∧ k2)i

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
= −Di0

4;spin , (A.17)

Ei0
3;spin = −

(
fπ

mπ

)4 4iCACV⃗k′1 · k⃗′2(k
′
1 ∧ k′2)

i

(⃗k′21 + m2
π)(⃗k′22 + m2

π)
= −Ei0

4;spin , (A.18)

D0j
3;spin = −

(
fπ

mπ

)4 4iCACV⃗k1 · k⃗2(k1 ∧ k2)j

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
= −D0j

4;spin , (A.19)

E0j
3;spin = −

(
fπ

mπ

)4 4iCACV⃗k′1 · k⃗′2(k
′
1 ∧ k′2)

j

(⃗k′21 + m2
π)(⃗k′22 + m2

π)
= −E0j

4;spin . (A.20)

The cross and axial components of the spin matrix present a dependence on the differ-
ent component of the pion three-momentum (ki, kj). We operate a projection on the four-
momentum Q of the weak boson in order to express the spin 4 × 4 matrix as

Xij
CA

= Xδδij + XQiQj QiQj ,
Xi0

CV CA
= XQi Qi ,

X0j
CV CA

= XQj Qj ,

using

Xij
CA

δij = 3Xδ + XQiQj Q⃗2 ,

Xij
CA

QiQj

Q⃗2 = Xδ + XQiQj Q⃗2 ,

Xi0
CV CA

Qi
Q⃗2 = XQi ,

X0j
CV CA

Qj

Q⃗2 = XQj ,

(A.21)

with Xδ, XQiQj , XQi and XQj functions to be determined. After explicitly operating this
projection, we obtain for the first self-energy diagram

D3;δ =

(
fπ

mπ

)4 2

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
C2

A
[
2(⃗k1 · k⃗2)

2 − k⃗2
1⃗k2

2
]
= D4;δ , (A.22)

D3;QiQj = D4;QiQj = 0 , (A.23)

D3;Qi = −D4;Qi =

(
fπ

mπ

)4 −4i

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
CACV⃗k1 · k⃗2

(⃗k1 ∧ k⃗2) · Q⃗
Q⃗2

, (A.24)

D3;Qj = −D4;Qj = −
(

fπ

mπ

)4 4i

(⃗k2
1 + m2

π)(⃗k2
2 + m2

π)
CACV⃗k1 · k⃗2

(⃗k1 ∧ k⃗2) · Q⃗
Q⃗2

, (A.25)

and similarly for the second self-energy diagram.
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A.2 Vertex V2

V00
2a;spin =

(
fπ

mπ

)4 4C2
V

(⃗k2
1 + m2

π)(⃗k2
4 + m2

π)
(⃗k1 · k⃗4)

2 , (A.26)

V2a;δ =

(
fπ

mπ

)4 C2
A

(⃗k2
1 + m2

π)(⃗k2
4 + m2

π)
f1(⃗k1, k⃗4) , (A.27)

V2a;QiQj =

(
fπ

mπ

)4 C2
A

(⃗k2
1 + m2

π)(⃗k2
4 + m2

π)
g1(⃗k1, k⃗4) , (A.28)

V2a;Qi =

(
fπ

mπ

)4 4iCACV

(⃗k2
1 + m2

π)(⃗k2
4 + m2

π)
k⃗1 · k⃗4

k⃗1 ∧ k⃗4

Q⃗2
, (A.29)

V2a;Qi = −
(

fπ

mπ

)4 4iCACV

(⃗k2
1 + m2

π)(⃗k2
4 + m2

π)
k⃗1 · k⃗4

k⃗1 ∧ k⃗4

Q⃗2
, (A.30)

V00
2b;spin =

(
fπ

mπ

)4 4C2
V

(⃗k2
2 + m2

π)
2

k⃗4
2 , (A.31)

V2b;δ = −
(

fπ

mπ

)4 4C2
A

(⃗k2
2 + m2

π)
2

k⃗2
2(Q⃗ · k⃗2)2

Q⃗2
, (A.32)

V2b;QiQj =

(
fπ

mπ

)4 4C2
A

(⃗k2
2 + m2

π)
2

3⃗k2
2(Q⃗ · k⃗2)2 − Q⃗2⃗k4

2

Q⃗4
, (A.33)

V2b;Qi = V2b;Qj = 0 , (A.34)

V00
2c;spin =

(
fπ

mπ

)4 2C2
V

(⃗k2
2 + m2

π)(⃗k2
4 + m2

π)

[
2(⃗k2 · k⃗4)

2 − k⃗2
2⃗k2

4
]

, (A.35)

V2c;δ =

(
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mπ

)4 C2
A

(⃗k2
2 + m2

π)(⃗k2
4 + m2

π)
f2(⃗k2, k⃗4) , (A.36)

V2c;QiQj =

(
fπ

mπ

)4 C2
A

(⃗k2
2 + m2

π)(⃗k2
4 + m2

π)
g2(⃗k2, k⃗4) , (A.37)

V2c;Qi =

(
fπ

mπ

)4 4iCACV

(⃗k2
2 + m2

π)(⃗k2
4 + m2

π)
k⃗2 · k⃗4

(⃗k2 ∧ k⃗4) · Q⃗
Q⃗2

, (A.38)

V2c;Qj = −
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mπ

)4 4iCACV

(⃗k2
2 + m2
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4 + m2
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, (A.39)

V00
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2
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, (A.40)

V2d;δ =
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)4 C2
A
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π)(⃗k2
2 + m2

π)
f2(⃗k2, k⃗1) , (A.41)

V2d;QiQj =

(
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mπ

)4 C2
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(⃗k2
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π)(⃗k2
2 + m2

π)
g2(⃗k2, k⃗1) , (A.42)

V2d;Qi = −
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fπ

mπ

)4 4iCACV
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π)(⃗k2
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π)
k⃗1 · k⃗2
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Q⃗2

, (A.43)
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V2d;Qj =

(
fπ

mπ

)4 4iCACV

(⃗k2
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π)(⃗k2
2 + m2

π)
k⃗1 · k⃗2

(⃗k2 ∧ k⃗1) · Q⃗
Q⃗2

, (A.44)

with the following functions defined as

f1(⃗ka, k⃗b) = −2
2(Q⃗ · k⃗a)(Q⃗ · k⃗b)(⃗ka · k⃗b)− k⃗2

a(Q⃗ · k⃗b)
2 − k⃗2

b(Q⃗ · k⃗a)2

Q⃗2
, (A.45)

f2(⃗ka, k⃗b) = −2
Q⃗ · k⃗a

[
2⃗ka · k⃗bQ⃗ · k⃗b − k⃗2

bQ⃗ · k⃗a
]

Q⃗2
, (A.46)

g1(⃗ka, k⃗b) = 2
6(Q⃗ · k⃗a)(Q⃗ · k⃗b)(⃗ka · k⃗b)− 3
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+ 4
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(A.47)

g2(⃗ka, k⃗b) = 2
6(Q⃗ · k⃗a)(Q⃗ · k⃗b)(⃗ka · k⃗b)− 3⃗k2

b(Q⃗ · k⃗a)2

Q⃗4
− 2

2(⃗ka · k⃗b)
2 − k⃗2

a⃗k2
b

Q⃗2
. (A.48)

A.3 Vertex V3

After introducing the function

f3(⃗ka, k⃗b) = 2
2(Q⃗ · k⃗a)(Q⃗ · k⃗b)(⃗kb · k⃗a)− k⃗2

a
(
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b

)
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Q⃗2
, (A.49)

the spin part gives
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2 , (A.50)
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V3a;QiQj = −
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2 , (A.55)

V3b;δ = −
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mπ

)4 C2
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4 + m2

π)
f1(⃗k1, k⃗4) , (A.56)

V3b;QiQj = −
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π)
g1(⃗k1, k⃗4) , (A.57)
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, (A.58)
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V3b;Qj =

(
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π)
k⃗1 · k⃗4
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4
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, (A.60)
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f3(⃗k2, k⃗4) , (A.61)

V3c;QiQj = −
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)4 C2
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4 + m2

π)
g1(⃗k2, k⃗4) , (A.62)

V3c;Qi =
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, (A.63)
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, (A.64)
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f3(⃗k1, k⃗3) , (A.66)

V3d;QiQj = −
(
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)4 C2
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B Details on the Matsubara sums

In this Appendix, we present details on the Matsubara sums used to establish the hadronic
polarization function of the Modified Urca process, which are not presented in the main text
of Chapter 5.

Matsubara frequencies are oftentimes introduced in the finite temperature formalism to
substitute the time component integral of the four-momentum to a sum in complex plane in
which Fermi and Bose-Einstein distributions of particles appear.

B.1 Use of Residue theorem in sums on the imaginary axis

Oftentimes, a four dimensional integral over momentum k noted d4k may be written
as 1

β ∑n
∫

d3⃗k with β = T−1 corresponding to the inverse temperature. By introducing Mat-
subara frequencies in the time component of the quadrimomentum, one can operate sums
using the Residue theorem and eliminate the time component integral.

Let us go through one example in details, that corresponds to one of the sums for the
the self-energy of weak boson in the Modified Urca process

1
β ∑

n

1
iωn − ω

1
iωn − (iωm + µsx

p⃗−q⃗)
=̂

1
β ∑

n
f (iωn) , (B.1)

with ωn = 2nπ/β ( n ∈ Z) a boson frequency. The Bose-Einstein distribution nBE has one
pole which results in the residue 1

β such that one can write

1
β ∑

n
f (iωn) =

1
2πi

∮
C

f (z)nBE(z)dz . (B.2)

The function f presents two poles, one on the real axis and one in the complex plane; because
poles are off the imaginary axis, the Residue theorem can be applied

1
2πi

∮
C

f (z)nBE(z)dz = ∑
n

Res(nBE(zn)) f (zn) . (B.3)

The two poles of function f pertain to two residues

Res f (z → ω) = lim
z→ω

nBE(ω)

z − (iωm + µsx
p⃗−q⃗)

=
nBE(ω)

ω − (iωm + µsx
p⃗−q⃗)

, (B.4)
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Res f (z → iωm + µsx
p⃗−q⃗) = lim

z→iωm+µsx
p⃗−q⃗

nBE(iωm + µsx
p⃗−q⃗)

z − ω
=

nBE(iωm + µsx
p⃗−q⃗)

iωm + µsx
p⃗−q⃗ − ω

, (B.5)

and our sum over bosonic Matsubara frequencies renders

1
β ∑

n

1
iωn − ω

1
iωn − (iωm + µsx

p⃗−q⃗)
=

nBE(iωm + µsx
p⃗−q⃗)− nBE(ω)

iωm + µsx
p⃗−q⃗ − ω

. (B.6)

Same reasoning can be applied for fermionic frequency in which case the Fermi distribution
is used; note that its residue with fermionic frequency ωm = (2n + 1)π/β is −1/β.

B.2 Properties of Bose-Einstein and Fermi distributions

In the following, the notation ωm designates a fermion frequency and ωn a boson fre-
quency. There are a series of simplification properties involving boson nBE and fermion nF

distributions nBE(z) = 1
eβz−1 ,

nF(z) = 1
eβz+1 .

(B.7)

First, some properties related to negative arguments of the distribution functions

nBE(−ω) = −[1 + nBE(ω)] , (B.8)

nF(−ω) =
[
1 − nF(ω)

]
. (B.9)

With regards to relations related to the fermion or boson distributions, for an even frequency
ωe and an odd one ωo (both can be the sum of several frequencies) give the rules

nBE(iωo + µ) = −nF(µ) , (B.10)

nBE(iωe + µ) = nBE(µ) , (B.11)

nF(iωe + µ) = nF(µ) , (B.12)

nF(iωo + µ) = −nBE(µ) . (B.13)

With regards to simplifications with the Fermi distribution of three elements

nF(ωa + ωb − ωc)
(
1 − nF(ωa)

)
(B.14)

=
(
1 − nF(ωa + ωb + ωc)

)
nF(ωa) , (B.15)

from which we establish the following expressions

nBE(ω1 − ω2)
[
nF(ω1)− nF(ω2)

]
= nF(ω1)

[
1 − nF(ω2)

]
, (B.16)[

1 − nF(ω1)
]
nF(ω2) = (nF(ω2)− nF(ω1))

[
1 + nBE(ω1 − ω2)

]
, (B.17)

nF(ω1)nF(ω2) =
[
1 − nF(ω1)− nF(ω2)

]
nBE(ω1 + ω2) . (B.18)
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C Expression for the M functions

In this Appendix, we present details on the change of variables to operate the reduction
of integrals for the Modified Urca process numerical integration of Chapter 5.

C.1 Direct and exchange diagram

The square of the nucleon propagator of particle (1) will introduce the derivative of a
distribution function. We are interested in the Modified Urca reaction when the Direct Urca
is no longer available, therefore Direct Urca corrections of the vertex are neglected, which
reduces the expression to

MD =
1(

Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗1;x − Ẽp⃗2;y + Ẽp⃗3;z
)2(

Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗2;y + Ẽp⃗3;z − Ẽp⃗1−Q⃗;w − Q0 − iη
)

×
(

nF(Ẽp⃗2;y)nF(Ẽp⃗1−Q⃗;w)
(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
−
(
1 − nF(Ẽp⃗2;y)

)(
1 − nF(Ẽp⃗1−Q⃗;w)

)
nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
. (C.1)

Only the imaginary part of the hadron polarisation function is of interest. From the
spin contribution of the direct diagram, only the cross terms of E1 and E2 have imaginary
parts; however, they vanish once those terms are summed. Note that the cross terms imag-
inary parts all vanish once contracted to the lepton tensor (which has symmetric and anti-
symmetric parts); this can be verified analytical for the second vertex diagram and numeri-
cally for the third. Therefore, only the imaginary part of the M functions will count in the
analytical continuation. According to the Sokhotski-Plemelj theorem,

lim
η→0

1
x + iη

= −iπδ(x) + P , (C.2)

lim
η→0

1
x − iη

= iπδ(x) + P (C.3)

with P the Cauchy principle value; taking the imaginary part of the M function, we obtain

ImMD = π
δ(Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗2;y + Ẽp⃗3;z − Ẽp⃗1−Q⃗;w − Q0)(

Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗1;x − Ẽp⃗2;y + Ẽp⃗3;z
)2 (C.4)

×
(

nF(Ẽp⃗1−Q⃗;w)nF(Ẽp⃗2;y)
(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
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−
(
1 − nF(Ẽp⃗1−Q⃗;w)

)(
1 − nF(Ẽp⃗2;y)

)
nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
.

C.2 Second vertex diagram

After introducing the Matsubara frequencies

MV2 =
1
β3 ∑

m1

∑
m2

∑
m3

1
iωm1 − Ẽp⃗1;x

1
iωm2 − Ẽp⃗2;y

1
iωm3 − Ẽp⃗3;z

1
iωm1 + iωm2 − iωm3 − Ẽp⃗1+ p⃗2− p⃗3;u

× 1
iωm1 − Q0 − iη − Ẽp⃗1−Q⃗;v

1
iωm3 − Q0 − iη − Ẽp⃗3−Q⃗;w

, (C.5)

such that for Direct Urca neglected terms

MV2 =
1

(Ẽp⃗2;y − Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗1−Q⃗;v − Ẽp⃗3−Q⃗;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u)

×
(

1
Q0 + iη + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗1−Q⃗;v

nF(Ẽp⃗2;y)nF(Ẽp⃗1−Q⃗;v)
(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
− nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

(
1 − nF(Ẽp⃗2;y)

)(
1 − nF(Ẽp⃗1−Q⃗;v)

)
− 1

Q0 + iη − Ẽp⃗1;x − Ẽp⃗2;y + Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗3−Q⃗;w

nF(Ẽp⃗1;x)nF(Ẽp⃗2;y)
(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)(
1 − nF(Ẽp⃗3−Q⃗;w)

)
− nF(Ẽp⃗1+ p⃗2− p⃗3;u)nF(Ẽp⃗3−Q⃗;w)

(
1 − nF(Ẽp⃗1;x)

)(
1 − nF(Ẽp⃗2;y)

))
, (C.6)

which imaginary part gives

ImMV2 = −π
1

(Ẽp⃗2;y − Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗1−Q⃗;v − Ẽp⃗3−Q⃗;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u)

×
(

δ(Q0 + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗1−Q⃗;v)

[
nF(Ẽp⃗2;y)nF(Ẽp⃗1−Q⃗;v)

(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
− nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

(
1 − nF(Ẽp⃗2;y)

)(
1 − nF(Ẽp⃗1−Q⃗;v)

)]
(C.7)

− δ(Q0 − Ẽp⃗1;x − Ẽp⃗2;y + Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗3−Q⃗;w)

[
nF(Ẽp⃗1;x)nF(Ẽp⃗2;y)

(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)(
1 − nF(Ẽp⃗3−Q⃗;w)

)
− nF(Ẽp⃗1+ p⃗2− p⃗3;u)nF(Ẽp⃗3−Q⃗;w)

(
1 − nF(Ẽp⃗1;x)

)(
1 − nF(Ẽp⃗2;y)

)])
.
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C.3 Third vertex diagram

After introducing the Matsubara frequencies

MV3 = ∑
m1

∑
m2

∑
m3

1
iωm1 − Ẽp⃗1;x

1
iωm2 − Ẽp⃗2;y

1
iωm3 − Ẽp⃗3;z

1
iωm1 + iωm2 − iωm3 − Ẽp⃗1+ p⃗2− p⃗3;u

× 1
iωm1 − Q0 − iη − Ẽp⃗1−Q⃗;v

1
iωm2 + Q0 + iη − Ẽp⃗2+Q⃗;w

, (C.8)

such that for neglected Direct Urca contributions

MV3 =
1

(Ẽp⃗3;z + Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗1−Q⃗;v − Ẽp⃗2+Q⃗;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u)

×
(

1
Q0 + iη − Ẽp⃗1;x + Ẽp⃗3;z + Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗2+Q⃗;w

nF(Ẽp⃗1;x)nF(Ẽp⃗2+Q⃗;w)
(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
− nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

(
1 − nF(Ẽp⃗1;x)

)(
1 − nF(Ẽp⃗2+Q⃗;w)

)
− 1

Q0 + iη + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗1−Q⃗;v

(C.9)

nF(Ẽp⃗2;y)nF(Ẽp⃗1−Q⃗;v)
(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
− nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

(
1 − nF(Ẽp⃗2;y)

)(
1 − nF(Ẽp⃗1−Q⃗;v)

))
, (C.10)

which imaginary part renders

ImMV3 = −π
1

(Ẽp⃗3;z + Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗1−Q⃗;v − Ẽp⃗2+Q⃗;w)(Ẽp⃗1;x + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u)

×
(

δ(Q0 − Ẽp⃗1;x + Ẽp⃗3;z + Ẽp⃗1+ p⃗2− p⃗3;u − Ẽp⃗2+Q⃗;w)

[
nF(Ẽp⃗1;x)nF(Ẽp⃗2+Q⃗;w)

(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
− nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

(
1 − nF(Ẽp⃗1;x)

)(
1 − nF(Ẽp⃗2+Q⃗;w)

)]
− δ(Q0 + Ẽp⃗2;y − Ẽp⃗3;z − Ẽp⃗1+ p⃗2− p⃗3;u + Ẽp⃗1−Q⃗;v)

[
nF(Ẽp⃗2;y)nF(Ẽp⃗1−Q⃗;v)

(
1 − nF(Ẽp⃗3;z)

)(
1 − nF(Ẽp⃗1+ p⃗2− p⃗3;u)

)
− nF(Ẽp⃗3;z)nF(Ẽp⃗1+ p⃗2− p⃗3;u)

(
1 − nF(Ẽp⃗2;y)

)(
1 − nF(Ẽp⃗1−Q⃗;v)

)])
. (C.11)
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C.4 Center of mass change in variables

C.4.1 Details for the first self-energy correction

We intend to apply the Dirac δ-functions in the expression

Im Παβ
D (Q) =

(
3

∏
j=1

∫ d3 p⃗j

(2π)3

) ∫ d3 p4

(2π)4 ∑
iso

δ3( p⃗1 + p⃗2 − p⃗3 − p⃗4)

× δ(Ẽp⃗6;w + Ẽp⃗2;y + Q0 − Ẽp⃗3;z − Ẽp⃗4;u)MD ∑
X

Xαβ
spin

(C.12)

Let us assume that we intend to eliminate the integral over particles (3) and (4), the follow-
ing change in variables can be introduced:

• the total masses M = m3 + m4 with m3 and m4 the masses of particles (3) and (4)
respectively,

• the reduced mass
η =

m3m4

m3 + m4
, (C.13)

• the speed of the center of mass

V⃗ =
p⃗3 + p⃗4

m3 + m4
, (C.14)

• and the relative speed

v⃗ =
p⃗3

m3
− p⃗4

m4
, (C.15)

such that
p⃗3 = m3V⃗ + ηv⃗ . (C.16)

The Jacobian matrix of the change in variable we want to operate is

J =

(
m3 ζ

m4 −ζ

)
, (C.17)

By introducing the change of variable related to the center of mass between two nucleons,
we can write the imaginary part of the retarded function

Im Παβ
D (Q) =

η2

(2π)13

∫
d| p⃗1|

∫
dθ1

∫
dϕ1

∫
d| p⃗2|

∫
dθ2

∫
dϕ2

∫
dθv

∫
dϕv

× | p⃗1|2| p⃗2|2 sin(θ1) sin(θ2) sin(θv)∑
iso

MD ∑
X

Xαβ
spin (C.18)

×

√
2
η

(
AD( p⃗1, p⃗2)−

( p⃗1 + p⃗2)2

2M

)
Θ
(

AD( p⃗1, p⃗2)−
( p⃗1 + p⃗2)2

2M

)
,
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with

AD( p⃗1, p⃗2) = Ẽp⃗1−Q⃗,w + Ẽp⃗2,y + Q0 − m3 − m4 + µ3 + µ4 , (C.19)

and

MD = −π
G(Ẽp⃗6;w, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)(
Ẽp⃗1;x − Ẽp⃗1−Q⃗;w − Q0

)2 . (C.20)

(C.21)

Similarly, if we choose to eliminate the integrals over particles (1) and (2), the retarded
polarization function for the self-energy correction is given by

Im Παβ
D (Q) =

ζ2

(2π)13

∫
d| p⃗3|

∫
dθ3

∫
dϕ3

∫
d| p⃗4|

∫
dθ4

∫
dϕ4

∫
dθv

∫
dϕv

× | p⃗3|2| p⃗4|2 sin(θ3) sin(θ4) sin(θv)∑
iso

MD ∑
X

Xαβ
spin (C.22)

×

√√√√2
ζ

(
BD( p⃗3, p⃗4)−

( p⃗3 + p⃗4 − Q⃗)2

2M̃

)
Θ

(
BD( p⃗3, p⃗4)−

( p⃗3 + p⃗4 − Q⃗)2

2M̃

)
,

with M̃ = m2 + m6, ζ = m2m6/(m2 + m6) and

BD( p⃗3, p⃗4) = Ẽp⃗3,z + Ẽp⃗4,u − Q0 − m6 − m2 + µ6 + µ2 . (C.23)

Although it might seem redundant to present results which are equivalent whether we
eliminate the integrals over particles (1) and (2) or (3) and (4), both expressions are useful
for a method of importance sampling in the numerical integration.

C.4.2 Expression for the second self-energy correction

The retarded polarization function of the second self-energy correction can either be
written as

• if we eliminate the integrals over particles (3) and (4)

Im Παβ
D (Q) =

η2

(2π)13

∫
d| p⃗1|

∫
dθ1

∫
dϕ1

∫
d| p⃗2|

∫
dθ2

∫
dϕ2

∫
dθv

∫
dϕv

× | p⃗1|2| p⃗2|2 sin(θ1) sin(θ2) sin(θv)∑
iso

MD ∑
X

Xαβ
spin (C.24)

×

√√√√ 2
η

(
AD( p⃗1, p⃗2)−

( p⃗1 + p⃗2 + Q⃗)2

2M

)
Θ

(
AD( p⃗1, p⃗2)−

( p⃗1 + p⃗2 + Q⃗)2

2M

)
,

with

AD( p⃗1, p⃗2) = Ẽp⃗1,x + Ẽp⃗2,y + Q0 − m3 − m4 + µ3 + µ4 , (C.25)
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• if we eliminate the integrals over particles (1) and (2)

Im Παβ
D (Q) =

ζ2

(2π)13

∫
d| p⃗3|

∫
dθ3

∫
dϕ3

∫
d| p⃗4|

∫
dθ4

∫
dϕ4

∫
dθv

∫
dϕv

× | p⃗3|2| p⃗4|2 sin(θ3) sin(θ4) sin(θv)∑
iso

MD ∑
X

Xαβ
spin (C.26)

×

√√√√2
ζ

(
BD( p⃗3, p⃗4)−

( p⃗3 + p⃗4 − Q⃗)2

2M̃

)
Θ

(
BD( p⃗3, p⃗4)−

( p⃗3 + p⃗4 − Q⃗)2

2M̃

)
,

with M̃ = m2 + m6, ζ = m2m6/(m2 + m6) and

BD( p⃗3, p⃗4) = Ẽp⃗3,z + Ẽp⃗4,u − Q0 − m6 − m2 + µ6 + µ2 . (C.27)

C.4.3 Expression for the second vertex

The retarded polarization function of the second vertex correction can either be written
as

• if we eliminate the integrals over particles (3) and (4)

Im Παβ
V2
(Q) =

1
(2π)13

∫
d| p⃗1|

∫
dθ1

∫
dϕ1

∫
d| p⃗2|

∫
dθ2

∫
dϕ2

∫
dθv

∫
dϕv (C.28)

× | p⃗1|2| p⃗2|2 sin(θ1) sin(θ2) sin(θv)∑
iso

∑
X=a,b,c,d

Vαβ
2X,spin

×
[ (

η(1)
)2
√

2
η(1)

(
A(1)

V2
− ( p⃗1 + p⃗2)2

2M(1)

)
Θ
(

A(1)
V2

− ( p⃗1 + p⃗2)2

2M(1)

)
M

(1)
V2

+
(

η(2)
)2
√

2
η(2)

(
A(2)

V2
− ( p⃗1 + p⃗2)2

2M(2)

)
Θ
(

A(2)
V2

− ( p⃗1 + p⃗2)2

2M(2)

)
M

(2)
V2

]
with

M(1) = m3 + m4 , η(1) =
m3m4

m3 + m4
, M(2) = m6 + m4 , η(2) =

m6m4

m6 + m4
(C.29)

A(1)
V2

( p⃗1, p⃗2) = Ẽp⃗1−Q⃗,v + Ẽp⃗2,y + Q0 − m3 − m4 + µ3 + µ4 , (C.30)

A(2)
V2

( p⃗1, p⃗2) = Ẽp⃗1,x + Ẽp⃗2,y − Q0 − m6 − m4 + µ6 + µ4 , (C.31)

and

M
(1)
V2

= −π
G(Ẽp⃗5;v, Ẽp⃗2;y, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗3−Q⃗;w − Ẽp⃗3;z + Q0)(Ẽp⃗1−Q⃗;v − Ẽp⃗1;x + Q0)
(C.32)

M
(1)
V2

= π
G(Ẽp⃗1;x, Ẽp⃗2;y, Ẽp⃗4;u, Ẽp⃗6;w)

(Ẽp⃗3−Q⃗;w − Ẽp⃗3;z + Q0)(Ẽp⃗1−Q⃗;v − Ẽp⃗1;x + Q0)
(C.33)
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• or if we eliminate the integrals over particles (1) and (2)

Im Παβ
V2
(Q) =

1
(2π)13

∫
d| p⃗3|

∫
dθ3

∫
dϕ3

∫
d| p⃗4|

∫
dθ4

∫
dϕ4

∫
dθv

∫
dϕv (C.34)

× | p⃗3|2| p⃗4|2 sin(θ3) sin(θ4) sin(θv)∑
iso

∑
X=a,b,c,d

Vαβ
2X,spin

×
[ (

ζ(1)
)2

√√√√ 2
ζ(1)

(
A(1)

V2
− ( p⃗3 + p⃗4 + Q⃗)2

2M̃(1)

)
Θ

(
A(1)

V2
− ( p⃗3 + p⃗4 + Q⃗)2

2M̃(1)

)
M

(1)
V2

+
(

ζ(2)
)2
√

2
ζ(2)

(
A(2)

V2
− ( p⃗3 + p⃗4)2

2M̃(2)

)
Θ
(

A(2)
V2

− ( p⃗3 + p⃗4)
2

2M̃(2)

)
M

(2)
V2

]
with

M̃(1) = m5 + m2 , ζ(1) =
m5m2

m5 + m2
, M̃(2) = m1 + m2 , ζ(2) =

m1m2

m1 + m2
(C.35)

A(1)
V2

( p⃗3, p⃗4) = Ẽp⃗3,z + Ẽp⃗4,u − Q0 − m5 − m2 + µ5 + µ2 , (C.36)

A(2)
V2

( p⃗3, p⃗4) = Ẽp⃗4,u + Ẽp⃗3−Q⃗,w + Q0 − m1 − m2 + µ1 + µ2 . (C.37)

C.4.4 Expression for the third vertex

The retarded polarization function of the third vertex correction can either be written as

• if we eliminate the integrals over particles (3) and (4)

Im Παβ
V3
(Q) =

1
(2π)13

∫
d| p⃗1|

∫
dθ1

∫
dϕ1

∫
d| p⃗2|

∫
dθ2

∫
dϕ2

∫
dθv

∫
dϕv (C.38)

× | p⃗1|2| p⃗2|2 sin(θ1) sin(θ2) sin(θv)∑
iso

∑
X=a,b,c,d

Vαβ
3X,spin

×
[
η2

√
2
η

(
A(1)

V3
− ( p⃗1 + p⃗2)2

2M

)
Θ
(

A(1)
V3

− ( p⃗1 + p⃗2)2

2M

)
M

(1)
V3

+ η2

√
2
η

(
A(2)

V2
− ( p⃗1 + p⃗2)2

2M

)
Θ
(

A(2)
V3

− ( p⃗1 + p⃗2)2

2M

)
M

(2)
V3

]
with

M = m3 + m4 , η =
m3m4

m3 + m4
, (C.39)

A(1)
V3

= Ẽp⃗1,x + Ẽp⃗2+Q⃗,w − Q0 − m3 − m4 + µ3 + µ4 , (C.40)

A(2)
V3

= Ẽp⃗1−Q⃗,v + Ẽp⃗2,y + Q0 − m3 − m4 + µ3 + µ4 , (C.41)

and

M
(1)
V3

= −π
G(Ẽp⃗1;x, Ẽp⃗6;w, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗1−Q⃗;v − Ẽp⃗1;x + Q0)(Ẽp⃗2+Q⃗;w − Ẽp⃗2;y − Q0)
(C.42)



Dense matter properties and neutron star modelling 218

M
(1)
V3

= π
G(Ẽp⃗2;y, Ẽp⃗5;v, Ẽp⃗3;z, Ẽp⃗4;u)

(Ẽp⃗1−Q⃗;v − Ẽp⃗1;x + Q0)(Ẽp⃗2+Q⃗;w − Ẽp⃗2;y − Q0)
. (C.43)

• or if we eliminate the integrals over particles (1) and (2)

Im Παβ
V3
(Q) =

1
(2π)13
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d| p⃗3|

∫
dθ3

∫
dϕ3
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d| p⃗4|

∫
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∫
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dθv

∫
dϕv (C.44)
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with

M(1) = m6 + m1 , η(1) =
m6m1

m6 + m1
, M(2) = m5 + m2 , η(2) =

m5m2

m5 + m2
(C.45)

A(1)
V3

= Ẽp⃗3,z + Ẽp⃗4,u + Q0 − m6 − m1 + µ6 + µ1 , (C.46)

A(2)
V3

= Ẽp⃗3,z + Ẽp⃗4,u − Q0 − m5 − m2 + µ5 + µ2 . (C.47)
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