Black hole accretion discs*f

Jean-Pierre Lasota

Abstract This is an introduction to models of accretion discs around black
holes. After a presentation of the non-relativistic equations describing the
structure and evolution of geometrically thin accretion discs we discuss their
steady—state solutions and compare them to observation. Next we describe in
detail the thermal—viscous disc instability model and its application to dwarf
novae for which it was designed and its X-ray irradiated—disc version which
explains the soft X-ray transients, i.e.. outbursting black—hole low—mass X—
ray binaries. We then turn to the role of advection in accretion flow onto
black holes illustrating its action and importance with a toy model describing
both ADAFs and slim discs. We conclude with a presentation of the general-
relativistic formalism describing accretion discs in Kerr space-time.

1 Introduction

The author of this chapter is old enough to remember the days when even
serious astronomers doubted the existence of accretion discs and scientists
snorted with contempt at the suggestion that there might be such things
as black holes; the very possibility of their existence was rejected, and the
idea of black holes was dismissed as a fancy of eccentric theorists. Today,
some 50 years later, there is no doubt about the existence of accretion discs
and black holes; both have been observed and shown to be ubiquitous in
the Universe. The spectacular ALMA image of the protostellar disc in HL
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Tau [46] is breathtaking and we can soon expect to see the silhouette of a
supermassive black hole in the center of the Galaxy in near infrared [57] or
millimeter-waves [10].

Understanding accretion discs around black holes is interesting in itself
because of the fascinating and complex physics involved but is also funda-
mental for understanding the coupled evolution of galaxies and their nuclear
black holes, i.e. fundamental for the understanding the growth of structures
in the Universe. The chance that inflows onto black holes are strictly radial,
as assumed in many models, are slim.

The aim of the present chapter is to introduce the reader to models of
accretion discs around black holes. Because of the smallness of black holes
the sizes of their accretion discs span several orders of magnitude: from close
to the horizon up 100 000 or even 1 000 000 black-hole radii. This implies,
for example, that the temperature in a disc around a stellar—mass black hole
varies from 107 K, near the its surface, to ~ 102K near the disc’s outer
edge at 10° black-hole radii, say. Thus studying black hole accretion discs
allow the study of physical regimes relevant also in a different context and
inversely, the knowledge of accretion disc physics in other systems such as
e.g. protostellar discs or cataclysmic variable stars, is useful or even necessary
for understanding the discs around black holes.

Section 2 contains a short discussion of the disc driving mechanisms and
introduces the a—prescription used in this chapter. In Section 3 after pre-
senting the general framework of the geometrically thin disc model we dis-
cuss the properties of stationary solutions and the Shakura—Sunyaev solution
in particular. The dwarf-nova disc instability model and its application to
black-hole transient sources is the subject of Section 4. The role of advection
in accretion onto black holes is presented in Section 5 with the main stress
put on high accretion rate flows. Finally, Section 6 and 7 about the general—
relativistic version of the accretion disc equations concludes the present chap-
ter.

NOTATIONS AND DEFINITIONS
The Schwarzschild radius (radius of a non-rotating black hole) is

_2GM

Rg
02

M
=2.95 x 105M—® cm, (1)

where M is the mass of the gravitating body and ¢ the speed of light.
The Eddington accretion rate is defined as

LEdd . 147GM . 127TCRS
ne2 M CRes N Kes

M
= 1.6 x 101817(;}M—gs—1, (2)
©

where 1 = 0.17 ;1 is the radiative efficiency of accretion, x.s the electron
scattering (Thomson) opacity.



Black hole accretion discs 3

Additional reading: There are excellent general reviews of accretion disc
physics, they can be found in references [9], [18] [26] and [55].

2 Disc driving mechanism; viscosity

In recent years there have been an impressive progress in understanding the
physical mechanisms that drive disc accretion. It now obvious that the turbu-
lence in ionized Keplerian discs is due to the Magneto-Rotational Instability
(MRI) also known as the Balbus-Hawley mechanisms [8],[7]. However, despite
these developments, numerical simulations, even in their global, 3D form suf-
fer still from weaknesses that make their direct application to real accretion
flows infeasible.

One of the most serious problems is the value of the ratio of the (vertically
averaged) total stress to thermal (vertically averaged) pressure

<T7“<P>Z (3)

which according to most MRI simulation is ~ 10~ whereas observations of
dwarf nova decay from outburst unambiguously show that a ~ 0.1 — 0.2
[54], [29]. Only recently Hirose et al. [22] showed that effects of convection
at temperatures ~ 10* K increase o to values ~ 0.1. This might solve the
problem of discrepancies between the MRI-calculated and the observed value
of a [11]. One has, however, to keep in mind that the simulations in question
have been performed in a so-called shearing box and their validity in a generic
3D case has yet to be demonstrated.

Another problem is related to cold discs such as quiescent dwarf nova discs
[31] or protostellar discs [7]. For the standard MRI to work, the degree of
ionization in a weakly magnetized, quasi-Keplerian disc must be sufficiently
high to produce the instability that leads to a breakdown of laminar flow into
turbulence which is the source of viscosity driving accretion onto the central
body. In cold discs the ionized fraction is very small and might be insufficient
for the MRI to operate. In any case in such a disc non-ideal MHD effects are
always important. All these problems still await their solution.

Finally, and very relevant to the subject of this Chapter there is the ques-
tion of stability of discs in which the pressure is due to radiation and opacity
to electron scattering. According to theory such discs should be violently
(thermally) unstable but observations of systems presumed to be in this
regime totally infirm this prediction. MRI simulations not only do not solve
this contradiction but they rather reinforce it [24].
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2.1 The a—prescription

The a—prescription [53] is a rather simplistic description of the accretion disc
physics but before one is offered better and physically more reliable options
its simplicity makes it the best possible choice and has been the main source
of progress in describing accretion discs in various astrophysical contexts.

One keeps in mind that the accretion—driving viscosity is of magnetic ori-
gin, but one uses an effective hydrodynamical description of the accretion
flow. The hydrodynamical stress tensor is (see e.g. [34])

Ov,, ds?
e =PY5R T PdmR (4)

where p is the density, v the kinematic viscosity coefficient and v, the az-
imuthal velocity (v, = Rf2).
In 1973 Shakura & Sunyaev proposed the (now famous) prescription

Tro = P, (5)

where P is the total thermal pressure and o < 1. This leads to

e 17"
_ 2
V=% {dlnR] ’ (©)

where ¢; = y/P/p is the isothermal sound speed and p the density. For the
Keplerian angular velocity

aM 1/2
this becomes 5
v= gaci/QK. (8)

Using the approximate hydrostatic equilibrium Eq. (18) one can write this
as

2
VA gacsH. (9)

Multiplying the rhs of Eq. (4) by the ring length (27 R) and averaging over
the (total) disc height one obtains the expression for the total torque

ds

T = QWRZVRdlnR

where

+oo
Y= / pdz. (11)
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For a Keplerian disc
T =3nXvlgk, (12)

(¢ = R%Qx is the Keplerian specific angular momentum.)
The viscous heating is proportional to to 7,,(df2/dR) [34]. In particular
the viscous heating rate per unit volume is

ds?

qu = 7Trapm7 (13)

which for a Keplerian disc, using Eq. (5), can be written as

L3
q" = iaQKP, (14)
and the viscous heating rate per unit surface is therefore
39
t= = -Yv0%. 1

Q itR 8 Vickg (15)

(The denominator in the first rhs is 2 x 27 R taking into account the existence
of two disc surfaces.)

Additional reading: References [7], [8] and [22].

3 Geometrically thin Keplerian discs

The 2D structure of geometrically thin, non—self-gravitating, axially sym-
metric accretion discs can be split into a 141 structure corresponding to
a hydrostatic vertical configuration and radial quasi-Keplerian viscous flow.
The two 1D structures are coupled through the viscosity mechanism trans-
porting angular momentum and providing the local release of gravitational
energy.

3.1 Disc vertical structure

The vertical structure can be treated as a one—dimensional star with two
essential differences:

1. the energy sources are distributed over the whole height of the disc, while
in a star there limited to the nucleus,

2. the gravitational acceleration increases with height because it is given by
the tidal gravity of the accretor, while in stars it decreases as the inverse
square of the distance from the center.
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Taking these differences into account the standard stellar structure equa-
tions (see e.g. [48]) adapted to the description of the disc vertical structure
are listed below.

e Hydrostatic equilibrium
The gravity force is counteracted by the force produced by the pressure

gradient:
dP
dz P9z, (16)

where g, is the vertical component (tidal) of the accreting body gravita-
tional acceleration:

a[ GM ]NGMZ a7

=g e~ 'R

The second equality follows from the assumption that z < R. Denoting the
typical (pressure or density) scale-height by H the condition of geometrical
thinness of the disc is H/R < 1 and writing dP/dz ~ P/H, Eq. (16) can
be written as

H . Cs
R - UK,
where v = /GM/R is the Keplerian velocity and we made use of Eq.
(17). From Eq. (18) it follows that

(18)

H 1
T a =ty 19
Cs QK dy ( )

where gy, is the dynamical time.
e Mass conservation

In 1D hydrostatic equilibrium the mass conservation equation takes the
simple form of

oo (20)
e Energy transfer - temperature gradient
d ;nz T _ d g;P (21)
For radiative energy transport
Vit = S, (22

where P, is the radiation pressure and kg the Rosseland mean opacity.
From Egs. (21) and (22) one recovers the familiar expression for the ra-
diative flux
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po_ 1607507 4o 0T

3 krp 0z 3kpp 0z (23)

(F, is positive because the temperature decreases with z so 9T/9z < 0.)

The photosphere is at optical thickness 7 ~ 2/3 (see Eq. 73). The boundary
conditions are: z =0, F, =0, T =T,, ¢ = 0 at the disc midplane; at the
disc photosphere ¢ = X and T*(7 = 2/3) = Ti. For a detailed discussion
of radiative transfer, temperature stratification and boundary conditions
see Sect. 3.5.

In the same spirit as Eq. (18) one can write Eq. (23) as

N4 O’TC4 _8(7TC4
* 7 3kppH 3 krE’

(24)
where T is the mid-plane (“central”) disk temperature. Using the optical
depth 7 = krpH = (1/2)kg Y, this can be written as

_sot!

T3 7

Fz(H) = Qi, (25)

(see Eq. 76 for a rigorous derivation of this formula).

Remark 1. In some references (for example in [18]) the numerical factor
on the rhs is “4/3” instead of “8/3”. This is due to a different definition
of X: in our case it is = 2pH, whereas in [18] X' = pH.

In the case of convective energy transport V = V.,,. Because con-
vection in discs is still not well understood (see, however, [22]) there
is no obvious choice for V ony. In practice a prescription designed
by Paczynski [41] for extended stellar envelope is used [21] but this
most probably does not represent very accurately what is happening
in convective accretion discs [11].

e FEnergy conservation
Vertical energy conservation should have the form
dF,

dz

q" (), (26)
where ¢ (z) corresponds to viscous energy dissipation per unit volume.

Remark 2. In contrast with accretion discs, stellar envelopes have dF, /dz =
0

The « prescription does not allow deducing the viscous dissipation strat-
ification (z dependence), it just says that the vertically averaged viscous
torque is proportional to pressure. Most often one assumes therefore that
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+ 3
g (2) = §aQKP(z), (27)

by analogy with Eq. (14) but such an assumption is chosen because of
its simplicity and not because of some physical motivation. In fact MRI
numerical simulations suggest that dissipation is not stratified in the way
as pressure [22].

e The vertical structure equations have to be completed by the equation of
state (EOS):

P=P.+P, = 20 EpT, (28)
3¢ "

where R is the gas constant and p the mean molecular weight, and an
equation describing the mean opacity dependence on density and temper-
ature.

3.2 Disc radial structure

e Continuity (mass conservation) equation has the form

0x 10 S(R,t)
o = wmor\™ Y Torg (29)
where S(R,t) is the matter source (sink) term.
In the case of an accretion disc in a binary system
OMext (R, t)
S(R,t) = ————— 30
(Ry1) = 2t (30)

represents the matter brought to the disc from the Roche lobe filling/mass
losing (secondary) companion of the accreting object. Moyt ~ M,,, where
M,, is the mass transfer rate from the companion star. Most often one
assumes that the transfer stream delivers the matter exactly at the outer
disc edge, but although this assumption simplifies calculations it is con-
tradicted by observations that suggest that the stream overflows the disc
surface(s).

e Angular momentum conservation

oxe 10 10 ds? S¢(R,t)

— =—=—=(RXlv,)+ === —_— 31
o ~ "ROR' U)+R€)R( g >+ (31)

This conservation equation reflects the fact that angular momentum is

transported through the disc by a viscous stress 7,., = RXvdf2/dR. There-

fore, if the disc is not considered infinite (recommended in application to

real processes and systems) there must be somewhere a sink of this trans-
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ported angular momentum Sy(R, t). For binary semi-detached binary sys-
tems there is both a source (angular momentum brought in by the mass
transfer stream form the stellar companion) and a sink (tidal interaction
taking angular momentum back to the orbit). The two respective terms in
the angular momentum equation can be written as

gk a]\.4ex‘c Ttid (R)
) — — . 2
Si(R.1) 2nR OR 2R (32)

Assuming 2 = 2, from Egs. (29) and (31) one can obtain an diffusion
equation for the surface density X

0¥ 30 [rip 0 1/2
ot ~ ROR {R ol el (33)

Comparing with Eqgs. (29) one sees that the radial velocity induced by the

viscous torque is
3 0

- YR2OR
which is an example of the general relation

[VZR1/2] , (34)

vy =

v
visc ™~ 5+ 35
s ~ 2 (35)
Using Eq.(9) one can write
R  R? JH (H\?
tisi= ——~ —ma = (S 36
Uvisc v “ Cs < R) ( )

The relation between the viscous and the dynamical times is

7\ 2
tyis a™! (E) tayn- (37)

In thin (H/R < 1) accretion discs the viscous time is much longer
that the dynamical time. In other words, during viscous processes
the vertical disc structure can be considered to be in hydrostatic
equilibrium.

e Energy conservation

The general form of energy conservation (thermal) equation can be written

as:

ds ds ds

— =T 4 v,—=q" —q +7,

R =P +v " —q +q (38)

T ot " ""oR
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where s is the entropy density, g7 and ¢~ are respectively the viscous and
radiative energy density, and ¢ is the density of external and/or radially
transported energy densities. Using the first law of thermodynamics T'ds =
dU + PdV one can write
ds aU ov,
T— =p—+P— 39
e = Par e (39)
where U = RT, /u(y — 1).
Vertically averaging, but taking T' = T, using Eq. (29) and the thermo-
dynamical relations from Appendix (for 8 = 1) one obtains

OT. | OT. , RT.19(Ru) _,Q*-Q , Q

. - , 40
ot ""or T ucr R OR oy epx (40)

where Qt and Q™ are respectively the heating and cooling rates per unit
surface. Q@ = Qout + J with Qo corresponding to energy contributions
by the mass-transfer stream and tidal torques; J(T, ) represent radial
energy fluxes that are a more or less ad hoc addition to the 1+1 scheme
to which they do not belong since it assumes that radial gradients (0/0R)
of physical quantities can be neglected.

The viscous heating rate per unit surface can be written as (see Eq. 15)

QT = %yz’ﬂf{ (41)

while the cooling rate over unit surface (the radiative flux) is obviously
Q= oTh. (42)
In thermal equilibrium one has
Qt=Q (43)

The cooling time can be easily estimated from Eq. (43). The energy density
to be radiated away is ~ pc? (see Eqgs 227 and 231), so the energy per unit
surface is ~ Xc? and the cooling (thermal) time is

Xe:  Xel

e

Since a < 1, t;h > tqyn and during thermal processes the disc can be
assumed to be in (vertical) hydrostatic equilibrium.

~ a0 = a gy, (44)

For geometrical thin (H/R < 1) accretion discs one has the following
hierarchy of the characteristic times
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tdyn < tin K tyis (45)

(This hierarchy is similar to that of characteristic times in stars: the dy-
namical is shorter than the thermal (Kelvin-Helmholtz) and the thermal
is much shorter than the thermonuclear time.)

3.3 Self-gravity

In this Chapter we are interested in discs that are not self-gravitating, i.e.

in discs where the vertical hydrostatic equilibrium is maintained against the

pull of the accreting body’s tidal gravity whereas the disc’s self-gravity can be

neglected. We will see now under what conditions this assumption is satisfied.
The equation of vertical hydrostatic equilibrium can be written as

Lap

;dz 779:(7.92798):92 (1+gs) =: 792(1+A)’ (46)

z

therefore self-gravity is negligible when A < 1. Treating the disc as an infinite
uniform plane (i.e. assuming the surface density does not vary too much with
radius) one can write its self gravity as g; = 2nG X, whereas the z-component
of the gravity provided by the central body is g, = 2% z (Eq. 17). Therefore
evaluating A at z = H one gets

Js 2rGXY
Ag == = ——. 47
Ap is related to the so-called Toomre parameter [56]
cs 2
= 4
QT G ( 8)

widely used in the studies of gravitational stability of rotating systems,
through Ay = Q;l. We will therefore express the condition of negligible
self-gravity (gravitational stability) as

Qr > 1. (49)

Using Egs. (18), (9) and (56) one can write the Toomre parameter as

3
_ 34 (50)
aM

Qr

or as function of the mid-plane temperature 7' = 10* T}
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3/2
Qr ~ 4.6 x 107%, (51)
mim

where m = M /Mg. This shows that hot ionized (T 2> 10%) discs become self-
gravitating for high accretor masses and high accretion rates. Discs in close
binary systems (m < 30) are never self-gravitating for realistic accretion rates
(< 1000, say) and even in IMBH binaries (if they exist) (hot) discs would
also be free of gravitational instability. Around a supermassive black hole,
however, discs can become self-gravitating quite close to the black hole. For
example when the black hole mass is m = 10® a hot disc will become self-
gravitating at R/Rg =~ 100, for 7 ~ 1072, In general, geometrically thin,
non-self-gravitating accretion discs around supermassive black holes have

very a limited radial extent.

Additional reading: References [12], [19],[20], [35], [43] and [56].

3.4 Stationary discs

In the case of stationary (9/0t = 0) discs Eq. (29) can be easily integrated
giving .
M =27 RXv,, (52)
where the integration constant M (mass/time) is the accretion rate.
Also the angular momentum equation (31) can be integrated to give

—2nRYv L + 21 R X2 = const. (53)
Or, using Eq. (52), .
—M/{ + T = const., (54)

where the torque T := 2rR3Xv§2'; (for a Keplerian disc T = 3rR?Xv k).
Assuming that at the inner disc radius the torque vanishes one gets
const. = fMEin, where /¢, is the specific angular momentum at the disc
inner edge. Therefore
Ml ly) =% (55)
which....
For Keplerian discs one obtains an important relation between viscosity

and accretion rate ) "
M R,
VE:?wrll_(R) ] (56)

From Egs. (56), (41), (42), and the thermal equilibrium equation (43) it
follows that
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Fig. 1 The observed
temperature profile of the
accretion disc of the dwarf
nova Z Cha in outburst.
Near the outburst max-
imum such a disc is in
quasi-equilibrium. The
observed profile, repre-
sented by dots (pixels),
is compared with the
theoretical profiles calcu-
lated from Eq. (57) and
represented by contin-
uous lines. Pixels with
R < 0.03RL1 correspond
to to the surface of the ac-
creting white dwarf whose
temperature is 40 000 K.
The accretion rate in the
disc is ~ 10~ °Mgy~!.
[Figure 6 from [23]].

O'Tc4ﬁ- =

Brightness Temperature

10*

_§O’TC4
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(and observe) time-dependent states of accretion discs.

)

This relation assumes only that the disc is Keplerian and in thermal
(@t = Q_) and viscous (M = const.) equilibrium. The viscosity coeffi-
cient is absent because of the thermal equilibrium assumption: in such
a state the emitted radiation flux cannot contain information about the
heating mechanism, it only says that such a mechanism exists. Steady
discs do not provide information about the viscosity operating in discs
or the viscosity parameter «.. To get this information one must consider

From Eq. (57) one obtains a universal temperature profile for stationary

Keplerian accretion discs

Tef‘f ~ R—3/4

(58)

For an optically thick disc the observed temperature T' ~ T.g and T ~ R—3/4
should be observed if stationary, optically thick Keplerian discs exist in the
Universe. And vice versa, if they are observed, this proves that such discs exist
not only on paper. In 1985 Horne & and Cook [23] presented the observational
proof of existence of Keplerian discs when they observed the dwarf nova
binary system ZCha during outburst (see Fig. 1).
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Fig. 2 The observed = T
temperature profile of the
accretion disc of the dwarf
nova Z Cha in quiescence.
This one of the most
misunderstood figures in
astrophysics (see text).
In quiescence the disc in
not in equilibrium. The
flat temperature profile
is exactly what the disc
instability model predicts:
in quiescence the disc
temperature must be
everywhere lower than
the critical temperature,
but this temperature is
almost independent of
the radius (see Eq. 88) .
[Figure 11 from [58]].

10

Brightness Temperature (K)

10°
b
L

Radius/R

3.4.1 Total luminosity

The total luminosity of a stationary, geometrically thin accretion disc, i.e.
the sum of luminosities of its two surfaces, is

R y R 1/2
out 3GMM out R; dR
2/ 0T 2T RAR = 7/ 1- ( m) — (59)
R ff 2 R [ R R2
For R,y — oo this become
1GMM 1
Ldisc 9 Rin = §Lacc- (6())

In the disc the radiating particles move on Keplerian orbits hence they retain
half of the potential energy. If the accreting body is a black hole this leftover
energy will be lost (in this case, however, the non-relativistic formula of Eq. 60
does not apply — see Eq. 177.) In all the other cases the leftover energy will
be released in the boundary layer, if any, and at the surface of the accretor,
from where it will be radiated away.

The factor “3” in the rhs of Eq. (57) shows that radiation by a given
ring in the accretion accretion does not come only from local energy
release. Indeed, in a ring between R and R + dR only

GMMdR

2R? (61)
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is being released, while

3GMM Rin\"*
2><27rRQ+dR:2—R2 1—<R> dR (62)
is the total energy release. Therefore the rest
GMM [ 3 (R \"?
® |13 (7) i (@)

must diffuse out from smaller radii. This shows that viscous energy
transport redistributes energy release in the disc.

3.5 Radiative structure

Here we will show an example of the solution for the vertical thin disc struc-
ture which exhibit properties impossible to identify when the structure is
vertically averaged. We will also consider here an irradiated disc — such discs
are present in X-ray sources.

We write the energy conservation as :

dF
=" (R ) (64)
where F is the vertical (in the z direction) radiative flux and gyis(R, z) is the
viscous heating rate per unit volume. Eq. (64) states that an accretion disc is
not in radiative equilibrium (dF/dz # 0), contrary to a stellar atmosphere.
For this equation to be solved, the function gyis(R,z) must be known. As
explained and discussed in Sect. 3.1 the viscous dissipation is often written
as

¢ (R, 2) = (3/2)af2x P(2) (65)

Viscous heating of this form has important implications for the structure of
optically thin layers of accretion discs and may lead to the creation of coronae
and winds. In reality it is an an hoc formula inspired by Eq. (14). We don’t
know yet (see, however, [11]) how to describe the viscous heating stratification
in an accretion disc and Eq. (65) just assumes that it is proportional to
pressure. It is simple and convenient but it is not necessarily true.

When integrated over z, the rhs of Eq. (64) using Eq. (65) is equal to
viscous dissipation per unit surface:
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3 +oo
Ft = §aQK/ Pdz, (66)
0

where F'* = (1/2)Q™" because of the integration from 0 to +oc while Q™
contains X' which is integrated from —oo to 400 (Eq. 11).
One can rewrite Eq. (64) as

dr Fvis
- _ Vs 67
= fn (67)
where we introduced a new variable, the optical depth dr = —kgrpdz, kgr

being the Rosseland mean opacity and 7yot = f0+°o krpdz is the total optical
depth. f(7) is given by:

()

o= (for= paz)  rwe

(68)

As p decreases approximately exponentially, f(7) is the ratio of two rather
well defined scale heights, the pressure and the opacity scale heights, which
are comparable, so that f is of order of unity.

At the disc midplane, by symmetry, the flux must vanish: F(r) = 0,
whereas at the surface, (7 = 0)

FO)=oTH =F" (69)

Equation (69) states that the total flux at the surface is equal to the energy
dissipated by viscosity (per unit time and unit surface). The solution of Eq.

(67) is thus
F(r) = F* (1 - W) (70)

Ttot

where [[*° f(7)dT = Tior. Given that f is of order of unity, putting f(7) =1
is a reasonable approximation. The precise form of f(7) is more complex,
and is given by the functional dependence of the opacities on density and
temperature; it is of no importance in this example. We thus take:

F(r)=F* (1 S ) (71)

Ttot

To obtain the temperature stratification one has to solve the transfer equa-
tion. Here we use the diffusion approximation

_éadT4
T3 dr

F(r) (72)
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appropriate for the optically thick discs we are dealing with. The integration
of Eq. (72) is straightforward and gives :

3
T'(r) = 1'(0) = 7 (1 = 27;) Tl (73)
The upper (surface) boundary condition is:
1
70 = Srt &

where T} is the irradiation temperature, which depends on r, the albedo,
the height at which the energy is deposited and on the shape of the disc. In
Eq. (74) T(0) corresponds to the emergent flux and, as mentioned above, Tog
corresponds to the total flux (oT% = Q1) which explains the factor 1/2 in

Eq (74). The temperature stratification is thus :

3 T 2
T4 *T4 - T 4
(T) 4 eff |:T (1 27—t0t ) 3:| irr (75)

For 7iot > 1 the first term on the rhs has the form familiar from the stellar
atmosphere models in the Eddington approximation.

In this case at 7 = 2/3 one has T'(2/3) = Toa

Also for 701 > 1, the temperature at the disc midplane is

3
T4 = T4(7_tot) = 7TtotT4ﬁ‘ + T4 (76)

c ) e irr

It is clear, therefore, that for the disc inner structure to be dominated by
irradiation and the disc to be isothermal one must have

Fir T
= [ ST > F+ (77)
Ttot Ttot

and not just Fi, > FT as is usually assumed. The difference between the
two criteria is important in LMXBs since, for parameters of interest, 701 2
102 — 102 in the outer disc regions.

3.6 Shakura-Sunyaev solution

In their seminal and famous paper Shakura & Sunyaev [53|, found power-
law stationary solutions of the simplified version of the thin—disc equations
presented in Sects. 3.1, 3.2 and 3.4. The 8 equations for the 8 unknowns T,
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p, P, XY, H, v, 7 and cs can be written as

Y =2Hp (1)
c R3/2
= ___ (1)
(GM)1/2
P
Cs =] — 11
5 (1m)
RpT 4o, ,
P=—+_—-T
. + o (1v)
m(p, X, Te) = kr(p, Te) ¥ (v)
v(p, X, T.ya) = gacsH (v1)

w3 () ()

- (i)/l . ()

Equations (1) and (1) correspond to vertical structure equations (20) and
(18), Eq. (vn) is the radial Eq. (56), while Eq. (viu) connects vertical to
radial equations. Eq. (11) defines the sound speed, Eq. (1v) is the equation
of state and (v1) contains the information about opacities. The viscosity «
parametrization introduced in [53] provides the closure of the 8 disc equations.
Therefore they can be solved for a given set of o, M, R and M.

Power-law solutions of these equations exist in physical regimes where the
opacity can be represented in the Kramers form k = kgp™T"™ and one of
the two pressures, gas or radiation, dominates over the other. In [53] three
regimes have been considered:

80T} 3 GMM

3 r 8 R

a.) P, > P, and kes > kg
b.) P; > P, and kes > ke
c.) Py > P, and kg > Kes.

Regimes a.) and b.) in which opacity is dominated by electron scattering will
be discussed in Sect. 5. Here we will present the solutions of regime c.), i.e.
we will assume that

P,=0 and kg=rkg=>5x10*pT /?cm?gL. (78)

The solution for the surface density X', central temperature T, and the disc
relative height (aspect ratio) are respectively

Y =23 a_4/5m1/4Rf03/4M177/10f7/10 gcm_2 (79)
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T, = 5.8 x 10* o~ Vom /AR 2 N30 p3/10 K (80)
H .
= = 24 x 1072 10m S RSN 3/ (81)

where m = M/Mg, Riy = R/(10"°cm), My; = M/(10'7gs™!), and
f=1- (Ruw/R)Y2

10" g/s
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Fig. 3 Stationary accretion disc surface density profiles for 4 values of accretion rate.
From top to bottom: M = 108,107,106 and 10'%gs—'. m = 10Mg, o = 0.1. The
continuous line corresponds to the un-irradiated disc, the dotted lines to an irradiated
configuration. The inner, decreasing segments of the continuous lines correspond to
Eq. (79). Dashed lines describe irradiated disc equilibria (see Sect. 4.3) [Figure 9 from
[16]).

Although for a 10Mg black hole, say, Shakura-Sunyaev solutions (79),
(80) and (80) describe discs rather far from its surface (R > 10* Rg) the
regime of physical parameters it addresses, especially temperatures around
10*K are of great importance for the disc physics because it is where accretion
discs become thermally and viscously unstable. This instability triggers dwarf
nova outbursts when the accreting compact object is a white dwarf and (soft)
X-ray transients in the case of accreting neutron stars and black holes.

It is characteristic of the Shakura-Sunyaev solution in this regime that
the three X, T, and T.g radial profiles vary as R—3/4. (This implies that the
optical depth 7 is constant with radius — see Eq. viu.) For high accretion
rates and small radii the assumption of opacity dominated by free-free and
bound-free absorption will brake down and the solution will cease to be valid.
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We will come to that later. Now we will consider the other disc end: large
radii.

One sees in Fig. 3, that for given stationary solution (M = const.) the
R~3/% slope of the X profiles extends down only to a minimum value Ymin(R)
after which the surface density starts to increase. With the temperature drop-
ping below 10* K the disc plasma recombines and there is a drastic change
in opacities leading to a thermal instability.

Additional reading : We have assumed that accretion discs are flat. This
might not be true in general because accretion discs might be warped. This
has important and sometimes unexpected consequences; see e.g [28] [40] and
[45], and references therein.

4 Disc instabilities

In this section we will present and discuss the disc thermal and the (related)
viscous instabilities. First we will discuss in some detail the cause of the
thermal instability due to recombination.

4.1 The thermal instability
A disc is thermally stable if radiative cooling varies faster with temperature
than viscous heating. In other words

dln O'Télﬂc - dlnQ*
dInT, dInT,

(82)

Using Eq. (76) one obtains

dnTfp (T’
dinT, (TC )
In a gas pressure dominated disc QT ~ pT'H ~ YT ~ T, . The thermal
instability is due to a rapid change of opacities with temperature when hy-
drogen begins to recombine. At high temperatures dlnk/dInT, ~ —4 (see
Eq. 78). In the instability region, the temperature exponent becomes large
and positive dlnk/dIn T, ~ 7 — 10, and in the end cooling is decreasing with
temperature. One can also see that irradiation by furnishing additional heat
to the disc can stabilize an otherwise unstable equilibrium solution (dashed
lines in Fig. 3).
This thermal instability is at the origin of outbursts observed in discs
around black-holes, neutron stars and white dwarfs. Systems containing the

_ dlnk
dInT,

(83)
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first two classes of objects are known as Soft X-ray transients (SXTs, where
“soft” relates to their X-ray spectrum), while those containing white-dwarfs
are called dwarf-novae (despite the name that could suggest otherwise, nova
and supernova outbursts have nothing to do with accretion disc outbursts).

4.2 Thermal equilibria: the S-curve

We will first consider thermal equilibria of an accretion disc in which heating
is due only to local turbulence, leaving the discussion of the effects of irra-
diation to Section 4.3. We put therefore T}, = @ = 0. Such an assumption
corresponds to discs in cataclysmic variables which are the best testbed for
standard accretion disc models. The thermal equilibrium in the disc is defined
by the equation @~ = Q% (see Eq. 40), i.e. by

ol = gyzrz; (84)
(Eq. 15). In general, v is a function of density and temperature and in the
following we will use the standard a—prescription Eq. (8). The energy trans-
fer equation provides a relation between the effective and the disc midplane
temperatures so that thermal equilibria can be represented as a Teg (X) — re-
lation (or equivalently a M (X)-relation). In the temperature range of interest
(10® < Tog < 10 this relation forms an S on the (X, T.g) plane as in Fig.
4. The upper, hot branch corresponds to the Shakura-Sunyaev solution pre-
sented in Section 3.6. The two other branches correspond to solutions for cold
discs — along the middle branch convection plays a crucial role in the energy
transfer.

Fig. 4 Thermal equi-
libria of a ring in an
accretion discs around
a m = 1.2 white dwarf. 10t [
The distance from the -

T T T TTTTT T T TTT

center is 10%cm; accre-
tion rate 6.66 x 1016g/s.
The solid line corresponds
to Q+ = Q. Yhin 18 L
the critical (minimum)
surface density for a hot o
stable equilibrium; Xy, ax
the maximum surface
density of a stable cold
equilibrium.

Ty ()

103 Lol 1 [ |
1ot 107 108
T (g em™?)
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Each point on the (X, Teg) S-curve represents an accretion disc’s thermal
equilibrium at a given radius, i.e. a thermal equilibrium of a ring at radius
R. In other words each point of the S-curve is a solution of the Q* = Q~
equation. Points not on the S-curve correspond to solutions of Eq. (40) out
of thermal equilibrium: on the left of the equilibrium curve cooling dominates
over heating, QT < @Q~; on the right heating over cooling QT > Q~. It is
easy to see that a positive slope of the T,g(X) curve corresponds to stable
solutions. Indeed, a small increase of temperature of an equilibrium state (an
upward perturbation) on the upper branch, say, will bring the ring to a state
where Q1 < Q™ so it will cool down getting back to equilibrium. In a similar
way an downward perturbation will provoke increased heating bringing back
the system to equilibrium.

The opposite is happening along the S-curve’s segment with negative slope
as both temperature increase and decrease lead to a runaway. The middle
branch of the S-curve corresponds therefore to thermally unstable equilibria.

A stable disc equilibrium can be represented only by a point on the lower,
cold or the upper, hot branch of the S-curve. This means that the surface
density in a stable cold state must be lower than the maximal value on the
cold branch: X,,.,, whereas the surface density in the hot stable state must
be larger than the minimum value on this branch: X,;,. Both these critical
densities are functions of the viscosity parameter «, the mass of the accret-
ing object, the distance from the center and depend on the disc’s chemical
composition. In the case of solar composition the critical surface densities are

Z‘min(R) =39.9 aa&lSO Rh’)ll m—0437gcm_2 (85)
ZmaX(R) = 74.6 0[6.(1)'83 R%blg 7711*0-40gcrn_27 (86)

(a = 0.1ap1) and the corresponding effective temperatures (7" designates
the temperature at Xynin, T~ at Xpax)

T = 6890 agq Ryg™" MK (87)

T = 5210 agy Ry '? MO K. (88)

The critical effective temperatures are practically independent of the mass
and radius because they characterize the microscopic state of disc’s matter
(e.g. its ionization). On the other hand the critical accretion rates depend
very strongly on radius:

M7 (R) =8.07 x 10" ag§°" R M70% gs™! (89)
M (R) = 2.64 x 10" oJ9' R258 M35 gs™1. (90)

A stationary accretion disc in which there is a ring with effective temper-
ature contained between the critical values of Eq. (88) and (87) cannot be
stable. Since the effective temperature and the surface density both decrease
with radius, the stability of a disc depend on the accretion rate and the disc
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Fig. 5 Local limit cycle
of the state of disc ring
at 10° cm during a dwarf
nova outbursts. The ar-
rows show the direction
of motion of the system
in the Tosr (X)) plane. The
figure represents results of
the disc instability model
numerical simulations. As
required by the compar-
ison of the model with
observations the values of
the viscosity parameter

« on the hot and cold 5 10 50
branches are different. T (g cm™®)
[Figure adapted from [36]]
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size (see Fig. 3). For a given accretion rate a stable disc cannot have an outer
radius larger than the value corresponding to Eq. (85).

A disc is stable if the rate (mass-transfer rate in a binary system) at
which mass is brought to its outer edge (R ~ Rg) is larger than the
critical accretion rate at this radius MJ (Rq).

In general, the accretion rate and the disc size are determined by mech-
anisms and conditions that are exterior to the accretion process itself. In
binary systems, for instance, the size of the disc is determined by the masses
of the system’s components and its orbital period while the accretion rate in
the disc is fixed by the rate at which the stellar companion of the accreting
object loses mass, which in turn depends on the binary parameters and the
evolutionary state of this stellar mass donor. Therefore the knowledge of the
orbital period and the mass-transfer rate should suffice to determine if the
accretion disc in a given interacting binary system is stable. Such knowledge
allows testing the validity of the model as we will show in the next section.

4.2.1 Dwarf nova and X-ray transient outbursts

e Local view: the limit cycle

Let us first describe what is happening during outbursts with a disc’s ring.
Its states are represented by a point moving in the X' — Tog plane as shown
on Fig. 4 which represents accretion disc states at R = 10° cm (the accreting
body has a mass of 1.2Mg,). To follow the states of a ring during the outburst
let us start with an unstable equilibrium state on the middle, unstable branch
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and let us perturb it by increasing its temperature, i.e. let us shift it upwards
in the Tog(X) plane. As we have already learned, points out of the S-curve
correspond to solutions out of thermal equilibrium and in the region to the
right of the S-curve heating dominates over cooling. The resulting runaway
temperature increase is represented by the point moving up and reaching (in
a thermal time) a quasi-equilibrium state on the hot and stable branch. It
is only a quasi—equilibrium because the equilibrium state has been assumed
to lie on the middle branch which corresponds to a lower temperature (and
lower accretion rate — see Eq. 57). Trying to get to its proper equilibrium
the ring will cool down and move towards lower temperatures and surface
densities along the upper equilibrium branch (in a viscous time). But hot
branch ends at X\, i.e. at a temperature higher (and surface density lower)
than required so the ring will never reach its equilibrium state. Which is not
surprising since this state is unstable. Once more the ring will find itself out of
thermal equilibrium but this time in the region where cooling dominates over
heating. Rapid (thermal-time) cooling will bring it to the lower cool branch.
There, the temperature is lower than required so the point representing the
ring will move up towards X,.x where it will have to interrupt its (viscous-
time) journey having reached the end of equilibrium states before getting
to the right temperature. It will find itself out of equilibrium where heating
dominated over cooling so it will move back to the upper branch.

Locally, the state of a ring performing a limit cycle on the X-T.g plane,
moves in viscous time on the stable S-curve branches and in a thermal time
between them when the ring is out of thermal equilibrium. The states on
the hot branch correspond to outburst maximum and the subsequent decay
whereas the quiescence correspond to moving on the cold branch. Since the
viscosity is much larger on the hot than on the cold branch, the quiescent
is much longer than the outburst phase. The full outburst behaviour can be
understood only by following the whole disc evolution.

4.3 Irradiation and black—hole X-ray transients

We will present the global view of thermal-viscous disc outbursts for the case
of X-ray transients. The main difference between accretion discs in dwarf
novae and these systems is the X-ray irradiation of the outer disc in the
latter. Assuming that the irradiating X-rays are emitted by a point source at
the center of the system, one can write the irradiating flux as

L . )

JTﬁr —c=X with  Lx = nmin (Mmin, MEdd) e, (91)
47 R?

where C = 1073Cs, n is the radiative efficiency (which can be < 0.1 for

ADAFsS - see below), My, the accretion rate at the inner disc’s edge. Since

the physics and geometry of X-ray self-irradiation in accreting black-black
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hole systems is still unknown, the best we can do is to parametrize our ig-
norance by q constant C that observations suggest is ~ 1073, Of course one
should keep in mind that in reality C might not be a constant [17].

Because the viscous heating is ~ M / R? there always exists a radius Rj.,
for which oTi‘,f,r >Qt = aTéH. If Ry < R4, where Ry is the outer disc radius,
the outer disc emission will be dominated by reprocessed X-ray irradiation
and the structure modified as shown in Sect. 3.5. Irradiation will also stabilize
outer disc regions (Eq. 83 and Fig. 6) allowing larger discs for a given accretion
rate (see Fig. 3).

Irradiation modifies the critical values of the hot disc parameters:

I =724C079% g0 RY? M7 gem™? (92)
T = 2860 CZ5% o0t R MK (93)
M =23 x10"7 €Z9% af0* RIP MO0 gs™! (94)

As we will see in a moment, irradiation also strongly influences the shape
of outburst’s light-curve.

10° em 10° em

Tel’f (K)
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T (g ecm™®)

Fig. 6 Example S-curves for a pure helium disk with varying irradiation temperature
Tirr. The various sets of S-curves correspond to radii R = 10%, 10° and 10'° cm.
For each radius, the irradiation temperature 7T, is 0K, 10 000 K and 20 000 K.
a = 0.16. The instable branch disappears for high irradiation temperatures. [From
[32]. Reproduced with permission from Astronomy & Astrophysics, ©ESO]
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* Rise to outburst maximum

During quiescence the disc’s surface density, temperature and accretion rate
are everywhere (at all radii) on the cold branch, below their respective crit-
ical values Dax(R), Top and M_ (R). It is important to realize that in
quiescence the disc is not steady: M # const. Matter transferred from the
stellar companion accumulates in the disc and is redistributed by viscosity.
The surface density and temperature increase (locally, this means that the
solution moves up along the lower branch of the S—curve) finally reaching
their critical values. In Fig. 7 this happens at ~ 10'° cm. The disc parame-
ters entering the unstable regime triggers an outburst. In the local picture

1018
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E (g/em’)
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1018
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Fig. 7 The rise to outburst described in Sect. 4.3. The upper left panel shows M,
and Mirr (dotted line); the bottom left panel shows the V magnitude. Each dot
corresponds to one of the X and T, profiles in the right panels. The heating front
propagates outwards. The disc expands during the outburst due to the angular mo-
mentum transport of the material being accreted. At ¢ ~ 5.5 days the thin disc reaches
the minimum inner disc radius of the model. The profiles close to the peak are those
of a steady-state disc (X oc T o R~3/4). [From [15]. Reproduced with permission
from Astronomy & Astrophysics, ©ESO]

this corresponds to leaving the lower branch of the S-curve. The next ‘mo-
ment’ (in a thermal time is represented in the left panels of Figure 7. This is
when a large contrast forms in the midplane temperature profile and when a
surface-density spike is already above the critical line. The disc is undergoing
a thermal runaway at r ~ 8 x 10° cm. The midplane temperature rises to
~ 70000 K. This raises the viscosity which leads to an increase of the surface-
density and a heating fronts start propagating inwards and outwards in the
disc as seen in Fig. 7. In this model the disc is truncated at an inner radius
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Ry =~ 6 x 10°cm so the inwards propagating front quickly reaches the inner
disc radius with no observable effects. It is the outwards propagating heating
front that produces the outburst by heating up the disc and redistributing
the mass and increasing the surface density behind it because it is also a
compression front.

One should stress here that two ad hoc elements must be added to the
model for it to reproduce observed outbursts of dwarf novae and X-ray
transients.

e ViscosiTy. First, if the increase in viscosity were due only to the
rise in the temperature through the speed of sound (v o c2, see
Eq. 8) the resulting outbursts would have nothing to do with the
observed ones. To reproduce observed outbursts one increases the
value of a when a given ring of the disc gets to the hot branch.
Ratios of hot-to—cold a of the order of 4 are used to describe dwarf
nova outburst. Although in the outburst model the « increase is an
ad hoc assumption, recent MRI simulations with physical parameters
corresponding to dwarf nova discs show an « increase induced by the
appearance of convection [22].

e INNER TRUNCATION. Second, as mentioned already, the inner disc is
assumed to be truncated in quiescence and during the rise to out-
burst. Although such a truncations is implied and/or required by
observations, its physical origin is still uncertain. The inner part of
the accretion flow is of course not empty but supposed to form a
M = const. ADAF (see Sect. 5).

In our case (Fig. 7), the heating front reaches the outer disc radius. This
corresponds to the largest outbursts. Smaller-amplitude outbursts are pro-
duced when the front does not reach the outer disc regions. In an inside-
out outburst! the surface-density spike has to propagate uphill, against the
surface-density gradient because just before the outburst X' ~ R!"!® — roughly
parallel to the critical surface-density. Most of the mass is therefore contained
in the outer disc regions. A heating front will be able to propagate if the
post-front surface-density is larger than X\ ,;, — in other words, if it can bring
successive rings of matter to the upper branch of the S-curve. If not, a cool-
ing front will appear just behind the X spike, the heating front will die-out
and the cooling front will start to propagate inwards (the heating-front will
be ‘reflected’).

The difficulty inside-out fronts encounter when propagating is due to
angular-momentum conservation. In order to move outwards the X-spike has
to take with it some angular momentum because the disc’s angular momen-

1 X-ray transient outbursts are always of inside-out type. In dwarf novae both inside-
out and outside-in outbursts are observed and result from calculations[31].
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tum increases with radius. For this reason inside-out front propagation in-
duces a strong outflow. In order for matter to be accreted, a lot of it must
be sent outwards. That is why during an inside-out dwarf-nova outburst only
~ 10% of the disc’s mass is accreted onto the white dwarf. In X-ray tran-
sients irradiation facilitates heating front propagation (and disc emptying
during decay — see next section).

The arrival of the heating front at the outer disc rim does not end the
rise to maximum. After the whole disc is brought to the hot state, a surface
density (and accretion rate ‘excess’) forms in the outer disc. The accretion
rate in the inner disc corresponds to the critical one but is much higher
near the outer edge. While irradiation keeps the disc hot the excess diffuses
inwards until the accretion rate is roughly constant. During this last phase
of the rise to outburst maximum Min increases by a factor of 3:

Moo ~ 3M;

irr

~ 7.0 x 10'7CZ9%° RT3 m 00 gst (95)

Irradiation has little influence on the actual vertical structure in this region
and T, o« ¥ o« R~3/%, as in a non-irradiated steady disc. Only in the outer-
most disc regions does the vertical structure becomes irradiation-dominated,
i.e. isothermal.

* Decay

Fig. 8 shows the sequel to what was described in Fig. 7. In general the decay
from the outburst peak of an irradiated disc can be divided into three parts:

e First, X-ray irradiation of the outer disc inhibits cooling-front propagation.
But since the peak accretion rate is much higher than the mass-transfer
rate,? the disc is drained by viscous accretion of matter.

e Second, the accretion rate becomes too low for the X-ray irradiation to
prevent the cooling front from propagating. The propagation speed of this
front, however, is controlled by irradiation.

e Third, irradiation plays no role and the cooling front switches off the out-
burst on a local thermal time-scale.

‘Exponential decay’

In Fig. 8 the “exponential decay” the phase lasts until roughly day 80-100.
At the outburst peak the accretion rate is almost exactly constant with ra-
dius; the disc is quasi-stationary. The subsequent evolution is self-similar:

2 The peak luminosity is ~ 3N

irr

(Ra4); and the for the disc to be unstable the mass-
transfer rate must be lower than the critical rate: Mtr < Mitr(Rd).
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Fig. 8 Decay from outburst peak. The decay is controlled by irradiation until evap-
oration sets in at t ~ 170 days (Min = .evap(Rmin)), This cuts off irradiation
and the disc cools quickly. The irradiation cutoff happens before the cooling front
can propagate through most of the disc, hence the irradiation-controlled linear decay
(t = 80— 170 days) is not very visible in the lightcurve. Ti,, (dotted line) is shown for
the last temperature profile. [From [15]. Reproduced with permission from Astronomy
& Astrophysics, ©ESO]

the disc’s radial structure evolves through a sequence of quasi-stationary
(M(r) = const) states. Therefore vX ~ Mi,(t)/3m and the total mass of the
disk is thus

2
My = / 27RIAR o My / gfdr. (96)
1%

At the outburst peak the whole disc is wholly ionized and except for the
outermost regions its structure is very well represented by a Shakura-Sunyaev
solution. In such discs, as well as in irradiation dominated discs, the viscosity
coefficient satisfies the relation v oc T o< MP/(+8) In hot Shakura-Sunyaev
discs 8 = 3/7 (Eq. 80), and in irradiation dominated discs 8 = 1/3 (Eq. 91).
During the first decay phase the outer disc radius is almost constant so that
using Eq. (96) the disc-mass evolution can be written as:

dMy
dt

= — My o< M;*° (97)

showing that M;, evolves almost exponentially, as long as Mfl can be con-
sidered as constant (i.e. over about a decade in M. ‘Exponential’ decays in
the DIM are only approximately exponential.

The quasi—exponential decay is due to two effects:
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1. X-ray irradiation keeps the disc ionized, preventing cooling-front propaga-
tion,
2. tidal torques keep the outer disc radius roughly constant.

‘Linear’ decay

The second phase of the decay begins when a disc ring cannot remain in
thermal equilibrium. Locally this corresponds to a fall onto the cool branch
of the S-curve. In an irradiated disc this happens when the central object
does not produce enough X-ray flux to keep the T}, (Rout) above ~ 10% K.
A cooling front appears and propagates down the disc at a speed of vgony =
QL Cg.

In an irradiated disc, however, the transition between the hot and cold
regions is set by Ti,, because a cold branch exists only for Tj,, < 10* K. In
an irradiated disc a cooling front can propagate inwards only down to the
radius at which T, ~ 10* K, i.c. as far as there is a cold branch to fall onto.
Thus the decay is still irradiation-controlled. The hot region remains close to
steady-state but its size shrinks Ry ~ Mil/ 2 (as can be seen in Eq. 91 with
Tirr (Rnot) = const).

Thermal decay

In the model shown in Fig. 8 irradiation is unimportant after ¢ 2> 170 —
190 days because 1 becomes very small for M;, < 106 g-s~! when an ADAF
forms. The cooling front thereafter propagates freely inwards, on a thermal
time scale. In this particular case the decrease of irradiation is caused by the
onset of evaporation at the inner edge which lowers the efficiency. In general
there is always a moment at which T}, becomes less than 10* K; evaporation
just shortens the ‘linear’ decay phase.

4.4 Maximum accretion rate and decay timescale

Now we will see that there are two observable properties of X-ray transients
that, when related one to to the other, provide informations and constraints
on the physical properties of the outbursting system. The first is the max-
imum accretion rate Mmax (Eq. 95). The second is the decay time of the
X-ray flux: as we have seen, disk irradiation by the central X-rays traps the
disk in the hot, high state, and only allows a decay of M on the hot-state
viscous timescale. This is
R2
t~ 5 (98)
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which using Eq. (8) gives
. (GMR)'/?

99
3ac? (99)
Taking the critical midplane temperature 7.- ~ 16000 K one gets for the
decay timescale

t = 32 ml/zR(li{flaaé days, (100)

where ap.2 = «/0.2. Eliminating R between (95) and (100) gives the accretion
rate through the disk at the start of the outburst as

M =5.4 %107 m=39 (t50002)* P gs71, (101)

with ¢ = 30t39d. Assuming an efficiency of n of 10%, the corresponding
luminosity is

L =5.0x10% 770_1m_3'03 (t300(042)4'78 erg st (102)

4.5 Comparison with observations

4.5.1 Sub-Eddington outbursts

The peak luminosities of most of the soft X-ray transients are sub-Eddington.
Eq. (101) can be written using the Eddington ratio m := M /Mgqq as

1 = 0.4210.1 (g 2t30)* Sm =03, (103)

This equation shows that the outburst peak will be sub-Eddington only if
the outburst decay time is relatively short or the accretor (black hole) mass
is high, i.e. the observed decay timescale is

t S 50mg M agam®* d, (104)

in good agreement with the compilation of X-ray transients outburst dura-
tions found in [59]. This shows that the standard value of efficiency 791 ~ 1,
and the value ap2 ~ 1 deduced from observations of dwarf novae, give the
correct order of magnitude for the decay timescale of X—ray transients (from
~ 3 days to =~ 300 days). This equation also implies that black hole transients
should have longer decay timescales than neutron star transients, all else be-
ing equal. Yan and Yu [59] find that outbursts last on average ~ 2.5x longer
in black hole transients than in neutron star transients thus confirming this
conclusion.

For sub—Eddington outbursts Eq. (102) gives a useful relationship between
distance D, bolometric flux F' and outburst decay time ¢,
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1/2
DMpc ~ 1.0 m_1'5 (7701> (a0.2t50)2'4 (105)
Fio

where D = Dyipe Mpce and F' = 1072 Fyergs™ em™2; F = L/47D? and
t =50t50d.

Eq. (105) shows that distant (D > 1Mpc) X-ray sources exhibiting vari-
ability typical of soft X-ray transients cannot contain black holes with masses
superior to stellar masses [33].

4.5.2 Observational tests
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Fig. 9 Mass transfer rate as a function of the orbital period for SXTs with black
holes. The transient and persistent sources have been marked with respectively filled
and open symbols. The shaded grey areas indicated ‘DIM irr’ and ‘DIM non irr’
represent the separation between persistent (above) and transient systems (below)
according to the disc instability model when, respectively, irradiation is taken into
account and when it is neglected. The horizontal dashed line indicates the Eddington
accretion rate for a 10M black hole. All the upper limits on the mass transfer rate
are due to lower limits on the recurrence time. The upper limits on the mass transfer
rate of 4U 1957+115 and GS 1354-64 result from lower limits on the distance to the
sources. The three left closed arrows do not indicate actual upper limits on the orbital
period of Cyg X-1, LMC X-1 and LMC X-3. They emphasize that the radius of any
accretion disk in these three high-mass XRBs is likely to be smaller than the one
derived from the orbital period since they likely transfer mass by a (possibly focused)
stellar wind instead of fully developed Roche lobe overflow. In the legend, the solid
horizontal line separates transient and persistent systems. (The dashed horizontal line
stresses that the persistent nature of 1E 1740.7-2942 and GRS 1758-258 is unclear.)
[From [13].]



Black hole accretion discs 33

Finally, one can test observationally if soft X-ray transients satisfy the
necessary condition for stability My, < Moyt (R4), where Mt is the critical
accretion rate for either non-irradiated or irradiated discs. In Fig. 9 the criti-
cal accretion rates (89) and (94) for respectively non-irradiated and irradiated
disc around black holes are plotted as M (Porb) relation. This relation was ob-
tained from disc-radius — orbital-separation relation R4(a) [42], where (from
Kepler’s law) the orbital separation a = 3.53 x 101°(m; + mg)l/?’Pfr/?’cm,
where m; are the masses of the components in solar units, and P}, the or-
bital period in hours. Against these two critical lines the actual positions of
the observed sources are marked. The mass transfer rate being difficult to
measure, a proxy in the form of the accumulation rate

AE

Maccum = )
trectC

(106)

has been used. AF is the energy corresponding to the integrated X-ray lumi-
nosity from during an outburst and t,.. the recurrence time of the outbursts.
One can see that all low-mass-X-ray-binary (LMXB) transients are in the
unstable part of the figure, as they should be if the model is correct. One can
also see that all black hole LMXBs are transient. This is not true of neutron
star LMXBs. Cyg X-1 in which the stellar companion of the black hole is
a massive star is observed to be stable but according to Fig. 9 should be
transient. This is not a problem because in such a system matter from the
high-mass companion is not transferred by Roche-lobe overflow as in LM XBs,
but lost through a stellar wind. In this case the R4(a) relation used in the
plot is not valid - the discs in such systems are smaller which is marked by a
left-directed arrow at the symbol marking the position of this and two other
similar objects (LMC X-1 and LMC X-3).

Additional reading : References [15], [16], [21], [31], and [32].

5 Black holes and advection of energy

Until now, we have neglected advection terms in the energy and momen-
tum equations for stationary accretion flows. There two regimes of parame-
ters where this assumption is not valid, in both cases for the same reason:
low radiative efficiency when the time for radial motion towards the black
hole is shorter than the radiative cooling time. Low density (low accretion
rate), hot, optically thin accretion flows are poor coolers and they are one
of the two configurations were advection instead of radiation is the domi-
nant evacuation-of-energy (“cooling”) mechanism. Such optically thin flows
are called ADAFs, for Advection Dominated Accretion Flows. Also advec-
tion dominated are high-luminosity flows accreting at high rates but they are
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called “slim discs” to account for their property of not being thin but still
being described as if this were not of much importance.
We shall start with optically thin flows.

e ADAFs

Advection Dominated Accretion Flows’ (ADAFSs) is a term describing ac-
cretion of matter with angular momentum, in which radiation efficiency
is very low. In their applications, ADAFs are supposed to describe in-
flows onto compact bodies, such as black holes or neutron stars; but very
hot, optically thin flows are bad radiators in general so that, in prin-
ciple, ADAFs are possible in other contexts. Of course in the vicinity
of black holes or neutron stars, the virial (gravitational) temperature is
Tuir =5 x 10'2(Rs/R) K, so that in optically thin plasmas, at such tem-
peratures, both the coupling between ions and electrons and the efficiency
of radiation processes are rather feeble. In such a situation, the thermal
energy released in the flow by the viscosity, which drives accretion by re-
moving angular momentum, is not going to be radiated away, but will be
advected towards the compact body. If this compact body is a black hole,
the heat will be lost forever, so that advection, in this case, acts as sort
of a ‘global’ cooling mechanism. In the case of infall onto a neutron star,
the accreting matter lands on the star’s surface and the (reprocessed) ad-
vected energy will be radiated away. There, advection may act only as a
‘local’ cooling mechanism. (One should keep in mind that, in general, ad-
vection may also be responsible for heating, depending on the sign of the
temperature gradient — in some conditions, near the black hole, advection
heats up electrons in a two-temperature ADAF).

In general the role of advection in an accretion flow depends on the radia-
tion efficiency which in turns depends on the microscopic state of matter
and on the absence or presence of a magnetic field. If, for a given accretion
rate, radiative cooling is not efficient, advection is necessarily dominant,
assuming that a stationary solution is possible.

e Slim discs

At high accretion rates, discs around black holes become dominated by
radiation pressure in their inner regions, close to the black hole. At the
same time the opacity is dominated by electron scattering. In such discs
H/R is no longer < 1. But this means that terms involving the radial
velocity are no longer negligible since v, ~ acs(H/R). In particular, the
advective term in the energy conservation equation v,.0S/9R (see Eq. 38)
becomes important and finally, at super-Eddington rates, dominant. When
Qt = Q1 the accretion flow is advection dominated and called a slim
disc.
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5.1 Advection—dominated—accretion—flow toy models

One can illustrate fundamental properties of ADAFs and slim discs with
a simple toy model. The advection ‘cooling’ (per unit surface) term in the
energy equation can be written as

M,
912 c:&q (107)

Qadv —

(see Eq. 238).
Using the (non-relativistic) hydrostatic equilibrium equation

H Cs
-~ — 108
7 o (108)
one can write the advection term as
. 2
adv KesC [T H
=7 — — 109
o =1 (M) () (109)
whereas the viscous heating term can be written as
3 KesC [T
Ty == 110
@ =13t (), (10
where )
cRg
Y = . 111
(&) (1)
Since &, ~ 1,
H\2
adv ~ =+ - 112
v ~at () (1)

and, as said before, for geometrically thin discs (H/R < 1) the advective
term Q2% is negligible compared to the heating term @ and in thermal equi-
librium viscous heating must be compensated by radiative cooling. Things
are different at, very high temperatures, when (H/R) ~ 1. Then the advec-
tion term is comparable to the viscous term and cannot be neglected in the
equation of thermal equilibrium. In some cases this term is larger than the
radiative cooling term @~ and (most of) the heat released by viscosity is
advected toward the accreting body instead of being locally radiated away
as happens in geometrically thin discs.

From Eq.(56) one can obtain a useful expression for the square of the
relative disc height (or aspect ratio):

(-2 (7)) s
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Deriving Eq. (113) we used the viscosity prescription v = (2/3)ac? /2.
Using this equation one can write for the advective cooling

L\ 2
QY = TQx&, (aX) ! (m> . (114)
n
The thermal equilibrium (energy) equation is
Qt =" +Q". (115)

The form of the radiative cooling term depends on the state of the accreting
matter, i.e. on it temperature, density and chemical composition. Let us
consider two cases of accretion flows:

— optically thick
and
— optically thin.

For the optically thick case we will use the diffusion approximation formula

_ 8oT?

Q=55 (116)
and assume KR = Kes. With the help of Eq. (113) this can be brought to the
form

R 12 / p\2 B N\ 1/2
Quniae = 87 (“ S) () 2 (ax) 7 (m> NG
c Rg n

For the optical thin case of bremsstrahlung radiation we have
Q™ =1.24 x 102 Hp*T/? (118)

which using Eq. can be written as

2
Qrian = 34 X 107°7 (53) 2xa? (aE)?. (119)

e In the OPTICALLY THICK case we have therefore
L\ 2 1/2 .
m R m
— ] 4+ 018 — aX) | — | +
S < n ) <Rs) (@) ( n )

+2.3 <]§S>5/4 (ax)'/? (’:)1/2 =0 (120)

e In the OPTICALLY THIN case the energy equation has the form
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o2 - on () " (2):

2
+3 x 10 %02 (;) (aX)® =0 (121)
S

There are two distinct types of advection dominated accretion flows: op-
tically thin and optically thick. We will first deal with first type of flows,
known as ADAFs.

—
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Fig. 10 (a) Thermal equilibria for optically thick (The right solid S-shaped line)
and optically thin (the left solid line) accretion flows. The upper branches repre-
sent advection-dominated solution (ADAFSs). Flows above the dotted lines 7 = 1 are
optically thin — 7 is the effective optical depth calculated for radiation-pressure dom-
inated (upper line) or gas-dominated (lower line) configurations. It is assumed that
Mg = 10M@, R =5Rg, a =0.1 and &, = 1. (b) The same for o = 0.01.[From [4]]

5.1.1 Optically thin flows: ADAFs

For prescribed values « and &,, Eq. (121) is a quadratic equation in (ri2/n)
whose solutions in the form of (X)) describe thermal equilibria at a given
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value of R. Obviously, for a given X' this equation has at most two solutions.
The solutions form two branches on the m(aX) — plane:

e the ADAF branch

R 1/2
m = 0.53Kes N <R) & tax. (122)
S

and

e the radiatively—cooled branch

3/2
m=19x10"y (;) &la?(aX)?. (123)
S

From Egs. (122) and (122) it is clear that there exists a maximum accretion
rate for which only one solution of Eq. (121) exists. This implies the existence
of a maximum accretion rate at

R 1/2
Tmax ~ 1.7 x 1037 o (Rs) ) (124)

This is where the two branches formed by thermal equilibrium solutions on
the mm(aX’) — plane meet as seen on Figure 10.

The value of 1. depends on the cooling mechanism in the accretion flow
and non-relativistic the free-free cooling is not a realistic description of the
emission in the vicinity ((R/Rgs) < 10%) of a black hole. The flow there will
most probably forms a two-temperature plasma. In such a case Mmay ~ 100
with almost no dependence on radius. For larger radii riy,,, decreases with
radius.

5.1.2 Optically thick flows: slim discs

Since the first two terms in Eq. (120) are the same as in (Eq. 121), the high
m, advection dominated solution is the same as in the optically thin case but
now represents the

e Slim disc branch

1/2
M = 0.53 Kes 1 (R> &lax. (122)
S

Now, the full equation (120) is a cubic equation in 7='/2 and on the ri(aX)
plane its solution forms the two upper branches of the S-curve shown in
Fig. 10. The uppermost branch corresponds to slim discs while the branch
with negative slope represents the Shakura-Sunayev solution in the regime
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a. (see Sect. 3.6), i.e.

e a radiatively cooled, radiation-pressure dominated accretion disc

3/2
i = 1601y [ 24 / (ax)™ " (125)
- es n RS «

5.1.3 Thermal instability of radiation—pressure dominated discs

Radiation—pressure dominated (P = P,,q) accretion discs are thermally un-

stable when opacity is due to electron scattering on electrons. Indeed
dInTi
dInT,

=4 (126)

because kp = Kes = const., while in a radiation pressure dominated disc
QT ~vY ~HT*~T8/% so

dlnQ+ —8> dInTo
dlnT. dInT,

(127)

and the disc is thermally unstable. This solution is represented by the middle
branch with negative slope (see Eq. 125) in Fig. 10. The presence of this
instability in the model is one of the unsolved problems of the accretion disc
theory because it contradicts observations which do not show any unstable
behaviour in the range of luminosities where discs should be in the radiative
pressure and electron-scattering opacity domination regime.

5.1.4 Slim discs and super-Eddington accretion

From Egs. (113) and (125) one obtains for the disc aspect ratio

H m\ Rs
— =011 =) —= 12
R~ (n) R (128)

which shows that the height of a radiation dominated disc is constant with
radius and proportional to the accretion rates.
But this means that with increasing 7 advection becomes more and more
important (see e.g. Eq. 112) and for
m R
— =~ 92— (129)
n Rs
advection will take over radiation as the dominant cooling mechanism and
the solution will represent a slim disc. Equation (129) can be also interpreted
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as giving the transition radius between radiatively and advectively cooled
disc for a given accretion rate r:
Rtrans ~ 0.1 .
— = —m

130
Re ” (130)

Another radius of interest is the trapping radius at which the photon diffusion
(escape) time HT/c is equal to the viscous infall time R/v,

(131)

Rtrapp =

Hrv, HeX M H (i R
¢ 2rRY R \n) %

Notice that both Rirans and Riyapp are proportional to the accretion rate.
In an advection dominated disc the aspect ration H/R is independent of

the accretion rate: "
H R
E = 086£a <RS> 5 (132)

therefore contrary to radiatively cooled discs, slim disc do not puff up with
increasing accretion rate.
Putting (132) into Eq. (131) one obtains

Rtrapp —1/2 R e m
— =10.86 — — 133
= & (133)

S n

Radiation inside the trapping radius is unable to stop accretion and since
Rirapp ~ m there is no limit on the accretion rate onto a black hole.

The luminosity of the toy-model slim disc can be calculated from Egs.
(117) and (122) giving

_ 0.1 Lgaq
Q™ =0Ty = & R (134)
which implies Tog ~ 1/R/2. The luminosity of the slim-disc part of the
accretion flow is then

Rin a in

Rerans 08 Rtrans
Lyiim = 2 / oT2n RAR = f—LEdd -In - LgaqInr,  (135)
where we used Eq. (130).

Therefore the total disk luminosity

Liotal = Ltnin + Lslim = (136)

Rin Ryrans

Rtrans Roc
4 ( / oTi RAR + / aT;*HRdR> ~ Lgaa(1 + Inm),
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where Ly is the luminosity of the radiation-cooled disc for which Eq. (57)
applies.

It is easy to see that the same luminosity formula L &~ Lgqq(1 4 In7h) is
obtained when one assumes mass—loss from the disc resulting in a variable
(with radius) accretion rate: M ~ 1/R.

At very high accretion rates the disc emission will be also strongly beamed
by the flow geometry so that and observer situated in the beam of the emitting
system will infer a luminosity

Lsph = %LEdd<1 + In m>7 (137)
where b is the beaming factor (see [27] for a derivation of b in the case of
Ultra-Luminous X-ray sources).

Numerical simulations do not seem to correspond to this analytical solu-
tions (see e.g. [25], [51] and [52] but they also disagree between themselves.
The reason for these contradictions are worth investigating.

Additional reading: References [1], [3], [4], [33], [38], [49], [50], and [60].

6 Accretion discs in Kerr spacetime.

In this section we will present and discuss the set equations whose solutions
represent a—accretion discs in the Kerr metric. This section is based on refer-
ences [5], [30] and [49] and to be understood requires some basic knowledge
of Einstein’s General Relativity.

6.1 Kerr black holes

The components g;; of the metric tensor with respect to the coordinates
(t,z%) are expressible in terms of the lapse N, the components 5 of the
shift vector and the components 7,5 of the spatial metric:

gij dz’ da? = —N2dt* + y,p5(dz® + Bdt)(da” + BPdt), (138)

which is a modern way of writing the metric.

Remark 3. In this Section only I will use conventions different from
those used in other parts of the Chapter. First, I will us the so-called
geometrical units that are linked to the physical units for length, time
and mass by,
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length in physical units = length in geometrical units,

time in physical units = — length in geometrical units,
¢

: : : ¢ : : :
mass in physical units = — length in geometrical units.

G
(139)

Second, the radial coordinate will be called “r” and not “R”. This
should not confuse the reader since R is used only in the non-relativistic
context where it denotes a radial coordinate and a radial distance, while
in the relativistic context it only a coordinate.

6.1.1 General structure, Boyer-Lindquist coordinates

The Kerr metric in the Boyer-Lindquist (spherical) coordinates ¢,r, 6, ¢ cor-
responds to:

S 0
N = , BT=p"=0, pY=-w 140
NIV =5 B (140)
2 2
S A%
Grr = Z7 goo = §2, Jpp = §72 Sll’l2 0 (141)
with
s=7r>+a%cos’0, A=1r>—2Mr+d? (142)
2J 2M
A= (7“2 + a2)2 — Ad®sin?6, w= T arv (143)
A A
where M is the mass and ¢ = J/M is the angular momentum per unit

mass. In applications one often uses the dimensionless “angular-momentum”
parameter a, = a/M.
Therefore in BL coordinates the Kerr metric takes the form of

2A

Asin? 6
ds? = —2—dt*
S ) +

§2

2
(@—wﬁf+%m%m%% (144)

The time (stationarity) and axial symmetries of the metric are expressed
by two Killing vectors

n'=0w, & =70y, (145)

where 6i(k) is the Kronecker delta.
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Remark 4. Using Killing vectors (145) one can define some useful scalar func-
tions: the angular velocity of the dragging of inertial frames w, the gravita-
tional potential @, and the gyration radius ‘R,

n-§ —2® 2 2 £-&

—e— € T=wE€-nn, K=" (146)
£-¢ n-n

In the Boyer-Lindquist coordinates the scalar products of the Killing vectors

are simply given by the components of the metric,

w =

n-nN = G, n'é.:gtapa 5'5:9%07 (147)

and therefore quantities defined in Eq. (146) can be explicitly written down
in terms of the Boyer-Lindquist coordinates as:

A2 _ r2A
ERZ = m, e 2P = 7 (148)
e The horizon

The black hole surface (event horizon) is at

TH:M+ \/M2—(12. (149)

Therefore a horizon exists for a, < 1 only. At the horizon the angular
velocity of the dragging of inertial frame is equal to

(150)

where {2y is the angular velocity of the horizon, i.e. the angular velocity of
the horizon-forming light-rays with respect to infinity. The horizon rotates.
The area of the horizon is given by

S =8rMryg = 8tM~/ M2 — a2. (151)

The extreme (maximally rotating) black hole corresponds to
a=M (152)

For a > M the Kerr solution represents a naked singularity. Such singulari-
ties would be a great embarrassment not only because of their visibility but
also because the solution of Einstein equation in which they appear violate
causality by containing closes time-like lines. The conjecture that no naked
singularity is formed through collapse of real bodies is called the cosmic cen-
sorship hypothesis (Roger Penrose.)
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Remark 5. Rotation of astrophysical bodies

Since this is a lecture in astrophysics let us leave for a moment the
geometrical units. They are great for calculations but usually useless
for comparing their results with observations. In the physical units

9 571/2
N R (153)
A= c2 Mc ’
and therefore the maximum angular momentum of a black hole is
M2 M\?
o —— ¢ =8.9 x 10*® (—) g cm? 571 (154)
(& M@

This is slightly more than the angular momentum of the Sun (Jg =
1.63 x 10%g cm? s~ 1, a? = 0.185): the gain in velocity is almost fully
compensated by the loss in radius.

For a millisecond pulsar which is a neutron star with a mass of ~
1.4Mg and radius ~ 10km the angular momentum is

M, Rnxs \2/ Ps \*

s = Ins 2 ~ 8.6x10%8 (242 N 2

NS = INS oS A 8.0 <O.489 14M, ) \10km ) \1ms) &
15

where Ins =~ a(x)MNSR2NS is the moment of inertia and =z =
(Mns/Mg)(km/Ryg) the compactness parameter. For the most com-
pact neutron star < 0.24 and a(z) < 0.489. Therefore for neutron
stars that rotate at millisecond periods

—1 2 —1
NS a(a:) MNS RNS PS
~ 0. . 1
@~ 05 (0.489) <1.4M@> (lOkm 1ms (156)

By definition

e the specific (per unit rest-mass) energy is

¢:=—-n-u, (157)
e the specific (per unit rest-mass) angular momentum
L£:=€u (158)

and



Black hole accretion discs 45

e the specific (per unit mass-energy) angular momentum (also called geo-
metrical specific angular momentum)
£ E-u

Ji=—Z=-2— 159
J ¢~ nu (159)

6.2 Privileged observers

Let us consider observers privileged by the symmetries of the Kerr spacetime.
The results below apply to any spacetime with the same symmetries, e.g. the
spacetime of a stationary, rotating star. The four-velocity of a privileged
observer is the linear combination of the two Killing vectors:

u=17 (77 + Qobsg) (160)
where the redshift factor Z is (from the normalization v - u = 1)
Z72=m - m+ 200p5m - €+ 22,6 € (161)

Since for a # 0 the Kerr spacetime is stationary but not static, i.e; the
timelike Killing vector n is not orthogonal to the space-like surfaces ¢ =const.
In such a spacetime ”non-rotation” is not uniquely defined.

Stationary observers are immobile with respect to infinity; their four-
velocities are defined as

4 —-1/2 4
ula, = () %0 (162)

but is locally rotating: Lzanmo = &ul,, # 0.
The four-velocity of a locally non-rotating observer is a unit timelike vector
orthogonal to the space-like surfaces ¢t =const.:

U%AMO =’ (77i + wfi) ) (163)

defines four-velocity of the local inertial observer or ZAMO, i.e. Zero Angular
Momentum Observers since

ﬁZAMO = giUlZAMo =0.

Finally, in presence of matter forming a stationary and axisymmetric con-
figuration, there are privileged observers comoving with matter.
6.3 The ergosphere

For ZAMOs {2 = w but for stationary observers 2 —w = —w. Therefore
ZAMOs rotate with respect to infinity (but are locally non-rotating). They
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Table 1 Summary of properties of privileged observers

Observer Four-velocity Angular velocity with respect
to stationary observers

Stationary u=(n-n""%n Nstat =0
ZAMO (LNR) u=rc % (n+ws) Nzam0 = w
Comoving (with matter) | w = Z(n+ 2§) Rcom = 2

may exist down to the black hole horizon, where they become null: uzano -
uzanmo = 0.

Stationary observers (immobile with respect to infinity but rotating with
angular velocity —w with respect to ZAMOs can exist (their four-velocity
must be timelike, 17 - p < 0) only outside the stationarity limit whose radius
is defined by -7 = 0:

Ter(0) = M + v/ M? — a2 cos? 6. (164)

The stationarity limit is called the ergosphere.

6.4 Equatorial plane

We will discuss now orbits in the equatorial plane, where they have the axial
symmetry. We are introducing the cylindrical vertical coordinate z = cos 6
is defined very close to the equatorial plane, z = 0. The metric of the Kerr
black hole in the equatorial plane, accurate up to the (z/r)°

2A A A
ds? = —T=dt 4+ 5 (dp — wdt)® + 17207 + d2? (165)
where now
oM
A=r?—2Mr+d® A= (r?+d%)°-Ad w= A‘”. (166)

or simpler

2M A ?
ds? = — (1 - ) dt? — 2wdtdyp + —dp* + Tzer +d2? (167)
T r
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6.4.1 Orbits in the equatorial plane

The four velocity of matter u* has components u?, u¥, u”,

The angular frequency {2 with respect to a stationary observer, and the an-

gular frequency (2 with respect to a local inertial observer are respectively

defined by,
%)

="

ut’

N=0-uw, (169)

The angular frequencies of the corotating (+) and counterrotating (—) Kep-
lerian orbits are
M1/2

+ _
QK - :tr3/2 + aMl/?’

(170)
the specific energy is
r2 —2Mr+ a(Mr)l/2

¢t = : (171)
oy (r2 —3Mr =+ 2a(Mr)1/2)1/2

and the specific angular momentum is given by

(M?“)l/2 (r?* F 2a(Mr)'/? + a?)

£E =+ :
r(r2—3Mr+ 2a(M7~)1/2)1/2

(172)

(Mr)Y/2 (r? F 2a(Mr)'/? 4 a?)
r2 — 2Mr 4 a(Mr)t/2

Both J and £ have a minimum at the last stable orbit, more often called
ISCO (Innermost Stable Circular Orbit).

Jx ==

(173)

Because of the rotation of space there is no direct relation between angular
momentum and angular frequency but

Lo nE+REE RR-w

= = 174
n-n+0n-§ Dw—1 (174)
For the Schwarzschild solution (¢ = w = 0)

so a Newtonian-like relation (justifying the name “gyration radius” for fR)
between angular frequency and angular momentum exists for J. No such re-
lation exists for £.
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ISCO

The minimum of the Keplerian angular momentum is located at

rco = M{3+ Zs F (3~ 21)(3 + Z1 +222)] /%),
2= 14 (L= a2/ [(Lt M)V 4 (1 a/2) )

Zy = (3a2/M? + 22)'/%. (176)
Binding energy
The binding energy
Epind = 1 — Ex (177)

at the ISCO is

e 1—,/8/9~0.06 for a =0
e 1—./1/3~0.42 for a =1.

This corresponds to the efficiencies of accretion in a geometrically thin (quasi-
Keplerian) disc around a black hole.

For a Schwarzschild black hole the frequency associated with the ISCO at
risco = 6M is

M -1
VK(TISCO) = 2197 () Hz (178)
Mg

IBCO

The binding energy of a Keplerian orbit 1 — €& = 0 at the marginally bound
orbit (or IBCO: Innermost Bound Circular Orbit)

Fig. 11 Radii of har-
acteristic orbits in the
Kerr metric as a func-
tion of ayx = a/M. The
innermost stable circu-
lar orbit: risco, the
marginally bound orbit
risoco (marked rmp), the
photon orbit: r,, and the
black hole horizon: rg
(marked r1,). (Courtesy of
A. Sadowski.)

r [GM/c?]
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oo = 2M Fa+ 2y M2 F aM (179)

For a non-rotating black-hole rigco = 4M and the frequency associated with
the IBCO is
M\
VK (TIBCO) = 4037 <> Hz (180)
Mg

ICO (Circular photon orbit)

The Innermost Circular Orbit (ICO), i.e. the circular photon orbit is at

2 a
+ _ |2 coed
Ton = 2M (1 + cos {3 cos (:FM)}> . (181)

For a non-rotating black hole rp, = 3M.

6.4.2 Epicyclic frequencies

We will consider now consider a perturbed orbital motion in, and slightly off
the equatorial plane. In the Newtonian case the angular frequency of such
motions must be equal to the Keplerian frequency {2 since in there is only
one characteristic scale defined by the gravitational constant G. In General
Relativity the presence of two constants G and ¢ imply that the epicyclic
frequency does not have to be equal to 2.

The four—velocity for the perturbed circular motion can be written as

= (L5, Qk + 0¥, (182)

where u® are the velocity perturbations.
e For perturbations in the equatorial plane the equation of motion is
82 2 ﬂ’r
<at2 + kK e = (183)

r2 — 6Mr + 8aM/2p1/2 — 342
7.2

where

K = 0% (184)

is the (equatorial) epicyclic frequency. In the Schwarzschild cas a = 0 this
is k2 = 22.(1 — 6M/r) and vanishes at ISCO. In the Newtonian limit the
epicyclic frequncy equal to the Keplerian frequency x = 2.

e For vertical perturbations the equation is

9 AV
<&+QK&p>u —7QL59 (185)



50 Jean-Pierre Lasota
where the vertical epicyclic (angular) frequency is given by

-Qi _ _Qf( r2 — daM/2r1/2 — 32 M2

2 (186)
In the Schwarzschild case (a = 0) the vertical epicyclic frequency is equal
to the Keplerian angular frequency {2k, which is to be expected from the
spherical symmetry of this solution.

The angular velocity {2, appears also in the equation of vertical equilib-
rium of a (quasi)Keplerian disc which will be discussed later (sect. 8.5).
Here let us just notice that Eq.(221) can be written as

op

5 —pe*? 2% 2 (187)

All these characteristic frequencies can be put into the form

Q= f(,a)

7 (188)

where x = r/M. For all relativistic frequencies x = x(a,) and therefore they

can be written as )

2=F(a) ;- (189)

Additional reading : Reference [2].

7 Accretion flows in the Kerr spacetime

7.1 Kinematic relations

In the reference frame of the local inertial (non-rotating) observer the four
velocity takes the form,

ul =~ (u% amto + V7 o™ qu(r)) _ (190)

The vectors Ti(w) and Ti(T) are the unit vectors in the coordinate directions
@ and r. The Lorentz gamma factor v equals,

_ 1
ey ey

The relation between the Boyer-Lindquist and the physical velocity compo-
nent in the azimuthal direction is,

(191)
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v®) = R, (192)

which justifies the name of R - gyration radius. It is convenient to use the
(rescaled) radial velocity component V' defined by the formula,

v
ﬁ =y = UTQ%Q- (193)

The Lorentz gamma factor may then be written as,

= () (=) )

which allows writing a simple expression for V' in terms of the velocity com-
ponents measured in the frame of the local inertial observer,

() ()

V= - S—
\/1—(1;(@)2 V1 R

(195)

Thus, V is the radial velocity of the fluid as measured by an observer coro-
tating with the fluid at fixed r.

Although a different quantity could have been chosen as the definition of
the “radial velocity”, only V has directly three very convenient properties,
all guaranteed by its definition:

e (i) everywhere in the flow |V| < 1,
e (ii) on the horizon |V| =1,
e (iii) at the sonic point |V| = ¢,
where ¢ is the local sound speed.
To see that property (i) holds, let us define

V2 =u"u, = uu"gpr > 0. (196)

Then, one has ~ _
VE=V?/(1+V?) <1 (197)

Writing V. = /r2u"u’/(r2u"u” + A) demonstrates property (ii) since
|V| = 1 independent of the value of r2u"u".

For the proof of property (iii) of V see [4].

Other possible choices of the “radial velocity” such as u = |u”| are not
that convenient.

7.2 Description of accreting matter

The stress-energy tensor T of the matter in the disk is given by,
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Tk = (e + p)uin® + pgi* + S™* + kgl + uigh, (198)

where € is the total energy density, p is the pressure,
Sik = Vpoik, (199)

is the viscous stress tensor, p is the rest mass density and ¢’ is the radiative
energy flux. In the last equation v is the kinematic viscosity coefficient and o,
is the shear tensor of the velocity field. From the first law of thermodynamic
it follows that

d€:5+p

dp + pT'dS, (200)

where T is the temperature and S is the entropy per unit mass. Note, that
in the physical units ¢ = pc? + II, where IT is the internal energy. For non-
relativistic fluids, IT < pc? and p < pc?, and therefore

e+p=c?p. (201)

We shall use this approximation (in geometrical units e+p = p) in all our cal-
culations. This approximation does not automatically ensure that the sound
speed is below ¢, and one should check this a posteriori when models are
constructed. We write the first law of thermodynamics in the form:

dU = —pd </1)> +TdS (202)

where U = IT/p.

8 Slim disc equations in Kerr geometry

General-Relativistic effects play an important role in the physics of thin
(H/r < 1) accretion discs close to the black hole but they determine the
properties of slim (H/r < 1) discs. We will derive the slim-disc equation and
before discussing their properties we will say few words about thin discs.

It is convenient to write the final form of all the slim disk equations at
the equatorial plane, z = 0. Only these equations which do not refer to
the vertical structure could be derived directly from the quantities at the
equatorial plane with no further approximations. All other equations are
approximated — either by expansion in terms of the relative disk thickness
H/r, or by vertical averaging.
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8.1 Mass conservation equation

From general equation of mass conservation,
V' (pui) =0, (203)
and definition of the surface density X,
+H(r)
Y= p(r,z)dz = 2Hp, (204)
—H(r)

we derive the mass conservation equation,

. \%
M= -2rAYV? Y ———. 205
Jive (205)
In the Newtonian limit the mass conservation equation is:
M = —21%v,. (206)
8.2 Equation of angular momentum conservation
From the general form of the angular momentum conservation,
Vi (T"¢:) =0, (207)
we derive, after some algebra,
Mde 1d A2~3 40
e - 2 A3/27 —_— — F_ = 2
2r dr  rdr ( v r dr £=0 (208)
where F'~ = 2¢q, is the vertical flux of radiation, and
A3/2 -
£=—(ug) = —up =7 <7°3A1/2> £, (209)

is the specific (per unit mass) angular momentum. The term F'~ L represents
angular momentum losses through radiation. Although it was always fully
recognized that angular momentum may be lost this way, it has been argued
that this term must be very small. Rejection of this term enormously sim-
plifies numerical calculations, because with F'~ £ = 0 equation (208) can be
trivially integrated,
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%(2, £0) = —EVAS/QM@ _ =z

= — 210
o rd  dr o2r’ (210)

where £ is the specific angular momentum of matter at the horizon (A =
0). In the numerical scheme for integrating the slim Kerr equations (with
F~ £ assumed to be zero) the quantity £y plays an important role: it is the
eigenvalue of the solutions that passes regularly through the sonic point.
The rhs of Eq. (210) T represent the viscous torque transporting angular
momentum.

In the Newtonian case, a geometrically thin disc is Keplerian 2 =~ 2§
(see Eq. (213), £k = lx = R?Q, Eq. (210) takes the familiar form of

M A
Y)=—|1——
v 37‘(‘[ éK:|’

(see Eq.56).

8.3 Equation of momentum conservation

From the r-component of the equation V;T%* = 0 one derives

vV dv A 1 dP
TVidr s Sdr (211)

where P = 2Hp is the vertically integrated pressure and

Q-0 -0
A=-— MA _( k)f = k). (212)
r3AQE 2 1— 2R2

Note that in Eq. (211) the viscous term has been neglected.

The Newtonian limit of Eq.(211) is

dv, c?
— — (2% - 2% = =0 213
Ur dr ( K ) Tt r (213)
For a thin disc: H/r ~ ¢2/r2x < 1 Eq. (213) is simply 2 ~ 2, i.e. a
thin Newtonian disc is Keplerian. The thickness of the disc depends on
the efficiency of radiative processes: efficient radiative cooling implies
low speed of sound.
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8.4 Equation of energy conservation

From the general form of the energy conservation
Vi (T%n) =0, (214)

and the first law of thermodynamics,

b))
the energy equation can be written in general as
QN =Qt-Q, (216)
where , )
QT = VE%74 (Zf) (217)

is the surface viscous heat generation rate, F'~ is the radiative cooling flux
(both surfaces) which is discussed in Section 5, and F2%V is the advective
cooling rate due to the radial motion of the gas. It is expressed as

XV AY?_4S M _dS
Q&Y= —— T —=__—T—.
VI—V2 7 dr 2nr dr
In stationary accretion flows advection is important only in the inner re-
gions close to the compact accretor. In the rest of the flow the energy equation
is just

(218)

QT=Q". (219)

In the newtonian limit of Egs. (217) and (210) one obtains

3 GMM (1—£—°>

Q" = 7

T8t R3

8.5 Equation of vertical balance of forces

The equation of vertical balance is obtained by projecting the conservation
equation onto the 6 direction

hy Vi TF = 0; with hly = 64 — u'ug (220)
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and neglecting the terms O3(cos #). For a non-relativistic fluid this leads to

dP €2 g2 (€2 —1)
ar = , 221
= pgz=—p = z (221)

In the newtonian limit Eq. (221) becomes

dP 052

Pl e o (see Eq. 17).

9 The sonic point and the boundary conditions

9.1 The “no-torque condition”

There have been a lot of discussion about the inner boundary condition in an
accretion disc. The usual reasoning is that for a thin disc the inner boundary
is at ISCO and since it is where circular orbits end the boundary condition
should be simply that the “viscous” torque vanishes (there is no orbit below
the ISCO to interact with). Several authors have challenged this conclusion
but a very simple argument by Bohdan Paczyniski [44] shows the fallacy of
these challenges.

Using Eq. (205), one obtains from Eq. (210)

A3/242 1 40

(r) — kel
v v rd £ — £y dr

(222)

Next, from the viscosity prescription v ~ aH?2, and taking for simplicity
the non-relativistic approximation (this does not affect the validity of the
argument but allows skipping irrelevant in this context multiplicative factors)
one can write

¢ dn ‘0 H\?> ¢
.~ a H? — ~a H? — & — — 22
B Ry O‘”"”(R) i~ %)

where v, = R{2 Although we have dropped the GR terms, the equation (223)
does not assume that the radial velocity is small, i.e.this equation holds within
the disk as well as within the stream below the ISCO.

Far out in the disk, where ¢ > {y, one obtains the standard formula (see
Eq. 35)
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2
U RV, (R) , R> R;,. (224)
The flow crosses the black hole surface at the speed of light and since it is
subsonic in the disc it must somewhere become transonic, i.e. to go through
a sonic point, close to disc’s inner edge.
At the sonic point we have v, = ¢; = (H/R)v,, and the equation (223)
becomes:
Ur Hi Zin
—=1l=a —_—
Cs Rin Ein - ZO
If the disk is thin, i.e. Hi,/Rin < 1, and the viscosity is small, i.e. a < 1, then
Eq. (225) implies that (i, —fo)/lin < 1, i.e. the specific angular momentum
at the sonic point is almost equal to the asymptotic angular momentum at
the horizon.
In a steady state disk the torque ¥ has to satisfy the equation of angular
momentum conservation (210), which can be written as

R =Ry, (225)

T=M(l—l), Tin = M (lin — £o) - (226)

Thus it is clear that for a thin, low viscosity disk the ‘no torque inner
boundary condition’ (%;, ~ 0) is an excellent approximation following
from angular momentum conservation.

However, if the disk and the stream are thick, i.e. H/r ~ 1, and the
viscosity is high, i.e. & ~ 1, then the angular momentum varies also in the
stream in accordance with the simple reasoning presented above. However,
the no stress condition at the disc inner edge might be not satisfied.

Additional reading : Reference [6].
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Appendix

Thermodynamical relations

The equation of state can be expressed in the form:

2
P=pt+ Xpr 4 Bor, o 22 (227)
i He 247
where P, is the radiation pressure, R is the gas constant, u; and p. the
mean molecular weights of ions and electrons respectively, T;, and T, ion and
electron temperatures, a the radiation constant (not to be confused with the
dimensionless angular momentum ¢ in the Kerr metric), and B the inten-
sity of a isotropically tangled magnetic field, includes the radiation, gas and
magnetic pressures. The radiation pressure P, the gas pressure P, and the
magnetic pressure P, correspond respectively to the first term, the second
and third terms, and the last term in equation (227).
The mean molecular weights of ions and electrons can be well approxi-

mated by:
4 2

MEIX Y R

where X is the relative mass abundance of hydrogen and Y that of helium.
We may define a temperature as

T, T
T:,u<+>7 (229)
Hi He

(228)

where
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_ (i1 T2 (230)
F=\w ") T itsx+ijay

is the mean molecular weight. In the case of a one-temperature gas (T; = T,),
one has T = T; = T,. For an optically thick gas, P, = (40 /3¢)T.

For the frozen-in magnetic field pressure P, ~ B? ~ p*/3, therefore we
may write the internal energy as

U=—T4 —>
pc pima(vg — 1)

+ e,p'/3, (231)

where e, is a constant (P, = 1/3e,p*?) and 74 is the ratio of the specific
heats of the gas. We define

P P .
5:47 5m:P797 B
p 9 + P

 3fm

From equations (227) and (231) one obtains the following formulae (see e.g.
Cox & Giuli 1968) for the specific heat at constant volume:

R 12(1 = B/Bm)(vg —1) + B8] _4-35* P

B. (232)

YT w1 B S Iy—1pT (233)
and the adiabatic indices:
(4-38")(—1)
Iy—1=
N VT e Yy (234)
I=p"+4-38")I3-1). (235)

The ratio of specific heats is v = ¢,/cy = I'1/p. For f = f,,, we have
I's =~4 and It = (4 — B8)/3+ B(v4 — 1). For an equipartition magnetic field
(8 =0.5) one gets I'1 = 1.5 and for § = 0.95, I'1 = 1.65 (here we have used
g = 5/3). One expects B, ~ 0.5 — 1. Since

ds dinT dlnY dlnH
TR~ "R (F?’l)( dR  dR ﬂ (236)
The advective flux is written in the form:
M P
adv
= —C&a 2
QN = oo (237)
where 4-38*dInT dln ¥
- n n
= 4 —38* . 2
L I3—1 dlnR+( 3B)allnR (238)

The term  dln H/dIn R has been neglected. Since no rigorous vertical aver-
aging procedure exists, the presence or not of the dln H/dIn R — type terms
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in this (and other) equation may be decided only by comparison with 2D
calculations.

The formulae derived in this section are valid for the optically thin case
7 =0 if one assumes 8 = S,,.



