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ABSTRACT

We present non-linear, convective, BL Her-type hydrodynamic models that show complex
variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich struc-
ture, with many phenomena detected for the first time in hydrodynamic models of pulsating
stars. The phenomena include not only period doubling cascades en route to chaos (detected
in earlier studies) but also periodic windows within chaotic band, type-I and type-III inter-
mittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many
textbook chaotic systems, from the simplest discrete logistic map, to more complex systems
like Lorenz equations. We discuss the physical relevance of our models. Although except of
period doubling such phenomena were not detected in any BL Her star, chaotic variability
was claimed in several higher luminosity siblings of BL Her stars — RV Tau variables, and
also in longer-period, luminous irregular pulsators. Our models may help to understand these
poorly studied stars. Particularly interesting are periodic windows which are intrinsic property
of chaotic systems and are not necessarily caused by resonances between pulsation modes, as

sometimes claimed in the literature.
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1 INTRODUCTION

Chaotic dynamics is present in many astrophysical systems and stel-
lar variability is not an exception, although in this case, chaos was
studied mostly in the context of hydrodynamic models of large am-
plitude pulsators. Buchler & Kovics (1987) and Kovics & Buchler
(1988) found a chaotic behaviour in their radiative type-II Cepheid
models (W Vir and RV Tau). In-depth analysis of chaos in these
models was conducted by Serre, Kollath & Buchler (1996) and
Letellier et al. (1996). Also Buchler & Moskalik (1992) found
chaotic behaviour in two sequences of radiative BL. Her-type mod-
els; however they did not analyse the phenomenon. Recently, chaotic
behaviour was reported in convective hydrodynamic models of BL
Her stars (Smolec & Moskalik 2012) and RR Lyrae stars (Plachy,
Kollith & Molnar 2013).

On observational side chaos was detected in type Il Cepheids
of RV Tau type (R Scuti and AC Her; Buchler, Kolldth & Serre
1996; Kollith et al. 1998) and in several semi-regular variables
(Buchler, Kolldth & Cadmus 2004), and in Mira-type variable (Kiss
& Szatmary 2003).

In this paper we report on the chaotic behaviour we have found
in a sequence of non-linear convective BL. Her models. For the
first time in stellar pulsation modelling we clearly demonstrate the
appearance of dynamical phenomena well known and common to
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classical chaotic systems, both discrete (e.g. logistic or Hénon maps)
and continuous (e.g. Rossler or Lorenz equations). In all these sys-
tems the basic route to chaos is through a cascade of period dou-
bling bifurcations also present in our models and in earlier stud-
ies of radiative type-II Cepheid models (Kovics & Buchler 1988).
In addition, our models display a full wealth of dynamic behaviour
characteristic for deterministic chaos. Within chaotic band we find
several windows of non-chaotic variation (windows of order), with
stable period-n limit cycles. These windows are either extremely
narrow or relatively large. In the latter case the periodic window
is preceded by the type-I intermittent behaviour, till the periodic
cycle is born through the tangent bifurcation. This periodic cycle
again undergoes a series of period doubling bifurcations en route
to chaos. The interior crisis bifurcations, in which separate chaotic
bands merge, leading to the abrupt increase of the attractors volume,
are detected in our models, as well as crisis induced intermittency
and type-IIl intermittency.

Chaos was not detected in any BL Her star so far. In our opinion
however, these models are important for several reasons. (i) Chaos
does occur in larger-luminosity type-1I Cepheids — RV Tau stars,
as well as in semi-regular variables. Our models may shed more
light on variability of these poorly studied stars. (i) We initiated
the survey of non-linear convective pulsation models of type-I1
Cepheids extending to the highest luminosities (RV Tau domain) in
which chaotic variability is expected, as previous radiative models
and observations indicate. In the present paper we introduce and
test the methods to study chaos in such models. (iii) The striking
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Figure 1. Bifurcation diagram for the logistic map. In the right panel we plot the

period-3 and period-6 cycles are marked with dashed lines.

similarity between our hydrodynamic models of pulsating stars and
even the simplest chaotic systems, like logistic map, is noteworthy,
indicating that many very different systems may share the same
dynamical properties. (iv) Finally, although the chaotic behaviour
was not detected in any BL Her star so far, we cannot exclude such
possibility in the future. We note that the period doubling effect in
these stars was predicted by Buchler & Moskalik (1992), based on
radiative hydrodynamic models, but it took 20 years to discover the
effect in the first star of this type (Soszyiski et al. 2011; Smolec
et al. 2012).

In Section 2 we summarize the properties of the logistic map,
which will help us better understand phenomena occurring in our
hydrodynamic models. The reader familiar with the chaos theory
may safely skip this Section. In Section 3 we briefly describe the
computation and basic properties of the models. In the following
sections we present detailed analysis of the models showing both
chaotic and periodic variation, including discussion of the largest
Lyapunov exponents (Section 5). We discuss our results in Sec-
tion 6 and comment on observability of the chaotic phenomena in
Section 7. Summary in Section 8 closes the paper.

Initial results of this study were reported in the conference pro-
ceedings of IAU Symposium No 301 (Precision Asteroseismology),
Smolec & Moskalik (2014).

2 LOGISTIC MAP

In this section we briefly discuss the properties of the logistic map,
which is the simplest 1D discrete system showing deterministic
chaos. The map is defined as:

X = flxiog) = kxi (1 —xi-1), (1)

where k is a parameter. We are interested in arange 1 < k < 4 as
then the iterates of equation (1) are bounded, x; € [0:1]. Fork < 1
iterations converge to 0 and for k > 4 they diverge. The great advan-
tage of the logistic map is its simplicity — most of the properties, e.g.
bifurcation points, fixed points and their stability — may be com-
puted analytically. Full understanding of the mechanisms behind
the observed behaviours is thus possible. At the same time logistic
map displays nearly all types of behaviours characteristic for deter-
ministic chaos in more complex, continuous and higher dimension
systems, that are also present in our hydrodynamic models. In the
case of our models analytical approach is not possible and we are
left with the complex output of pulsation code. Comparison with
results discussed in this section allows for a better understanding
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zoom in of the area marked with box in the left panel. Some of the unstable

of our hydrodynamical models. The properties of the logistic map
described below may be found in numerous textbooks (e.g. Petigen,
Jiirgens & Saupe 2004) and original articles (e.g. May 1976), and
are given here without derivation.

Depending on the value of k the iterations of any initial xy (trajec-
tory) either converge to a periodic cycle, or not, and then the chaotic
attractor is present. In Fig. 1 we show the bifurcation diagram — pos-
sible long-term values of x; (initial iterations omitted) as a function
of k. The plot is a stack of grey-scaled histograms: for each value
of k, we computed several thousand iterations of equation (1) and
calculated the probability with which the iterations fall to one of
the 200 bins into which the [0: 1] interval was divided. Grey bands
of chaos are clearly visible, as well as windows of order in which
stable periodic cycles are present. The right part of the figure shows
the zoom of the largest, period-3 cycle window.

To visualize the attractor it is useful to construct the first return
maps, i.e. plots of x;;; versus x; (omitting the initial transient).
For the discussion below it is instructive to consider the evolution
of return map as k is increased. In arange 2.8 < k < 4 it is shown in
the animation that may be found in the online version of this article
as additional supporting information.

The consecntive iterates of equation (1) may be constructed ge-
ometrically, using the plot of f{x) versus x as illustrated in the left
panel of Fig. 2 for k = 2.6 (thin red line). For initial value x; one
plots the vertical line towards the f and from that point the hor-
izontal line towards the diagonal, and then repeats the procedure
to get a trajectory. In the discussed case it converges to the fixed
point, a; = fla;) (period-1 cycle), which is located at the crossing
of fand the diagonal. Its stability depends on the slope of f at the
intersection. If the modulus of the slope is less than 1 the iterations
converge towards a; and the period-1 cycle is stable. It is the case
for 1 < k < 3: iterations of any x; converge towards a, = | — 1/k.
For k = 3 the slope is steeper than 1, the period-1 cycle becomes
unstable and stable period-2 cycle (a; = f*(a;)) is born through the
period doubling (pitchfork) bifurcation. The iterates of equation (1)
alternate between two values. The appearance of the period dou-
bling bifurcation is illustrated in the middle panel of Fig. 2 with
the help of f2(x) versus x plot. For k < 3 f? intersects the diagonal
at a single point corresponding to a stable period-1 cycle. At the
bifurcation point (k; = 3) f? is tangent to the diagonal, and for
larger k, f* intersects the diagonal at three points. The middle point
corresponds to the unstable period-1 cycle, which is a degenerate
case of period-2 solution. The two other points have the same slopes
and correspond to the stable period-2 cycle,
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Figure 2, Graphical interpretation of the logistic map. Consecutive iterates of equation (1) (trajectory) must fall along f{x) curve (parabola). Thin red line in
the left panel shows how to construct the trajectory geometrically for initial xp. The middle and right panels illustrate the appearance of the period doubling
and tangent bifurcations, respectively. In all panels filled and open circles correspond to stable and unstable fixed points, respectively. For clarity, in the right

panel these are plotted only for k = 3.84.
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Figure 3. Schematic illustration of the period doubling cascade (top) and
tangent bifurcation followed by cascade of period doubling bifurcations
(bottom). Black solid and red dashed curves correspond to stable and unsta-
ble cycles, respectively.

Following the same scenario, at ks = 1 + +/6 another period
doubling bifurcation occurs giving rise to stable period-4 cycle
(and period-2 cycle loses its stability). The cascade of period dou-
bling bifurcations will finally lead to chaos. The extent of the do-
main of stable period-n cycle (d, = k, — k,;2) decreases as n
increases and the ratio d, />, approaches the Feigenbaum constant
(8 = 4.669) which is a universal constant for many other systems
too (Feigenbaum’s universality; see Feigenbaum 1983). Beyond
ko 72 3.569946 (the accumulation point) chaos appears for the first
time. The described period doubling route to chaos is schematically
illustrated in the upper part of Fig. 3 with stable and unstable cycles
marked with black solid and red dashed lines, respectively.

Beyond the accumulation point the chaotic domain extends,
which, however, is densely packed with windows of order — sta-
ble period-n cycles. To understand how these are born we focus
our attention on the most prominent period-3 window (zoomed in
the right part of Fig. 1) and the iteration of f* (rightmost panel
of Fig. 2). Before the period-3 cycle is born the system is chaotic
and the three vertices of f* approach the diagonal. At/beyond the
bifurcation (k = 14 2+/2) they touch/intersect the diagonal and
give rise to a pair of period-3 cycles, of which one is stable and one
is unstable, as is apparent from the analysis of the slopes of f* at the
intersection with the diagonal. The stable period 3-cycle will soon

undergo a series of period doubling bifurcations en route to chaos,
just as described in the previous paragraphs, and as is clearly visible
in the right panel of Fig. 1. This scenario is schematically plotted
in the bottom part of Fig. 3.

Two interesting phenomena occur at the edges of the just dis-
cussed period-3 window (and other periodic windows as well).
Before the tangent bifurcation occurs we observe the intermittency,
illustrated in Fig. 4. The bottom panels show the consecutive itera-
tions of equation (1) for three different values of & and the top panels
show the third return maps, i.e. plots of x;,5 versus x;. Obviously,
the points fall along the f* curve. Just before the bifurcation (left
and middle panels) evolution of the system is characterized by long
intervals of almost periodic behaviour interrupted by shorter bursts
of chaos. This is the intermittent behaviour first analysed for the
Lorenz equations by Mannevile & Pomeau (1979), followed by an
in-depth analysis by Pomeau & Mannevile (1980). As control pa-
rameter increases the almost periodic intervals become longer (cf.
left and middle panels in Fig. 4) up to a critical value of k at which
tangent bifurcation occurs and stable period-3 cycle is born (and
unstable period-3 cycle as well; right panel in Fig. 4).

To discuss the appearance of intermittency we focus attention on
the left panel of Fig. 4 (inset). Constructing the trajectory for each
third iterate of equation (1) geometrically, one must fall into the
intermittent channel — a narrow region between the vertex of f* and
the diagonal — in which iterations must be trapped for a while (thin
zig-zag in the inset). Similar channels are also present at the two
other vertices approaching the diagonal and iterates of equation (1)
fall consecutively into the three channels. Closer to the bifurcation,
narrower the channels and longer the iterations are trapped within,
with apparently more periodic variation (middle panel of Fig. 4,
inset). As the iterations leave the intermittent channels a chaotic
burst is observed.

In a broader context, intermittency is one of the routes to chaos
(for areview see Eckmann 1981), characterized by sporadic switch-
ing between qualitatively different behaviours, the laminar (pe-
riodic) behaviour and chaotic bursts. Intermittency is associated
with a bifurcation in which stable periodic cycle becomes unstable.
Depending on the bifurcation in which the stability is lost, three
types of intermittency were distinguished by Pomeaun & Mannevile
(1980). The type-1 intermittency is related to a tangent bifurcation in
which stable and unstable limit cycles collide and both vanish. It is
the case for the just described intermittency in the logistic map.

MNRAS 441, 101-115 (2014)
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Figure 4. Demonstration of type-I intermittency. The bottom panels show consecutive iterations of the logistic equation for three different values of k. The
conseculive iterates are connected with lines for guidance. In the top panels the corresponding third return maps are plotted. In the top right panel (inset) the

location of unstable fixed point of period 3 is indicated with "+,

Type-1I intermittency is related to the suberitical Hopf bifurca-
tion (in the Hopf bifurcation the stationary solution bifurcates into
periodic orbit).! Type-III intermittency appears together with sub-
critical period doubling bifurcation, in which the stable limit cycle
collides with the unstable period-doubled cycle. A summary of
these scenarios may be found in the original paper by Pomeau &
Mannevile (1980) and e.g. in Becker et al. (1999). Hydrodynamic
models to be discussed in the coming sections display both type-1
and type-11I intermittency.

The stable period-3 cycle born in the tangent bifurcation will soon
undergo a series of period doubling bifurcations which will create
three separate chaotic bands as is well visible in Fig. | and in Fig. 5
(left and middle panels), which is the same as Fig. 4 except we focus
on the right edge of the period-3 window. These three bands will
merge in the interior crisis bifurcation, first described by Grebogi,
Ott & Yorke (1982), in which the volume of the attractor changes
suddenly. The crisis bifurcation occurs as the three chaotic bands hit
the unstable period-3 cycle (born in the tangent bifurcation) which
scatters the trajectories into previously unvisited regions (Fig. 5, the
rightmost panel). This is well visible in the right panel of Fig. 1 in
which unstable cycles of period 3 (and period 6) are plotted with the
dashed lines and in Fig. 5 where location of unstable fixed points
of period 3 is indicated with "+’ signs.

Directly after the occurrence of crisis bifurcation, crisis-induced
intermittency is observed (well visible in the bottom right panel
of Fig. 5). The trajectory is confined in the region of the former,
pre-crisis attractor, with sporadic excursions out of it.

! We follow the convention adopted e.g. in Seydel (2010) and call the bifur-
cation subcritical if the stable solution exists on one side of the bifurcation
point only. If the stable solution exists on either side, the bifurcation is
supercritical.
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3 HYDRODYNAMIC MODELS

All hydrodynamic models analysed in this paper were computed
with the Warsaw non-linear convective pulsation codes (Smolec &
Moskalik 2008). Numerical parameters of the models (zoning) are
the same as in our previous papers [section 3 of Smolec et al. (2012)
and Smolec & Moskalik (2012)]. The physical parameters of the
models and parameters of the turbulent convection model (Kuhfuf3
1986) are the same as in Smolec & Moskalik (2012). In particular
M = 0.55M@g, X = 0.76 and Z = 0.0001. We focus on a single
sequence of models with the same luminosity, L = 136 L and
varying effective temperature, Ty, Which is our control parameter
through this paper. The models cover a strip extending over 170 K,
from 6340 to 6512 K (corresponding periods of the fundamental
mode are 1.696d and 1.527 d.). The maximum temperature differ-
ence between the consecutive models is only 1 K and in the most
interesting domains the difference is as small as 0.1 K. In Fig. 6 we
show the location of our models in the H-R diagram (thick horizon-
tal line), together with the location of models that we have studied
in Smolec & Moskalik (2012) that show periodic and quasi-periodic
modulation of pulsation (thin horizontal lines).

In non-linear computations, the initial static model was perturbed
with the velocity profile, and was integrated for at least 10 000 pulsa-
tion cycles with 1200 time-steps per pulsation cycle. By default, all
the models were initialized in the same manner, with velocity eigen-
function of the fundamental mode, scaled to match the 4.5 km s/
surface velocity. To check for the possible dependence of results on
the initialization, in particular to check whether e.g. two attractors
are possible for the same model (hysteresis), several models were
initialized in a different manner (with larger surface velocity or with
a mixture of the fundamental mode and first overtone eigenfunc-
tions). In all considered cases, the computations converged to the
same attractor, only the length of the initial transient phase was
different. To check the long-term stability of the computed
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Figure 5. Demonstration of interior crisis. The bottom panels show consecutive iterations of the logistic equation for three different values of k. The consecutive
ilerates are connected with lines for guidance. In the top panels the corresponding third return maps are plotted. '+ signs mark the location of the unstable
fixed points of period 3 born through the tangent bifurcation, See also right panel of Fig. 1, dashed lines.
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Figure 6. The H-R diagram with the location of models showing chaotic
behaviour (thick horizontal line). For reference, models showing periodic
and quasi-periodic modulation of pulsation analysed by Smolec & Moskalik
(2012 are marked with thin line segments. The light- and dark-shaded areas
mark the fundamental and first overtone instability strips, and dashed lines
show the loci of some half-integer resonances running close to the analysed
models.

attractors (either periodic or chaotic), we have computed up to
50000 pulsation cycles for a few models. In all cases the attrac-
tor emerging from the calculation of first 10000 pulsation cycles
remained stable.

We note that in these models the eddy-viscous dissipation is
strongly decreased, &, = 0.05 (for equations see Smolec & Moska-
lik 2008). It results in significant pulsation amplitudes and, as our
treatment of radiation is very simple (diffusion approximation) and
model mesh is fixed, in erratic light curves with spurious spikes [see
section 4 in Smolec & Moskalik (2012) for detailed discussion of
this point]. Therefore in this paper we analyse the radius variation
only, which is smooth. In Fig. 7 we plot a section of typical time
series for model showing chaotic variability (6410.0 K).

4 ANALYSIS OF THE BL HER
HYDRODYNAMIC MODELS

In this section we analyse the radius variation of our hydrodynamic
models.

4.1 Bifurcation diagram

Deterministic chaos is present in our models beyond doubt.
The conclusion is unavoidable once the bifurcation diagram is plot-
ted (Fig. 8). The diagram is constructed in a similar way as in the
case of logistic map (Fig. 1). For each value of our control param-
eter — the effective temperature — we computed the probability that
the maximum radii, Ry, fall into one of the 120 bins into which
the range of radius variation in our models (~11.0-12.7 Rg)) was
divided. The stack of grey-scaled histograms is displayed in Fig. 8
and shows a striking similarity to classical chaotic systems. One can
pick other parameter than maximum radius to construct the bifur-
cation diagram, but results are qualitatively the same. As compared
to Fig. 1 the bifurcation diagram looks rough which results from
smaller resolution in the control parameter and decreased number
of bins along vertical axis, necessary to have a reasonable statistics
in each bin.

MNRAS 441, 101-115 (2014)
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Figure 7. Section of time series for 6410.0 K model showing chaotic variability.
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Figure 8. Bifurcation diagram for hydrodynamic BL Her models constructed with values of maximum radii over 9000 pulsation cycles. Arrows in the top
section point the location of particular chaotic (black arrows) and periodic (green arrows) models discussed in Sections 4.3 and 4.6, respectively. In the bottom
we plot the largest Lyapunov exponents for the chaotic models (see Section 5 for details).

On both sides of the computation domain single-periodic
(cycle-1) pulsation in a fundamental mode is present, The chaotic
bands are reached through a series of period doubling bifurcations
from both the cool and the hot side. Qualitatively, the same scenario
is observed for the Gauss [or mouse map; see e.g. Hilborn (2000)].
The chaotic bands are separated with periodic windows of order.
The largest period-3 window is nearly a one-to-one copy of the
just discussed counterpart seen in case of the logistic map. Within
chaotic bands pronounced structures are clearly visible as well —
the probability of hitting particular bins by maximum radii is not
equal. Some values of maximum radii are clearly preferred as indi-
cated with darker bands, migrating across the bifurcation diagram
as control parameter changes.

4.2 Period doubling cascade en route to chaos

Our hydrodynamic models display two pronounced period doubling
cascades that lead from a single-periodic fundamental mode pulsa-
tion (period-1 cycle) to chaos, The first cascade extends on the cool
side of the computation domain. We clearly observe the appearance
of period-2 cycle (first in the 6344.0 K model and present up to
6350.0 K model) and period-4 cycle (first in the 6351.0 K model
and present also in the 6352.0 K model). Further periodic cycles are
not resolved in our model grid with 1 K step in effective tempera-
ture. The maximum radii of the 6353.0 K model are bounded within

MNRAS 441, 101-115 (2014)

eight well-separated chaotic bands, which, as effective temperature
is increased, merge smoothly into one chaotic band (at 6355.0 K).

The other period doubling cascade, on the hot side of the com-
putation domain, extends over much larger temperature range, but
otherwise it is a mirror image of the just discussed cascade. The con-
secutive period doubling bifurcations occur with decreasing control
parameter. For such situation, the terms period-halving or inverse
period doubling cascade are in use. Here we describe the route from
order (period-1 cycle) to chaos as effective temperature is decreased.
Period-2, period-4, period-8 and period-16 cycles are all clearly de-
tected. They appear for the first time in models with temperatures
6508.0K, 6490.0K, 6485.0K and 6484.0 K, respectively. Period-
8 and period-16 variation is detected in only one model each. In
6483.0 K model maximum radii are bounded within four separate
chaotic bands.

It is interesting to check whether the lengths of the domains of
the consecutive period-n cycles follow the Feigenbaum scaling, Our
model grid is too coarse to exactly pinpoint the bifurcation points
and hence only a rough estimates are possible. Assuming that the
bifurcation occurs halfway between the neighbouring period-n and
period-2n models we get (for the cascade on the hot side): d; = 18 K,
dy = 5K and dy = 1K for the extents of the period-2, period-
4 and period-8 domains, respectively (see Section 2). The ratios
(assuming 0.5 K error in the estimate of the bifurcation point) are
dyfdy = (3.6 £ 0.4)K and dy/dy = (5 &= 2.5) K, not significantly
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Figure 9. First return maps for three chaotic models (marked with arrows in Fig. 8). Data for the last 46 000 cycles (out of 50 000 computed) are plotted,

different from the Feigenbaum constant (§ = 4.669) towards which
the ratio d,/d,, converges as n — oo for the logistic map and
other iterated maps, too (Collet, Eckmann & Lanford 1980; Collet,
Eckmann & Koch 1981; Feigenbaum 1983). Feigenbaum scaling
is also observed with periodic solutions of the ordinary differential
equations (Seydel 2010). For the cascade on the cool side we may
only estimate d/d; which is (3.5 = 0.9) K.

4.3 Case studies 1: chaotic models

Before we describe the phenomena that shape the bifurcation dia-
gram, we present a more detailed analysis for three chaotic models
(6410.0K, 6450.0K and 6476.0 K). Their location in the bifurca-
tion diagram (Fig. 8) is shown with black arrows. Nearly all of
the computed chaotic models were analysed in the same manner as
presented below.

There is not much to learn from the time series alone. As an
example in Fig. 7 we show radius variation over 180 pulsation
cycles for 6410.0 K model, and indeed, no obvious regularity can
be noticed. Much more useful are return maps for maximum radii,
i.e.plots of R ! versus R! . These are Poincaré maps with surface
of section defined by dR/dt = 0 at maximum expansion phase. The
maps are shown in Fig. 9 for the discussed models. The points do
not populate the plot in a random manner but fall along a charac-
teristic, albeit rather complex shape, which evolves as the effective
temperature changes. This evolution is illustrated with animation
that may be found in the online version of this article as additional
supporting information (see also other maps for chaotic models of
different effective temperatures — grey dots in Figs 11 and 13). The
complex shape, as compared to analogous maps for some classical
systems [e.g. tent map for the maximum z values in the Lorenz sys-
tem; see Lorenz (1963) or in Petigen et al. (2004)] is not surprising.
Our system is much more complex and return map is only a 2D
projection of complex dynamics occurring on a higher dimension
manifold. The insets in Fig. 9 provide insight into the fine-structure
of the chaotic attractor. Although the numerical noise does not allow
to show the cascade of such zoom-ins into smaller and smaller re-
gions we conclude that the attractor’s structure is most likely fractal
and the attractor is strange.

Chaos clearly manifests in the Fourier spectra, which are plotted
in Fig. 10. In each case a time series for =650 pulsation cycles was
analysed with perion04 software (Lenz & Breger 2005). The spectra
were pre-whitened with the frequency of the fundamental mode and
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Figure 10. Fourier spectra for three models of different effective temper-
ature showing chaotic behaviour. Dashed lines show the location of pre-

whitened frequencies (fundamental mode and harmonics in each case, and
additional frequencies for the 6450.0 K and 6476.0 K models).

its harmonics — location of these frequencies is shown with dashed
lines. For two models also additional highest-signal frequencies in
the resulting spectra were pre-whitened and the result is also shown
in Fig. 10.
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In each case wide bands of signal are present in the spectra, which
are characteristic signature of chaos. One large band is present
for the 6410.0 K model (Fig. 10, top panel), without any obvious
structure. To the contrary, in the case of the 6450.0 K. model (Fig. 10,
middle panel), wide bands are concentrated around 1/3f; and its
harmonics. The cause of this difference becomes clear once the
bifurcation diagram is analysed (Fig. 8). In the case of 6410.0K
model there are no obvious preferred values, or ranges of values,
for the maximum radii. For the 6450.0 K model, the maximum radii
fall preferentially into three ranges which manifest in Fig. 8 as three
dark-grey bands within one large chaotic domain extending between
6438.0K and 6458.0 K. The signal at 1/3fy and its harmonics is
obviously not coherent which successive pre-whitening (see Fig. 10)
shows.

The situation is slightly different for the 6476.0 K model (Fig. 10,
bottom panel). After pre-whitening with the fundamental mode and
its harmonics strong signal is present at subharmonic frequencies.
It results from the two-band structure of the attractor clearly visible
in the return map (Fig. 9, right panel). The maximum radii alternate
between the two bands and vary chaotically within each of them.
Therefore, signal at 1/2f; and its harmonics is strong and highly
coherent but, after pre-whitening with these frequencies, only very
wide bands of signal without any obvious structure are present in
the frequency spectra.

4.4 Periodic windows of order

Within the chaotic band (Fig. 8) seven windows, in which much
more ordered behaviour is observed, including strictly periodic
variation, may be identified. Below they are briefly described in
the order they appear as effective temperature is increased, The re-
turn maps for some of the models are plotted in Figs 11-13. In each
case the neighbouring chaotic model (of lower effective tempera-
ture) is plotted with grey points for reference. The most interesting
period-3 window is discussed in more detail in Section 4.5 and
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Figure 11. First return map for four models located within period-9 win-
dow. For a reference, the return map for the closest and cooler chaotic model
is plotted with grey dots. Data for the last 3000 pulsation cycles out of the
total 10 000 computed cycles are plotted.
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Figure 12. First return map for two models located within period-7 window.
For a reference, the return map for the closest and cooler chaotic model is
plotted with grey dots. Data for the last 3000 pulsation cycles out of the total
10000 computed cycles are plotted.

two interesting models from period-6 and period-9 windows are
discussed in Section 4.6.

Period-9 window is present for models in a range 6363.0-6366.0 K
(Fig. 11). In fact, this window is not strictly periodic but displays
a complicated internal structure. Within this window models were
computed with a smaller 0.5 K-step in effective temperature. For
all models nine bands are clearly visible, which are either very
wide (6365.0 K, 6365.5 K) or very narrow (6364.5 K) indicating a
possible strict period-9 cycle. In the case of 6363.5 K model each
of the nine bands is split and thus 18 bands are apparent. A detailed
analysis of the 6365.0 K model (that shows a rare case of type-IIl
intermittency) is presented in Section 4.6.

Period-6 window is present for one model of 6371.0 K (Fig. 13 a).
The neighbouring &1 K models display one chaotic band. Certainly
our model grid lacks resolution to provide more insight into the
dynamic scenarios within such a narrow window. In return map six
very small bands rather than points are present, and thus model is
not strictly periodic. The periodic model might be located just a
tiny fraction of kelvin away. This remark also applies to other very
narrow windows discussed below.

Period-5 window is present for one model of 6383.0K (Fig. 13
b). The neighbouring £1 K models display one chaotic band. De-
tailed analysis shows that in fact for this model the maximum radii
form five narrow chaotic bands which may join during the chaotic
bursts for several pulsation cycles. Two such bursts happened within
10000 cycle integration of the model and are illustrated in Fig. 14,
In this model we also detect a signature of type-IIl intermittency:
switching between period-5 cycle and period-10 cycle. Since the
effect is barely visible for this model, we postpone its discussion to
Section 4.6, in which we present a more clear example of type-111
intermittency in one model in period-9 window.

Period-7 window is present for models in a range 6397.0-6400.0 K
(Fig. 12). In-between 6399.0K and 6400.0K period doubling
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Figure 13. First return maps for models within different periodic windows: (a) period-6 window, (b) period-3 window and (¢) period-6 window discussed in
Section 4.4, In each case the return map for the closest cooler chaotic model is plotted with light-grey dots for reference. In each case data for the last 3000

pulsation cycles out of the total 10000 computed cycles are plotted.
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Figure 14, Values of maximum radii plotted over 3000 pulsation cycles
for 6383.0 K model showing a complex variation with chaotic bursts (at
pulsation cycles between 3600 and 3900 and at 5800).

bifurcation occurred. As inset in Fig. 12 shows, each of the seven,
very narrow bands present in the 6399.0 K model is split into two
wider bands in the slightly hotter, 6400.0 K model.

Period-3 window with subsequent period doubling cascade extends
between 6421.0K (period-3 cycle) and 6438.0K (three chaotic
bands). This largest window is discussed in detail in the next section.

Period-6 window with subsequent (inverse) period doubling cas-
cade. The window extends between 6459.0 K, at which three chaotic
bands are present, till 6468.0K at which period-6 cycle, reached
through the inverse period doubling cascade, ceases to exist. This
window is in fact a mirror image of the just discussed period-3
window, except the (inverse) period doubling cascade seems to be
truncated at the cease of period-6 cycle, which is followed by chaos
instead of stable period-3 cycle. The scenario around 6468.0 K is un-
common and will be discussed in more detail in Sections 4.6 and 6.

The latter two windows represent a clear example of period-
3 bubble (or remerging Feigenbaum tree; Bier & Bountis 1984).
The outlook at the bifurcation diagram (Fig. 8) reveals that the two
just discussed windows are in fact tightly connected. The scenarios
at the cool and hot sides of the chaotic band separating the windows
and extending between 6438.0 and 6459.0K are not only mutual
mirror images. In fact the three chaotic bands formed at the two
sides of the chaotic domain do not disappear as they merge into one
chaotic band (in the interior crisis bifurcation, see the next section),
but sustain their identity and smoothly merge within the chaotic
domain as the dark-grey bands in Fig. 8 indicate.

Period-6 window is present for one model of 6479.0K
(Fig. 13 c). The neighbouring 1 K models display two chaotic
bands. The ones at the cool side merge into one band at 6475.0 K.

4.5 Intermittency and crisis at period-3 window

In this section we focus attention on the largest period-3 window
extending between 6421.0K and 6438.0K, and its direct vicinity,
For the most interesting temperature ranges, at the edges of the
window, the models were computed with a very small, 0.1 K-step
in effective temperature. The corresponding part of the bifurcation
diagram displays a striking similarity to the bifurcation diagram of
the logistic map, Fig. 1, and bifurcation diagrams of many other
dynamical systems (e.g. Rossler system; see in Petigen et al. 2004),
This similarity, and the analysis presented in this section, leads to
conclusion that in these systems the same dynamical phenomena
lead to the appearance of the period-3 window and its subsequent
evolution to chaos.

In Fig. 15 (top two panels) we show the values of maximum radii
during the 1500 pulsation cycles in two models directly preceding
the appearance of the period-3 window. Intermittency is clearly vis-
ible. For the 6420.7 K model the intervals with apparently periodic,
period-3 variation are short, last by up to 50 pulsation cycles, and
are interrupted by much longer intervals of chaos. As the period-3
window is approached the almost periodic behaviour dominates,
as is the case for the slightly hotter model of 6420.9 K. The long
intervals of period-3 behaviour are only sporadically interrupted
with much shorter bursts of chaos. This behaviour is characteris-
tic for type-1 intermittency. The appearance of intermittency and
the birth of the period-3 window are further illustrated in Fig. 16.
It shows the third return maps (top) and small sections of radius
variation for three different models at the onset of period-3 window.
The figure is a counterpart of Fig. 4 for the logistic map. The inter-
mittent behaviour is well visible in the models directly preceding
the period-3 window. The return maps show the formation of the
intermittent channels (one is zoomed in the insets for 6417.0 K and
6420.9 K models), which get narrower as effective temperature is
increased and bifurcation point is approached. As system evolves
through the intermittent channels the apparently periodic variation
is observed. For the hotter model, the density of points at the very
narrow intermittent channel is high indicating long intervals of pe-
riodic variation. This is also illustrated with the sections of radius
variation (bottom panels of Fig. 16) which were chosen to show
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Figure 15. Maximum radii plotted over 1500 consecutive pulsation cycles
for three models showing the type-1 intermittency (top two panels) and
crisis-induced intermittency (bottom panel).

the almost periodic variation interrupted with short chaotic burst (at
2219296 d for 6420.9 K model). In between 6420.9 and 6421.0K
the intermittent channel touches the diagonal and period-3 cycle is
born in the tangent bifurcation (rightmost panel in Fig. 16).

The ensuing scenario follows the one depicted schematically in
the lower part of Fig. 3 and discussed in more detail for the logistic
map (Section 2). As effective temperature is increased, the period-3

cycle undergoes a series of period doubling bifurcations en route
to chaos. The first bifurcation takes place at ~6429.0 K and leads
to period-6 cycle. The model at 6434.0K is a period-12 cycle.
Further period doublings are not resolved in our computations and
the following models display a six-band chaos and finally three-
band chaos.

The three chaotic bands merge in an interior crisis bifurcation
which is illustrated with the help of Fig. 17, which should be anal-
ysed together with its counterpart for the logistic map (Fig. 5).
For the first two models three-banded chaos is present — the val-
ues of maximum radii are bounded in three, well-separated ranges,
which is clearly visible both in the return maps and in the sections of
radius variation. At the tangent bifurcation leading to the appearance
of period-3 window the unstable period-3 cycle was also created.
Its exact location in the return map cannot be computed as was the
case for logistic map, but the corresponding three points must be
located at the diagonal. As effective temperature is increased (cf.
left and middle panels of Fig. 17) the three chaotic bands expand,
approaching the diagonal and the anticipated unstable period-3 cy-
cle, location of which may now be easily guessed. At the interior
crisis bifurcation the three-band chaotic attractor collides with the
unstable period-3 cycle and expands into one-band chaotic attractor.

Directly after the crisis bifurcation, the maximum radii still fall
preferentially into the ranges defined by the three chaotic bands.
It is well visible in the return map in the rightmost panel of Fig. 17
(higher density of points along the three extended arches) and in
the corresponding section of radius variation. In addition in Fig. 15
(bottom panel) we plot the values of maximum radii during the
1500 consecutive pulsation cycles for the same model. For many
pulsation cycles the system evolves in a phase-space defined by
the former three-band chaotic attractor and only sporadically gets
scaltered over a larger space. This behaviour is called crisis in-
duced intermittency and ceases as effective temperature is increased,
albeit, still the probability of maximum radii falling into one of the
three bands is larger through the full chaotic domain separating the
period-3 and period-6 windows (6438.0-6458.0 K; see Fig. 8).
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Figure 16. Illustration of type-I intermittency al the onset ol period-3 window. The top panels show the third return maps and the bottom panels show the
sections of radius variation for three models of different effective temperature. Note that the last two models are separated by 0.1 K, only. Compare with Fig. 4

for the logistic map.
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Figure 17. lllustration of interior crisis at the cease of period-3 window. The to

p panels show the third return maps and the bottom panels show the sections

of radius variation for three models of different effective temperature. Compare with Fig. 5 for the logistic map.
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Figure 18. Fourier spectra for 6467.5K madel. Dashed lines show the
location of pre-whitened frequencies (fundamental mode in the top panel).

4.6 Case studies 2: periodic models

In this section we discuss in more detail two models displaying
periodic variation: 6467.5 K and 6365.0 K models. In the bifurcation
diagram (Fig. 8) their location is indicated with green arrows. The
first model is located within period-6 window while the second is
located within period-9 window. Figs 18 and 19 show the frequency
spectra for the two models. For clarity, these are limited to [0, fj]
range.

As arrow in Fig. 8 indicates 6467.5 K model is located at the
border of chaotic band and period-6 window., Whether it is in fact
a period-3 cycle variation, just a moment before the period dou-
bling bifurcation, or period-6 cycle, just after the bifurcation, is
not clear from the bifurcation diagram. Analysis of return map,
which consists of three slightly elongated clumps extending over
less than 0.01 R, does not provide the clue, either. Before we
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Figure 19. Fourier spectra for 6365.0 K model. Dashed lines show the
location of pre-whitened frequencies (fundamental mode in the top panel).

discuss the Fourier spectrum for the considered model, we briefly
describe other method that may be used to resolve the issue, which
we find particularly useful for similar models at the direct vicinity
of bifurcation points. We analyse growth of the maximum kinetic
energy of the model, from one pulsation cycle (E{;in.m:n} to other
(E{; ) The corresponding kinetic energy growth rate, which we
define as 8 i 2{ Eli';:;!max = Eiin.illu_x)f(Elijt:max + E)'-(in.mux)’ summed
over k pulsation cycles, y, should be close to zero for the period-k
limit cycle. The method has thus additional advantage of point-
ing whether variations converge to limit cycle, or not. In the bot-
tom panel of Fig. 20 we plot both y; and y for the considered
model. For a reference, in the top panel we plot y, for a singly
periodic 6332.0 K model located well beyond the chaotic domain.
The mean value of y, for this model is zero, as expected. The small
(6 =3 x 107°) fluctuations around the mean result parily from
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Figure 20. Bottom panel: kinetic energy growth rates, y4, summed over
three (red points) or six (blue points) pulsation cycles, for 6467.5 K model.
In the top panel kinetic energy growth rate for singly periodic 6332.0K
madel is plotted for comparison.

the interpolation (the time-step is not an integer part of the period)
and partly from the numerical noise which is relatively high in our
models with low eddy viscosity (see Section 3). Analysis of the
bottom panel of Fig. 20 clearly points that the 6467.5 K model dis-
plays period-6 cycle behaviour rather than period 3. This is further
supported with the Fourier spectrum (Fig. 18). After pre-whitening
with the fundamental mode and its harmonics (top panel of Fig. 18)
a very strong signal is present at 1/3f; and its harmonics. After
pre-whitening we clearly detect signal at 1/6f; (and harmonics),
which is, however, three order of magnitude weaker (middle panel
of Fig. 18). After the next pre-whitening, signal is still present,
which indicates that period-6 cycle is not strictly periodic, but dis-
plays irregular variation with very small amplitude. We note that
only a fraction of kelvin away chaotic band extends.

The other model (6365.0 K) is not strictly periodic either, which
is clear already from the bifurcation diagram and first return map
(Fig. 11, brown points), which consists of nine separate and ex-
tended bands. Accordingly, strong signal at 1/9f; (and harmonics)
is present (top panel in Fig. 19). After pre-whitening, strong signal
at 1/18fy and its harmonics is present, which is not coherent how-
ever, as successive step of pre-whitening shows (bottom panel of
Fig. 19). Fig. 21, showing the maximum radii over the 3000 con-
secutive pulsation cycles, explains the origin of the 1/18f; signal.
The model switches intermittently between period-9 and period-18
cycle: starting from period-9 cycle the subharmonic cycle grows
up to some amplitude and then model switches back to cycle-9 be-
haviour, This is type-III intermittency (see Pomeau & Mannevile
1980, and Section 2), a result of collision between stable period-9
cycle and unstable period-doubled (period-18) cycle arising from

120
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Figure 21. Values of maximum radii plotted over 3000 pulsation cycles for
6365.0 K model showing type-1IT intermittency.
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suberitical period doubling bifurcation. Type-III intermittency is
rarely observed in dynamical systems and in most cases concerns
switching between period-1 cycle and period-2 cycle (e.g. Dubois,
Rubio & Berge 1983). The very similar behaviour as in the case of
6365.0 K model was observed in electric circuits (see Thamilmaran
& Lakshmanan 2002, their fig. 21).

5 LARGEST LYAPUNOV EXPONENTS

One of the key features of chaotic system is its sensitivity to initial
conditions, which can be quantified using Lyapunov exponents. For
the chaotic attractor, the two initially nearby trajectories diverge at
an exponential rate given by the largest Lyapunov exponent, 1.
To determine A, for our models we used the code and algorithm
developed by Rosenstein, Collins & De Luca (1993) based on the
original algorithm of Grassberger & Procaccia (1983). Below we
briefly describe the underlying idea and refer the reader to original
papers for details.

We first reconstruct the attractor dynamics using the method of
delays. We use the radius values equally spaced in time, R;, to
construct delay vectors, x,, in the embedding space:

Xy = [R:r—[m 1)Js Rn—(m—?.}}; reay Rn .

m is the embedding dimension and J is time delay (or lag).
The algorithm finds the close neighbours in the phase space,
two points x,, and x, with sufficiently small distance between,
dy = ||x, — x,¢||. For chaotic system the distance should grow ex-
ponentially in time, so that dpyy = ||x,0 — X || = dyexp(Al), A
corresponding to the largest Lyapunov exponent. Analysis of results
for many pairs of close neighbours leads to a robust estimate of ;.

For each model we have analysed only a section of the computed
time series, of length T, expressed below as a multiple of the fun-
damental mode pulsation period. The default length of the analysed
data is 21000 pulsation cycles. The embedding dimension cannot
be smaller than the physical dimension of the attractor. Provided
m is high enough, its exact value should not affect the determined
values of Lyapunov exponents. We find no systematic differences
in the largest Lyapunov exponents computed assuming m = 4 and
m = 5, and pick the latter value as the default (see also the next
paragraph). For the time delay we follow Rosenstein et al. (1993)
and use J for which autocorrelation function drops to 1 — 1 /e of its
initial value.

Before running computations for all models we checked the sen-
sitivity of A, to chosen values of T, i and J, for one chaotic model
of 6410.0 K. For the chosen dense time sampling (§f = 0.01d, more
than 160 points per pulsation cycle) the lag resulting from auto-
correlation function is J = 27. In the top row of Table 1 we show
2, computed assuming default values of T, m and J. Next, we have
varied the values of these parameters and report the resulting largest
Lyapunov exponents in the following rows of Table 1. We find that
determination of A; is robust and does not depend on exact values
of the discussed parameters, provided that embedding dimension
and lag are sufficiently high. Also, the chosen default length of the
analysed time series is sufficient, which we further verified com-
puting A, for all chaotic models, assuming the default values for
m and J, and two different lengths of time series, the default one,
of 1000 pulsation cycles, and the shorter, of 670 pulsation cycles.
The results are plotted in the bottom part of the bifurcation diagram
displayed in Fig. 8, with thick black and thin blue lines, respec-
tively. Only for a few models a noticeable difference is present.
We conclude that with ~700-1000 pulsation cycles the attractor
dynamics is well probed.
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Table 1. The largest Lyapunov expo-
nents for the 6410.0 K model computed
with different values of time series length,
T, embedding dimension, m, and lag, J.

T m 7 A [d
1000 5 27 0.217
670 0212
1400 : x 0.208

2 0.136

3 q 0.201

1000 4 2t 0.212
7 0.221

7 0.184

17 0.210

he 2 37 0.220
47 0.220

The positive values of the largest Lyapunov exponents clearly
establish the chaotic nature of our models. The typical values of
Xy (Fig. 8) vary between 0.15d~! and 0.20d~". The largest values
are slightly above 0.2d~! and are calculated for models between
6400.0 K and 6420.0 K. Within chaotic bands variation of A, with
effective temperature is not smooth. Large drops of 1, towards zero
are seen, as expected, at the edges of periodic windows (for strictly
periodic model ., = 0). Smaller drops within chaotic domain may
indicate a nearby periodic window, which was not detected because
of too coarse resolution in effective temperature.

It is interesting to compare the computed values of A to those de-
termined for two RV Tau stars and one Mira-type variable. Results
obtained for these stars are collected in Table 2 together with A,
determination for one radiative chaotic model of Kovics & Buchler
(1988). Ranges of A, rather than single values are given as deter-
mination of A; from real stellar data is much more sensitive to the
values of embedding dimension, lag, etc. The reader is referred
to tables in original papers (references are given below table) for
details.

The values of largest Lyapunov exponent determined for our
models are typically two orders of magnitude larger than values
determined for stars or a radiative model listed in Table 2. On the
other hand, the pulsation periods of our models (always between
1.5 and 1.7d) are order or two orders of magnitude shorter (see
the third column in Table 2). In the context of pulsating stars how-
ever, it is more appropriate to use the length of a single pulsation
cycle (pulsation period) as a unit of time. When expressed in units
of inverse pulsation cycles rather than d~', the values of largest

Table 2. Literature determinations of the largest Lya-
punov exponents for RV Tauw/Mira-type stars and radiative
model. Pulsation period is given in the third column (for
RV Tau stars undoubled period is given).

Star/type A [107%d~"]  Period [d]  Ref.
R Cyg /Mira-type 17 - 31 =430 1
R Sct /RV Tau 14— 22 ~70 2
AC Her /RV Tau 13-75 ~37.5 3
D5200 /model 3455 11.5 4

References: (1) Kiss & Szatméry (2003; table 2), (2) Buch-
ler et al. (1996; table 1), (3) Kollith et al. (1998; table 1),
(4) Serre et al. (1996; table 1).
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Lyapunov exponents of our models are comparable to the values
determined for RV Tau/Mira-type stars. They are larger than for RV
Tau type stars, but a factor of ~4 smaller than for Mira-type star.

6 DISCUSSION

The non-linear stellar pulsation equations we solve form a much
more complex system than classical chaotic systems discussed in
the literature. Yet, the resulting dynamical scenario is qualitatively
similar to that arising from the iteration of the simplest logistic
map (compare the bifurcation diagrams in Figs 1 and 8 and anima-
tions attached with the online version of this paper as supporting
information). Most of conclusions about the origin of dynamical
phenomena found in our models are drawn based on the analogies
between our models and simpler systems for which strict analyti-
cal reasoning is possible. However, for some of the phenomena we
detect, we do not find a satisfactory analogy. The appearance of
period-6 window, extending between 6459.0 and 6468.0 K, is one
of them.

The scenario that is expected and that is encountered in many
other systems, and is also present in the period-3 window (between
6421,0 and 6438.0 K) is the following. First, a stable period-3 cycle
is born together with unstable period-3 cycle. The stable branch
undergoes a series of period doubling bifurcations to form three
chaotic bands, which finally collide with the unstable period-3 cycle
to form one chaotic band (Section 4.5). To the contrary, in the
window at =6468.0K, a stable period-6 cycle, which looks like
two stable period-3 cycles born very close to each other, emerges
from the chaos. We are not aware of any bifurcation that may lead
to such scenario and of any other system showing such behaviour.

One of the possibilities is that in fact a pair of stable and unstable
period-3 cycles is born, as expected, and stable cycle immediately
undergoes a period doubling bifurcation. To check this, we have
computed additional models in the interesting temperature range
(with 0.1 K-step in effective temperature), but they display either
chaos or a period-6 behaviour (in Section 4.6 we analysed one of
these models). If the proposed scenario indeed takes place it must
occur in a temperature range narrower than 0.1 K.

The situation at ~26468.0K looks even more complex. It seems
that at this temperature we deal with discontinuity — the bifurcation
diagram (Fig. 8) divides into two parts apparently decoupled from
each other. On the cool side we clearly see a gradual evolution of
the chaotic bands, divided, from time to time, by periodic windows.
This gradual evolution seems to continue till 6468.0 K, but not for
the band extending at higher effective temperatures. This behaviour
may result from the coexistence of two attractors in the system.
Note that by default we initialized all the models along a sequence
in the same manner (Section 3). It is possible that such initialization
leads to different attractors for models cooler/hotter than 6468.0 K.
To check the possible existence of other stable attractor(s) (with
different basins of attraction), we have repeated the computation
for many models, but with several different initializations. In all
cases however, we finally arrived at the same attractor as in the case
of our default initialization. At the moment the cause and nature of
bifurcation we observe at 6468.0 K remain unclear.

The other phenomenon we have not discussed yet is the appear-
ance of chaos itself. The chaotic bands appear through a well under-
stood period doubling route; the question is about the trigger. In the
case of radiative models of Buchler & Kovics (1987) and Kovics &
Buchler (1988), analysis of the Floquet coefficients clearly shows
that the first period doubling bifurcation is caused by the half-integer
resonance between pulsation modes (5: 2 between fundamental and
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second overtone modes; Moskalik & Buchler 1990). The following
cascade en route to chaos was not analysed. Moskalik & Buch-
ler (1990) analysed a toy model of parametrically driven oscillator
and showed that the first period doubling in such system results
from the resonance and the following cascade is a result of increas-
ing non-linearity. We note that the non-linearity may be the only
cause of period doublings in classic chaotic systems void of internal
resonances.

‘We do not have appropriate tools (Floquet coefficients) to prove
that half-integer resonance is responsible for the period doubling of
single-periodic pulsation we observe at the cool and the hot sides
of our computation domain. The closest resonances are (Fig. 6)
wg/wy = 9:2 on the hot side of the computation domain and,
w3/wy = 5:2 and ws/wy = 7:2 on the cool side. The loci of the
@) /wy = 3:2 resonance, causing the period doubled pulsation de-
tected in a single BL Her star (Smolec et al. 2012), are located more
than 300 K-off the cool side of the computation domain considered
here and this resonance likely plays no role. We cannot exclude
the possibility that non-linearity is the only cause of the observed
behaviours.

The appearance of periodic windows is also very interesting and
important for stellar pulsation studies. As in the case of period-
doubled pulsation, resonances were also invoked as a possible ex-
planation. In a recent study Plachy et al. (2013) proposed that a 27:
20 resonance between the fundamental mode and the first overtone
is responsible for a period-20 cycle behaviour they found in one of
their RR Lyrae models (their model H; for other model they propose
a 14:19 resonance). In this case however, a caution is needed, as
inferences about the role of resonance are not based on firm theo-
retical grounds. The presence of first overtone cannot be deduced
from the frequency spectrum. The role of resonance is most likely”
deduced based on approximate coincidence of the model’s location
in the H-R diagram with the loci of the 27: 20 resonance determined
with linear pulsation periods. Since pulsation periods change in the
non-linear regime, and fine-tuning of such high-order resonance is
difficult, claims on the possible role of resonances must be sup-
ported with other (dynamical) arguments. We are not aware of any
studies showing that such high-order resonances may indeed have
a noticeable effect on stellar pulsations.

In a simpler explanation, period-k behaviour detected in the mod-
els is an intrinsic property of non-linear, chaotic system. The £1 K
neighbours of the discussed model of Plachy et al, (2013) show
chaos and thus situation corresponds to periodic window within
chaotic band, just as we report in this paper (Section 4.4), and as
is found in many chaotic systems void of resonances. In chaotic
systems the spectrum of periodic windows is dense (it is one of the
key properties of chaotic systems; e.g. Petigen et al. 2004), but most
of the windows are extremely narrow. Based on extreme similar-
ity of our bifurcation diagram (Fig. 8), to bifurcation diagrams for
other systems, we conclude that also in the case of our computations
the spectrum of periodic windows is most likely dense, but most
of the windows are extremely narrow (in effective temperature).
With the default 1K resolution of our model computation only
few of the windows were detected (and most of them are narrower
than 2 K). Studying linear periods we find no tight connection be-
tween location of the periodic windows and the loci of high-order
resonances between low order pulsation modes. We conclude that
existence of periodic windows is an intrinsic property of non-linear

2 Plachy et al. (2013) do not discuss in detail how the connection between
the periodic pulsation and resonances is made.
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system studied in this paper. There is no need to invoke resonances
to explain them.

7 OBSERVABILITY OF THE CHAOTIC
PHENOMENA

Phenomena discussed in this paper are certainly exotic in the context
of BL Her stars. Except of period doubling phenomenon detected
in one star (Soszynski et al. 2011; Smolec et al. 2012), BL Her
stars are single-periodic pulsators. We recall, however, that exis-
tence of period-doubled BL Her star was predicted 20 years before
its discovery (Buchler & Moskalik 1992). The future detection of
other, more complex dynamical phenomena in these stars cannot be
excluded.

Period doubling and irregular brightness variations are common
in higher luminosity siblings of BL Her stars, namely in more
luminous type II Cepheids of RV Tau type and in semi-regular
variables. Period doubling is a characteristic feature of RV Tau stars
which, in addition, show irregular variation. Chaos was reported in
several stars of these types (Buchler et al. 1996, 2004; Kollith
et al. 1998; Kiss & Szatmdary 2003). Our models suggest that other
phenomena, intrinsic to chaotic dynamics, may also occur in these
groups of stars, Particularly interesting would be the discovery of
period-k behaviour (with k other than 2) and of intermittency.

Period-k behaviour may arise either within a period doubling
cascade or within chaotic band. A possible period-4 behaviour in
RV Tau type star, supporting the period-doubling transition to chaos
scenario, was reported by Pollard et al. (2000). Unfortunately, our
unpublished analysis of the OGLE-III data for this star does not
confirm the detection. Models indicate that in the case of period
doubling cascade the domains of period-k behaviour get narrower
as k increases, making the detection less probable for larger k.
Also most of the periodic windows within chaotic domain are very
narrow. Nevertheless, in our opinion, the firm detection of period-4
behaviour in RV Tau stars is only a matter of time.

From observers point of view, the strongest evidence for period-k
behaviour would be the presence of additional signal in the fre-
quency spectrum, at fy/k and its harmonics. The difficulty arises
for long-period variables, as very long time series is necessary to
get sufficient resolution in the sub-harmonic part of the frequency
spectrum (i.e. in a range [0,f3]). In addition, the effect may be
obscured by irregular variability on top of period-k behaviour, as
is commonly observed in RV Tau stars (see e.g. light curves in
Soszynski et al. 2011). In these stars, a sporadic switching of the
deep and shallow minima also occurs (Wallerstein 2002) which is
yet another difficulty in the analysis. Therefore, inspection of the
time series, folding the light curve with multiple of the basic period,
are invaluable tools to search for the effect. This, however, requires
not only long time series, but also well-sampled time series. In this
respect the projects aimed at long-term and regular monitoring of
the sky or individual stars, such as OGLE (Udalski et al. 2008),
EROS (e.g. Beaulieu et al. 1995), ASAS (Pojmanski 2002), or pro-
grams led by amateur associations of variable star observers (e.g.
AAVSO) are extremely important and should be continued as long
as possible. It is worth noting that the observations of the only stars
rigorously analysed for the presence of chaotic dynamic (i.e. those
from Table 2) were all collected by amateur astronomers and in all
cases covered more than 10 years (up to a century for R Cyg).

Based on our rather restricted model survey we cannot predict
the expected amplitude of brightness alternations within period-k
cycle. In period-doubled RV Tau stars the amplitude of alternations
varies from a hundredth of magnitude to a few tenths of magnitude.
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More precise the photometry, larger the chance to detect the smaller
effect.

Long-lasting and frequent observations of the stars are also cru-
cial for the possible detection of intermittency. Models indicate
that the intervals of apparently periodic/chaotic behaviour may last
many tenths of pulsation cycles which, as pulsation periods of the
luminous stars are long, requires a very long monitoring. Again,
intermittency is expected in the narrow domains close to the edges
of periodic windows and thus probability of its detection is certainly
very small.

8§ SUMMARY

The BL Her models discussed in this paper fall along a single stripe
of constant luminosity in the H-R diagram and cover arange of only
2150 K. Yet they display a wealth of dynamical behaviours charac-
teristic for deterministic chaos. Many of the discussed phenomena
are detected for the first time in the context of stellar pulsation mod-
els. It was possible because our model survey was dedicated to study
such phenomena — a tiny step in effective temperature, sometimes
as small as 0.1 K (and 1 K max), allowed to follow the dynamical
evolution of the system from single-periodic pulsation, through pe-
riod doubling cascade to well-developed chaotic regime, and back
to single-periodic pulsation. The chaotic regime turned out to be a
gold-mine of interesting dynamical phenomena. We found several
periodic windows (with cycle-3, 5, 6, 7 and 9 behaviours). We stress
that the existence of periodic windows is not related to resonances
among pulsation modes, but is an intrinsic property of a chaotic sys-
tem. At the edges of the largest period-3 and period-6 windows we
have found intermittent behaviour and crises bifurcations. Partic-
ularly interesting is intermittency — a sporadic switching between
two qualitatively different behaviours. In type-1 intermittency in-
tervals of apparently periodic (period-k, in general) behaviour are
interrupted with bursts of chaos. In type-III intermittency the os-
cillations switch between two periodic cycles. In our models we
detected switching between period-9 and period-18 cycles.

Detection of the discussed phenomena in the stars would be ex-
tremely interesting; however it requires a long and regularly sampled
time series. The already available data from projects such as OGLE
offer the best opportunity for a successful search.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article:

Animation 1: The animation shows the evolution of first return
map for logistic equation as control parameter k is increased from
2.8 to 4. Note that smaller step is used within chaotic regime.
Animation 2: The animation shows the evolution of first return
map for BL Her models discussed in the paper. Note the different,
smaller effective temperature step at the edges of period-3 window
(http://mnras.oxfordjournals.org/lookup/suppl/doi: 10.1093/mnras/
stuS74/-/DC1).
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