
Tracing the evolution 	

of voids 	

Radek Wojtak	


Porat Fellow, KIPAC	

!
!

collaboration: Devon Powell, Tom Abel	

!

1st Roman Juszkiewicz Symposium, Warszawa, 27.08.2015



Voids in cosmological simulation
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Outline

1. Finding voids with watershed algorithm	

2. How to find progenitors at high redshifts ?	

3. Evolution of: 	

      effective radii	

      density profiles	

      shapes (axial ratios)	

      sphericity	

      alignment of voids	

4. Summary and conclusions



Motivation

voids at z=0

protovoids in IC

What is the evolution of basic properties such sizes, shapes, orientations ?	

To what degree some properties are determined in IC and to what degree 
they are modified by late-time dynamics ?



Voids from watershed
step 1 step 2 step 3

density field:	

- regular grid (spacing 1Mpc/h)	

- density by projecting DM 

sheet (3d-manifold in phase 
space)	


Shandarin et al. (2012)	

Abel et al. (2012)	

Powell & Abel (2015)

watershed segmentations:	

- regions around local 

minima delineated by ridge 
lines of the density field 
(watershed basins)	

!

Platen, van de Weygaert & Jones 
(2007)

merging basins into voids:	

- same as in ZOBOV	

- hierarchical network	

!
Neyrinck (2008)



Two possible ways of finding progenitors
!
!

same as for halo trees	

Sutter et al 2014	


!
- find voids in all snapshots	

- match voids between adjacent 

snapshots	

!
- void finder applied many times	

- voids can exchange basins

new (no analogy to haloes)	

!
!
- find voids (groups of basins)	

- match basins between adjacent 

snapshots	

!
- void finder applied once	

- every void is defined by a 

unique group of basins



Voids @ z=0
matching basins (new) matching voids 



Comparison @ z=1
matching basins (new) matching voids 



Two methods: effective radii
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Effect of small scales modes
2563 particles, 2563 grid resimulation with 5123 particles	


downsampled to 2563, 2563 grid



Effect of small scales modes
2563 particles, 2563 grid resimulation with 5123 particles	


downsampled to 2563, 2563 grid

Unresolved small-scale modes and rounding errors 
change the order of saddle points and minima in a 

random way giving rise to spurious reconfigurations of 
voids over time.



From voids at z=0 to protovoids in IC 



Evolution from protovoids (IC) to voids (z=0)
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Motion of geometric centre
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range of effective radii: Rv=(6-20) Mpc/h	

resolution limit Rv ~ 4 Mpc/h	

mean Rv: 8 Mpc/h



Coherence of motion

same directionsopposite directions
!
- 6 Mpc/h < Rv < 20 Mpc/h	

- void-subvoid pairs excluded
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Evolution of effective radii
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Average density profile
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formation of a bucket-like shape of the density profile	

(Sheth & van de Weygaert 2004)

linear evolution

expansion of 
subvoids in voids



Expansion and contraction
density profiles calculated on iso-density surfaces

10% of most contracting voids
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Shapes of voids (z=0)

10 Shandarin et al.

Pancake Ribbon Filament

Figure 10. Three principal projections of an ellipse are shown
in every panel. Each column shows one of three archetypes of the
deformed sphere parameterized by one number α = c/a (0 ≤ α ≤
1): pancake-like (b/a = 1, c/b = α), ribbon-like (b/a =

√
α, c/b =√

α), and filament-like (b/a = α, c/b = 1).

increased smoothing scale, with an especially pronounced
change for Rf = 4 h−1Mpc. This is expected as smoothing
will improve the ellipsoidal fit for the smallest voids consid-
ered; for Rf = 4 h−1Mpc, a sphere with the radius of the
smoothing length has a volume of 270( h−1Mpc)3 which is
more than one quarter of the volume of the smallest voids
that dominate the void number distribution.

Turning to the Sphericity, Fig. 15 shows the Sphericity
distribution function for large voids VV > 1000( h−1Mpc)3.
In this case, the results from fields smoothed on different
scales are not very different. The mean Sphericity of the fit-
ting ellipsoids is about 0.45 (in agreement with Fig. 11). The
middle panels of Fig. 10 show three archetypal ellipsoids cor-
responding to this value. The top and bottom panels show
the range of Sphericity for most of the voids.

9 SUMMARY AND DISCUSSION

In this paper, we studied the distribution of underdense re-
gions (voids) in N-body simulations for the ΛCDM model,
voids being defined as individual regions of the underdense
excursion set: δ < δc. In practice, we additionally applied
the neighbor of neighbor criterion for grid sites satisfying
the above threshold condition. By defining the void volume
function, we then showed that the largest number of voids
of any size is reached just before the onset of percolation. In
other words, as the density threshold is increased more and
more voids are found and the total volume fraction in voids
increases; this continues up to a critical point beyond which
the number of voids and the volume fraction in all but the
percolating void begin to decrease.

The percolation transition motivates a particular den-

Figure 11. Axis ratios as a function of volume. The average of
the axis ratios is independent of the filling factor and smoothing
length. Except for very small voids, the average is constant with
volume.

Figure 12. Inverse Porosity (IP = V/Vℓ) as a function of void
volume. The larger the volume the larger is the Porosity on av-
erage. There is little dependence on the filling factor, while the
smoothing length systematically suppresses the Porosity.

sity threshold and corresponding filling factor to focus fur-
ther analysis, i.e., the percolation threshold itself. After per-
colation, though the volume of the underdense excursion
set continues monotonically to increase with the growth of
the density threshold, the number and volume of individual
voids decrease because merging of individual voids into the

c⃝ 0000 RAS, MNRAS 000, 000–000

Shandarin et al. (2006)

c:b:a~0.45:0.65:1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0  0.2  0.4  0.6  0.8  1

p(
ax

ia
l r

at
io

)

axial ratio

middle-to-longest
shortest-to-longest



Evolution of shapes

middle-to-longest axis ratio shortest-to-longest axis ratio

- distribution of axial ratios remain nearly the same at all redshifts	

- axial ratios of individual voids can change over time (+/- 20%)
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(Co)evolution of shapes
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Sphericity
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Alignment of voids
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132 E. Platen, R. van de Weygaert and B. J. T. Jones

Cii ≈ 0 would suggest an anti-alignment, a cross pattern, corre-
sponding to an orientation angle θmn ≈ π/2.

4.2 Void alignments: significance

We can gain insight into the significance of the values of the align-
ment measures Ci i by comparing the values obtained for a sample of
vectors in which a perfectly aligned subset is mixed with an entirely
randomly oriented set of voids.

In this comparison sample, suppose a fraction fr of the void sample
has a random orientation while the remaining fraction f a = 1 − f r

has a singular orientation along one direction. We may then infer
the implied random fraction fr in the comparison sample for the
obtained values for Ci i in our real void sample.

It is straightforward to infer the implied values of the alignment
measures Ci i in the comparison sample:

C i i = ⟨cos θ⟩ = 0.5 f 2
r + fr fa + f 2

a

= 0.5 ( fr − 1)2 + 0.5. (6)

For example, if we were to have 20 per cent aligned voids mixed with
80 per cent random ones, the alignment would be Ci i = 0.52. An
alignment of Ci i = 0.63 would correspond to ≈50 per cent aligned
and ≈50 per cent random voids, while Ci i = 0.75 would imply
≈70 per cent aligned and ≈30 per cent random ones.

4.3 Void alignments: results

Fig. 3 presents the results for the measured correlations of the void
orientations. Each curve corresponds to the orientation correlation
between one of the three void axes of voids: the solid black curve
to that of the longest axis, C33, the dot–dashed curve to that of the
shortest axis, C11, and the intermediate axis C22 (dashed curve).

Figure 3. The alignment of the three void axes. The figure shows the
(marked) correlation functions C11(r) (solid), C22(r) (dashed) and C33(r)
(dot–dashed), the ensemble average of the cosine of the angle between the
longest, medium and shortest axes of voids at a distance r. A pure random
orientation corresponds to Ci i (r) = 0.50, a perfectly aligned one Ci i (r) = 1.
The coloured bar around the value Ci i = 0.50 indicates the 2σ dispersion of
a similar random sample.

The figure shows the longest and the smallest axis exhibit the
strongest alignment. At short distances their alignment is very
strong and remains substantial out to relatively large radii of 20–
30 h−1 Mpc. Beyond this distance the alignment rapidly declines
towards random values. At the smallest distances probed the align-
ment of the longest and shortest axis reaches values of around 0.65.
This corresponds to a random component of only 30 per cent, in
combination with 70 per cent perfectly aligned voids. By contrast,
the second axis shows a striking lack of alignment on all scales
and, except at the shortest separations, appears to be mostly ran-
domly oriented. This is partially due to the considerable scatter in
the orientation of the intermediate axis. This may be a reflection of
the crudeness of approximating the void shapes by ellipsoids. How-
ever, even taking account of the implied scatter the intermediate axis
remains more weakly correlated.

To provide an estimate of the significance of the results we have
estimated the standard deviation expected for a sample of perfect
randomly oriented voids. The 2σ spread is depicted by means of
the coloured bar around the expectation value for a random sample,
Cii = 0.5. We obtained these estimates by a Monte Carlo experiment
in which we randomly shuffled the shape ellipsoids over the voids
and subsequently remeasured the alignment. Note that the variance
remains nearly constant over the whole range. This is a consequence
of our decision to define bins having equal number of particles
per bin.

5 T H E C AU S E O F VO I D A L I G N M E N T

The possibility that the alignment may be an artefact of the WVF
method has to be considered: large spherical voids that were chopped
in half would provide an anisotropic void set in which neighbour-
ing voids were strongly aligned. However, this it can quickly be
eliminated simply by examining Fig. 1 which shows no such phe-
nomenon. We shall later on present further evidence based on tidal
fields that WVF is not itself the source of the alignment.

The reason for the alignment between voids may be due to any
of a number of physical effects. Here, we consider three possible
physical sources for this alignment: (1) the initial conditions, (2) the
geometric packing of the voids and (3) the large-scale tidal field.

5.1 Initial conditions

The first possibility, that the structural correlations are born with the
primordial density field, is difficult to address since, at least in the
linear regime, the present matter distribution is a direct reflection
of those initial conditions. Thus the density fluctuations and the
tidal fields that distort them are both present initially, either being
deducible from the other. The cosmic web, voids, galaxy haloes as
well as the tidal field are all manifestations of the same initial matter
distribution.

Voids emerge out of a primordial Gaussian density field. Density
peaks and dips in a Gaussian random field are not only clustered
(Bardeen et al. 1986), they are also mutually aligned (Bond 1987).
This alignment stretches out over scales over which they possess
a non-zero correlation function, approximately the same range as
that of the comparable population of rich clusters. Even when their
evolution would not be influenced by external forces the voids would
retain the memory of their initial configuration. Their initial shape
would be (slightly) attenuated by their internally driven expansion
and the void would keep its initial orientation.

The primordial alignment of density peaks is erased by
subsequent non-linear interactions with surrounding matter

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 387, 128–136

Platen, van de Weygaert & Jones (2008)

z=0



Alignment of voids from IC to z=0
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Summary
1. Progenitors of voids: regular density grid, tracking watershed 
basins defining voids z=0.	

!
2. Initial underdensities in protovoids evolve into profiles with a 
characteristic bucket-like shape.	

!
2. Nonlinear phase of evolution: expansion/contraction of voids 
boundaries, motion of geometric centres, evolution of shapes and 
sphericities, mild evolution of alignment.	

!
3. Despite every individual void can change its shape, the 
distribution of shapes at z=0 is nearly the same as in IC.	

!
4. Alignment of voids is in large part determined by the primordial 
density field. 


