Edgeworth Streaming Model

for redshift space distortions

Cora Uhlemann

Arnold Sommerfeld Center, LMU Munich & Excellence Cluster Universe

in collaboration with

Michael Kopp, University of Cyprus Ixandra Achitouv, Swinburne University

PhD advisor: Stefan Hofmann

Redshift space correlation function

Correlation function

measures excess probability

$$1 + \xi_X(s) = \left\langle (1 + \delta_X(s_1))(1 + \delta_X(s_2)) \right\rangle$$

- halos as biased DM tracers
 - input for halo model
 - powerful cosmological probe

Redshift space distortions

redshift observations affected by peculiar velocities

Redshift space correlation function

Redshift space distortions

- observations in redshift space from galaxy surveys
- impact of peculiar velocities along line of sight

Streaming model

Gaussian Streaming Model

 $freal space \\ correlation \\ 1 + \xi_X(s_{||}, s_{\perp}, t) = \int_{-\infty}^{\infty} \frac{dr_{||}}{\sqrt{2\pi}\sigma_{12}} (1 + \xi_X(r, t)) \exp \left[-\frac{Gaussian pairwise velocity distribution}{2\sigma_{12}^2(r, t)r_{||}/r)^2} \right]$

Fisher (1995, Astrophys.J. 448,) Reid & White (2011, MNRAS 417)

- Edgeworth expansion around a Gaussian PDF
- similar as for density δ or velocity divergence θ in SPT
 Juszkiewicz, Chodorowski et. al (APJ 442, 39, 1995)

Streaming model

Edgeworth Streaming Model

for the formula for the system is the system of the system is in the system is the system is the system is the s

CU, Kopp and Haugg (2015, arXiv: 1503.08837)

$$\times \left(1 + \frac{\Lambda_{12}}{6\sigma_{12}^3} \left[\left(\frac{\Delta_{srv}}{\sigma_{12}}\right)^3 - 3\frac{\Delta_{srv}}{\sigma_{12}} \right] \right)$$

first non-Gaussian correction pairwise velocity skewness

- Edgeworth expansion around a Gaussian PDF
- similar as for density δ or velocity divergence θ in SPT
 Juszkiewicz, Chodorowski et. al (APJ 442, 39, 1995)

Streaming model

Accuracy of Streaming Models

- compare multipoles of redshift space correlation function
- model independent: measure ingredients in halo catalog
- 2% down to 10 Mpc/h (ESM) vs. 30 Mpc/h (GSM)

Horizon Run 2 halo catalog mass range IgM ~ 13 - 15

Streaming model ingredients

- Zel'dovich approximation Zel'dovich (1970, A&A 5, 84)
 - Ist order Lagrangian PT
 - physically motivated resummation of SPT
- Post Zel'dovich approximation
 - higher order Lagrangian PT
 - partial resummation: Convolution LPT

Carlson et al. (2012, MNRAS 429)

Streaming model ingredients

Redshift space distortions

Streaming parameters from truncated CLPT

Real space halo correlation $\xi(r)$: best agreement for 1 Mpc/h

• smoothing in R(M) worse: need to include peak bias Baldauf, Desjacques & Seljak (arXiv: 1405.5885)

Redshift space distortions

Streaming parameters from truncated CLPT

Pairwise velocity $v_{12}(r)$: best agreement for 1 Mpc/h

smoothing in R(M) worse for high M - velocity bias?

Redshift space distortions

Streaming parameters from truncated CLPT

Pairwise velocity dispersion $\sigma_{12}(r)$: best agreement for R(M)

• huge improvement of the overall amplitude

Streaming model predictions

Redshift space correlation function

Kopp, CU & Achitouv (in preparation)

- plug streaming model ingredients in obtain redshift space multipoles
 - monopole ξ₀(s)
 - quadrupole $\xi_2(s)$
 - hexadecapole ξ₄(s)

- TCLPT outperforms CLPT
 - simultaneously improves all higher redshift-space multipoles
- optimal: two-filter TCLPT smoothing
 - ξ(r) & v₁₂(r): Ι Mpc/h
 - $\sigma_{12}(r)$: Lagrangian scale R(M)

Summary

Edgeworth streaming model

- generalization of Gaussian streaming model
- pushed 2% accuracy from 30 down to 10 Mpc/h

CU, Kopp and Haugg (2015, arXiv: 1503.08837)

Truncated Zel'dovich approximation

- truncated Post-Zel'dovich approximation (TCLPT)
 - optimal with two filters: I Mpc/h & R(M)
 - consistent results for $\xi_{0,} \xi_{2,} \xi_{4}(s)$

Kopp, CU & Achitouv (in preparation)

• peak bias effects relevant