Connecting Large Scale Structures

 to galactic spinChristophe Pichon
Institut d'astrophysique de Paris
S. Codis, C. Laigle, C. Welker T. Kimm D. Pogosyan, J. Devriendt, Y Dubois+ Horizon/Spin(e) Collabokation

Can we predict the spin of galaxies on the cosmic web from first principles?

Outlinè

What is the geometry of spin near saddle?

- How do dark halo's spin flip relative to filament
- Why does it induce a transition mass: Efle, \& Lagrangiain theory? :

Outlinè:

- What is the geometry of spin near saddle?
- How do dark halo's spin flip relative to filament
- Why does it induce a transition mass: Efle in Lagrangian theory? . Why do we corre?
-Weak lensing
-AM stratification drives morphology
- Galaxy formation is not a ID manifold
- Because we,can understand something !

Outlinè:

- What is the geometry of spin near saddle?
- How do dark halo's spin flip relative to filament
- Why does it induce a transition mass: Efle, \& Lagrangiain theory? *
Why do we corre?
-Weak lensing
-AM stratification drives morphology
- Galaxy formation is not a ID manifold
- Because we,can understand something !

Where' galaxies form does matter and can be traced back to ICs. Flattened filaments generate point-reflection-sivmetifo AM vorticity distribution: they induce the observed spin transition mass
dark halos don't form anywhere

$+$

Peak background split (PBS) in ID

Does this anisotropic biassing have

a dynamical signature? yes! in term of spin!

Peak background split in 3D
without boost

Does this anisotropic biassing have
 a dynamical signature? yes! in term of spin!

Tidal Torque Theory in one cartoon

Can we understand where spin and vorticity alignments come from?

-usual tidal torque theory

$$
L_{k}=\varepsilon_{i j k} I_{l i} T_{l j}
$$

YES! via conditional TTT subject to PBS

Evidences of galaxy spin - filament alignment

Cosmic Filament

See also:
Aragon-Calvo+ 2007, Hahn+ 2007, Paz+ 2008, Zhang+ 2009, Codis+ 20I2, Libeskind+ 20I3, Aragon-Calvo 20I3, Dubois+ 2014

Evidences of galaxy spin - filament alignment

Tempel+ (20|3) in the SDSS

See also:
Aragon-Calvo+ 2007, Hahn+ 2007, Paz+ 2008, Zhang+ 2009, Codis+ 20I2, Libeskind+ 20I3, Aragon-Calvo 20I3, Dubois+ 2014

Orientation of the spins w.r.t the filaments

Horizon 4Pi: DM only
$2 \mathrm{Gpc} / \mathrm{h}$ periodic box 4096³ DM part.
43 million dark halos at z=0
(Teyssier et al, 2009)

10000000 hrs CPU

Orientation of the spins w.r.t the filaments

Horizon 4Pi: DM only
$2 \mathrm{Gpc} / \mathrm{h}$ periodic box 4096^{3} DM part.
43 million dark halos at z=0
(Teyssier et al, 2009)

10000000 hrs CPU

Orientation of the spins w.r.t the filaments

Horizon 4Pi: DM only
$2 \mathrm{Gpc} / \mathrm{h}$ periodic box 4096^{3} DM part.
43 million dark halos at

$$
z=0
$$

(Teyssier et al, 2009)

10000000 hrs CPU

Excess probability of alignment between the spins and their host filament

mass transition:

$$
\begin{gathered}
M_{\text {crit }}=4 \cdot 10^{12} M_{\odot} \\
M<M_{\text {crit }}: \text { aligned } \\
M>M_{\text {crit }}: \text { perpendicular }
\end{gathered}
$$

Excess probability of alignment between the spins and their host filament

(Codis et al, 2012)

How does the formation of the filaments generate spin parallel to them?

Voids/wall saddle repel...

How does the formation of the filaments generate spin parallel to them?

Voids/wall saddle repel...

winding of walls into filaments

How does the formation of the filaments generate spin parallel to them?

Voids/wall saddle repel...
winding of walls into filaments

Low-mass haloes: $\quad M<M_{\text {crit }}$

High-mass haloes: $\quad M>M_{\text {crit }}$

How do mergers along the filaments create spin perpendicular to them?

Halos catch up with each other along the filaments

Explain transition mass?

Explain transition mass?

Transition mass versus redshift: what's wrong???

Tidal torque theory with a

 peak background split near a
saddle

- The Idea
- walls/filament/peak locally bias differentially
tidal and inertia tensor: spin alignment reflect this in TTT
- The picture
- Geometry of spin near saddle: point reflection symmetric distribution, $1 / 10$ of 'naive size'
- The Maths
- Very simple ab initio prediction for mass transition

The Lagrangian view of spin/LSS connection

Can we understand where spin and vorticity alignments come from?
-usual tidal torque theory

$$
L_{k}=\varepsilon_{i j k} I_{l i} T_{l j}
$$

-anisotropy of the cosmic web: surrounding of a saddle point with typical geometry

Tidal/Inertia mis-alignment

in saddle mid plane

Tidal/Inertia mis-alignment

in saddle mid plane
spin wall -filament

spin filament-cluster
animation?

Spin structure

Flattened filament near Saddle

$$
L_{k}=\varepsilon_{i j k} I_{l i} T_{l j}
$$

$$
\approx \varepsilon_{i j k} H_{l i} T_{l j}
$$

Hessian

Tidal
Zeldovitch flow

Point reflection symmetry follows from 'spin one' property of spin!

3DTTT@ saddle?

- point reflection symmetric $\mathbf{r} \rightarrow-\mathbf{r}$ - vanish if no a-symmetry
perp. along e_{φ}

Ispin // to filament
 perp =
along e_{φ}
spatial transition+ ROI smaller

Does it work with

 log-GaussianRandom Fields?

point reflection symmetry for realistic sets of saddles from log GRF

Figure 11. Alignment of 'spin' along e_{z} in 2D as a function of quadrant rank, clockwise. As expected, from one quadrant to the next, the spin is flipping sign.

Does it work with

 log-GaussianRandom Fields?
point reflection symmetry for realistic sets of saddles from log GRF

Does it work with

Dark matter @ z=0?

Clear predictions of aTTT

2D Spin acquisition near peaks

$$
L_{k}=\varepsilon_{i j k} I_{l i} T_{l j}
$$

filament
<L|peak> ${ }_{2 D}$?
Zeldovich flow
Theory will involve $2 p t$ correlation of field AND 2nd derivatives

TTT@ saddle?

the Gaussain joint PDF of the derivatives of the field, $\mathbf{X}=\left\{x_{i j}, x_{i j k}, x_{i j k l}\right\}$ and $\mathbf{Y}=$ $\left\{y_{i j}, y_{i j k}, y_{i j k l}\right\}$ in two given locations (\mathbf{r}_{x} and \mathbf{r}_{y} separated by a distance $r=\left|\mathbf{r}_{x}-\mathbf{r}_{y}\right|$) obeys

$$
\operatorname{PDF}(\mathbf{X}, \mathbf{Y})=\frac{1}{\operatorname{det}|2 \pi \mathbf{C}|^{1 / 2}} \times
$$

$$
\exp \left(-\frac{1}{2}\left[\begin{array}{l}
\mathbf{X} \tag{A2}\\
\mathbf{Y}
\end{array}\right]^{\mathrm{T}} \cdot\left[\begin{array}{ll}
\mathbf{C}_{0} & \mathbf{C}_{\gamma} \\
\mathbf{C}_{\gamma}^{\mathrm{T}} & \mathbf{C}_{0}
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y}
\end{array}\right]\right)
$$

subject to the "saddle" constraints (2D)
height

$$
\begin{aligned}
& x_{0,2}+x_{2,0}=\nu, x_{1,2}+x_{3,0}=0, x_{0,3}+x_{2,1}=0, \text { zero gradient } \\
& \kappa \cos (2 \theta)=\frac{1}{2}\left(x_{4,0}-x_{0,4}\right), \kappa \sin (2 \theta)=-x_{1,3}-x_{3,1}
\end{aligned}
$$

TTT@ saddle?

the Gaussain joint PDF of the derivatives of the field, $\mathbf{X}=\left\{x_{i j}, x_{i j k}, x_{i j k l}\right\}$ and $\mathbf{Y}=$ $\left\{y_{i j}, y_{i j k}, y_{i j k l}\right\}$ in two given locations (\mathbf{r}_{x} and \mathbf{r}_{y} separated by a distance $r=\left|\mathbf{r}_{x}-\mathbf{r}_{y}\right|$) obeys

$$
\exp \left(-\frac{1}{2}\left[\begin{array}{l}
\mathbf{X} \tag{B4}\\
\mathbf{Y}
\end{array}\right]^{\mathrm{T}}\right.
$$

$$
\operatorname{PDF}\left(\mathbf{X}\left\{\begin{array}{l}
x_{0,0,2}+x_{0,2,0}+x_{2,0,0}=\nu, x_{1,0,2}+x_{1,2,0}+x_{3,0,0}=0, \\
x_{0,1,2}+x_{0,3,0}+x_{2,1,0}=0, x_{0,0,3}+x_{0,2,1}+x_{2,0,1}=0, \\
\kappa_{1,1}=\frac{1}{3}\left(x_{2,0,2}-x_{0,0,4}-2 x_{0,2,2}-x_{0,4,0}+x_{2,2,0}+2 x_{4,0,0}\right), \\
\kappa_{1,2}=x_{1,1,2}+x_{1,3,0}+x_{3,1,0}, \kappa_{1,3}=x_{1,0,3}+x_{1,2,1}+x_{3,0,1}, \\
\mathbf{Y}
\end{array}\right]^{\mathrm{T}} \cdot \begin{array}{l}
\kappa_{2,2}=\frac{1}{3}\left(x_{0,2,2}-x_{0,0,4}+2 x_{0,4,0}-2 x_{2,0,2}+x_{2,2,0}-x_{4,0,0}\right), \\
\kappa_{2,3}=x_{0,1,3}+x_{0,3,1}+x_{2,1,1} .
\end{array}\right.
$$

subject to the "saddle" constraints (2D)
height

$$
\begin{aligned}
& x_{0,2}+x_{2,0}=\nu, x_{1,2}+x_{3,0}=0, x_{0,3}+x_{2,1}=0, \text { zero gradient } \\
& \kappa \cos (2 \theta)=\frac{1}{2}\left(x_{4,0}-x_{0,4}\right), \kappa \sin (2 \theta)=-x_{1,3}-x_{3,1}
\end{aligned}
$$

Define the spin at point \mathbf{r}_{y} along the z direction as the anti-symmetric contraction of the de-traced tidal field and hessian:
(2D)

$$
\begin{gather*}
L\left(\mathbf{r}_{y}\right)=\varepsilon_{i j} \bar{y}_{i l} \bar{y}_{j m m l}=\left(y_{2,0}-y_{0,2}\right)\left(y_{1,3}+y_{3,1}\right)+ \\
\frac{y_{1,1}}{2}\left(y_{0,4}-y_{4,0}\right)-\frac{y_{1,1}}{2}\left(y_{4,0}-y_{0,4}\right) . \tag{A3}
\end{gather*}
$$

It is then fairly straightforward to compute the corresponding constrained expectation, $\langle L \mid \mathrm{pk}\rangle$, for L as

$$
\begin{equation*}
L_{z}(r, \theta, \kappa, \nu)=\int L(\mathbf{Y}) \operatorname{PDF}(\mathbf{X}, \mathbf{Y} \mid \mathrm{pk}) \mathrm{d} \mathbf{X} \mathrm{~d} \mathbf{Y} \tag{A4}
\end{equation*}
$$

e.g. for $\mathrm{n}=-2 \quad$ Incredibly simple prediction !

$$
L_{z}=\kappa \frac{r^{4} \sin (2 \theta)}{144} e^{-\frac{r^{2}}{2}}\left(\sqrt{6} \kappa\left(r^{2}-4\right) \cos (2 \theta)+6 \vee\right.
$$

2D Theory of Tidal Torque @ saddle?

$$
\delta\left(\mathbf{r}, \kappa, I_{1}, \nu \mid \mathrm{ext}\right)=\frac{I_{1}\left(\xi_{\phi \delta}^{\Delta \Delta}+\gamma \xi_{\phi \phi}^{\Delta \Delta}\right)+\nu\left(\xi_{\phi \phi}^{\Delta \Delta}+\gamma \xi_{\phi \delta}^{\Delta \Delta}\right)}{1-\gamma^{2}}+4\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right) \xi_{\phi \delta}^{\Delta+}
$$

$$
f^{+}=\left(f_{11}-f_{22}\right) / 2 \text { and } f^{\times}=f_{12}
$$

2D Theory ofTidal Torque @ saddle?

$$
\left\langle L_{z} \mid \operatorname{ext}\right\rangle=L_{z}\left(\mathbf{r}, \kappa, I_{1}, \nu \mid \operatorname{ext}\right)=-16\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \epsilon \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right)\left(L_{z}^{(1)}(r)+2\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right) L_{z}^{(2)}(r)\right)
$$

$$
L_{z}^{(1)}(r)=\frac{\nu}{1-\gamma^{2}}\left[\left(\xi_{\phi \phi}^{\Delta+}+\gamma \xi_{\phi \delta}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\phi \delta}^{\Delta+}+\gamma \xi_{\delta \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}\right]
$$

$$
L_{z}^{(2)}(r)=\left(\xi_{\phi x}^{\Delta \Delta} \xi_{\delta \delta}^{\times \times}-\xi_{\phi \delta}^{\times \times} \xi_{\delta \delta}^{\Delta \Delta}\right) \quad+\frac{I_{1}}{1-\gamma^{2}}\left[\left(\xi_{\phi \delta}^{\Delta+}+\gamma \xi_{\phi \phi}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\delta \delta}^{\Delta+}+\gamma \xi_{\phi \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}\right]
$$

In order to compute the spin distribution, the formalism developed in Section 2 is easily extended to 3D. A critical (including saddle condition) point constraint is imposed. The resulting mean density field subject to that constraint becomes (in units of σ_{2}):

$$
\begin{equation*}
\delta\left(\mathbf{r}, \kappa, I_{1}, \nu \mid \mathrm{ext}\right)=\frac{I_{1}\left(\xi_{\phi \delta}^{\Delta \Delta}+\gamma \xi_{\phi \phi}^{\Delta \Delta}\right)}{1-\gamma^{2}}+\frac{\nu\left(\xi_{\phi \phi}^{\Delta \Delta}+\gamma \xi_{\phi \delta}^{\Delta \Delta}\right)}{1-\gamma^{2}}+\frac{15}{2}\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right) \xi_{\phi \delta}^{\Delta+} \tag{3.1}
\end{equation*}
$$

where again $\overline{\mathbf{H}}$ is the detraced Hessian of the density and $\hat{\mathbf{r}}=\mathbf{r} / r$ and we define in 3D $\xi_{\phi x}^{\Delta+}$ as $\xi_{\phi \delta}^{\Delta+}=\left\langle\Delta \delta, \phi^{+}\right\rangle$, with $\phi^{+}=\phi_{11}-\left(\phi_{22}+\phi_{33}\right) / 2$. Note that $\hat{\mathbf{r}}^{\mathrm{T}} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}$ is a scalar quantity defined explicitly as $\hat{r}_{i} \bar{H}_{i j} \hat{r}_{j}$. As in 2D, the expected spin can also be computed. In 3D, the spin is a vector, which components are given by $L_{i}=\varepsilon_{i j k} \delta_{k l} \phi_{l j}$, with $\boldsymbol{\epsilon}$ the rank 3 Levi Civita tensor. It is found to be orthogonal to the separation and can be written as the sum of two terms

$$
\begin{equation*}
\mathbf{L}\left(\mathbf{r}, \kappa, I_{1}, \nu \mid \text { ext }\right)=-15\left(\mathbf{L}^{(1)}(r)+\mathbf{L}^{(2)}(\mathbf{r})\right) \cdot\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \boldsymbol{\epsilon} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right), \tag{3.2}
\end{equation*}
$$

where $\mathbf{L}^{(1)}$ depends on height, ν, and on the trace of the Hessian I_{1} but not on orientation

$$
\begin{aligned}
\mathbf{L}^{(1)}(r)= & \left(\frac{\nu}{1-\gamma^{2}}\left[\left(\xi_{\phi \phi}^{\Delta+}+\gamma \xi_{\phi \delta}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\phi \delta}^{\Delta+}+\gamma \xi_{\delta \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}\right]\right. \\
& \left.+\frac{I_{1}}{1-\gamma^{2}}\left[\left(\xi_{\phi \delta}^{\Delta+}+\gamma \xi_{\phi \phi}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\delta \delta}^{\Delta+}+\gamma \xi_{\phi \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}\right]\right) \mathbb{I}_{3}
\end{aligned}
$$

and $L^{(2)}(\mathbf{r})$ now depends on $\overline{\mathbf{H}}$ and on orientation:

$$
\begin{aligned}
\mathbf{L}^{(2)}(\mathbf{r})=-\frac{5}{8}\left[2 \left(\left(\xi_{\phi \delta}^{\Delta+}\right.\right.\right. & \left.\left.-\xi_{\phi \delta}^{\Delta \Delta}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\delta \delta}^{\Delta+}-\xi_{\delta \delta}^{\Delta \Delta}\right) \xi_{\phi \delta}^{\times \times}\right) \overline{\mathbf{H}} \\
& \left.+\left(\left(7 \xi_{\delta \delta}^{\Delta \Delta}+5 \xi_{\delta \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}-\left(7 \xi_{\phi \delta}^{\Delta \Delta}+5 \xi_{\phi \delta}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}\right)\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right) \mathbb{I}_{3}\right]
\end{aligned}
$$

3D Transition mass?

Lagrangian theory capture spin flip !

Transition mass associated with size of quadrant

3D Transition mass?

Lagrangian theory capture spin flip !

Transition mass associated with size of quadrant

Geometry of the saddle provides a natural 'metric' (local frame as defined by Hessian @ saddle) relative to which
 Cloud in dynamical evolution of DH is predicted.

 cloud effect

Figure 5. Left: logarithmic cross section of $M_{p}(r, z)$ along the most likely (vertical) filament (in units of $\left.10^{12} M_{\odot}\right)$. Right: corresponding cross section of $\langle\cos \hat{\theta}\rangle(r, z)$. The mass of halos increases towards the nodes, while the spin flips.

geometric split

mass split

Geometry of the saddle provides a natural 'metric' (local frame as defined by Hessian @ saddle) relative to which

Cloud in dynamical evolution of DH is predicted.
cloud effect

Figure 6. Mean alignment between spin and filament as a function of mass for a filament smoothing scale of $5 \mathrm{Mpc} / h$. The spin flip transition mass is around $410^{12} M_{\odot}$.
geometric split
mass split

Link with Eulerian vorticity?

density caustic

AM Lagragian map

Figure 5. top: Density caustic; Bottom: Zeldovitch mapping of the spin distribution

Link with Eulerian vorticity?

density caustic

Figure 5. tor
1 mapping of the spin distri -2

Back to wall winding: generation of vorticily

Alignement of vorkicity with cosmic web

$\underbrace{Y}_{2} x$

braids structure of vorticity.

Growth of large-scale structure

In the initial phase of structure formation, flows are laminar and curl-free.
This is no longer valid at the shell-crossing.

Thin slice of a $D M$ simulation at $z=0$.

Vorticity generation

In the initial phase of structure formation, flows are laminar and curl-free.
This is no longer valid at the shell-crossing.

Thin slice of a $D M$ simulation at $z=0$.

Vorticity is generated and is confined in the filaments.

Alignment of vorticity with filaments

Vorticity is aligned with the filaments.

Cosmid Filament

Filaments and walls are identified with DISPERSE: Sousbie+ (2011).

Geometry of the vorticity cross-section

Pichon \& Bernardeau (1999)

Cross-sections are typically divided in 4 quadrants.

Theoretical prediction from Pichon \& Bernardeau 1999

Low-mass halos are aligned with the filament

- Mhalo < Mcrit alignment of halo spin with filament increases with mass.
- Mcrit

High-mass halos are perpendicular

- Mcrit
- Mhalo > Mcrit halo spin tends to be perpendicular to the filament.

Mass dependent Halo spin - filament alignment

- Mhalo < Mcrit $\left.N^{n} \boldsymbol{n}^{2}\right\rangle$
 alignment of halo spin
with filament increases alignment of halo spin
with filament increases with mass.
- Mcrit
- Mhalo > Mcrit halo spin tends to be halo spin tends to be filament.

Halo-spin vorticity alignment

Geometry of the vorticity cross-section

Stacked profile

Pichon \& Bernardeau (1999)

High vorticity regions are located at the edges of the filament.

Mass transition for spin alignment

Idealized toy model: The position is fixed and the radius of the halo increases:

Transition mass is correlated with the size of the quadrants.

Mass transition for spin alignment

Idealized toy model: The position is fixed and the radius of the halo increases:

Transition mass is correlated with the size of the quadrants.

Mass transition for spin alignment

Idealized toy model: The position is fixed and the radius of the halo increases:

Transition mass is correlated with the size of the quadrants.

Mass transition for spin alignment

Idealized toy model: The position is fixed and the radius of the halo increases:

Transition mass is correlated with the size of the quadrants.

Mass transition for spin alignment

Idealized toy model: The position is fixed and the radius of the halo increases:

Transition mass is correlated with the size of the quadrants.

Mass transition for spin alignment

Idealized toy model: The position is fixed and the radius of the halo increases:

Transition mass is correlated with the size of the quadrants.

in short...

Vorticity is confined in the filaments, and aligned with them. The cross-section with a plane perpendicular to the filament is typically quadripolar.

*) Halo spins are aligned with the same polarity than vorticity in quadrants.

Qualitatively, the transition mass in the alignment could be correlated with the size of the quadrant.

Explain transition mass? YES!

Transition mass versus redshift

horizon 4π
skeleton of LSS

Only 2 ingredients: a) spin is spin one b) filaments flattened

Explain transition mass? YES!

Transition mass versus redshift

horizon 4π
skeleton of LSS

Only 2 ingredients: a) spin is spin one b) filaments flattened

Outer halo

Filament

Connecting Eulerian \&

 Lagrangian theoriesOuter halo

+Zeldovitch boost

BUT in // from the pt of view of LSS

Complementary vorticity advection view

Take home message...

- Morphology (= AM stratification) driven by LSS in cosmic web: it explains Es \& Sps where, how \& why from ICs
- Signature in correlation between spin and internal kinematic structure of cosmic web on larger scales.
- Process driven by simple PBS/biassed clustering dynamics:
- requires updating TTT to saddles: simple theory :-)
- can be expressed into an Eulerian theory via vorticity

Where galaxies form does matter, and can be traced back to ICs Flattened filaments generate point-reflection-symmetric AM/vorticity distribution: they induce the observed spin transition mass

- which is why the δ-Web is the best :-)

What about galaxies ??

- Horizon-AGN simulation Jade (CINES)
(PI Y. Dubois, Co-I J. Devriendt \& C. Pichon)
- $\mathrm{L}_{\text {box }}=100 \mathrm{Mpc} / \mathrm{h}$
- 1024^{3} DM particles $M_{D M, r e s}=8 \times 10^{7} M_{\text {sun }}$
- Finest cell resolution $\mathrm{dx}=1 \mathrm{kpc}$
- Gas cooling \& UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar
- Outputs
(backed up and analyzed on BEYOND)
- Simulation outputs
- Lightcones $\left(1^{\circ} \times 1^{\circ}\right)$ performed on-the-fly
- Dark Matter (position, velocity)
- Gas (position, density, velocity, pressure, chemistry)
- Stars (position, mass, velocity, age, chemistry)
- Black holes (position, mass, velocity, accretion rate)
- $z=1.5$ using 3 Mhours on 4096 cores
horizon-AGN.projet-horizon.fr
$z=1.2$

Part V Outline

- Can morphology/physics trace spin flip?
- Are transition masses consistent?
- The fate of forming galaxies
- The fate of merging galaxies

Galaxies versus dense filaments

can morphology trace spin flip?

- thanks to AGN feedback we have morphological diversity

Filament-galactic spin \& mass

Can morphological/physical properties of galaxies trace spin flip?

is morphometric transition mass

 consistent with DM ?
Final point 1/2: low mass galaxies

What is the physical origin of low mass galaxies spin-filament alignment?
Vorticity arising from kin. structure of filament!

Final point 2/2: high mass galaxies

What is the physical origin of spin flip? high mass galaxies merge!

Transition mass versus merging rate
 for galaxies

PDF of μ over 4 timesteps δt

SMOOTH ACCRETION

- Gas inflows (re)-align galaxies with their filament

no merger : orientation versus look-back time

Caught in the rhythm: satellites in their galactic plane
C. Welker ${ }^{1 \star}$, Y. Dubois ${ }^{1}$, C. Pichon ${ }^{1,2}$, J. Devriendt ${ }^{3,4}$ and N. E. Chisari ${ }^{3}$ filament

Are the imprints of LSS noticeable on galaxy properties ?

1D level crossing primer

$$
\left.\begin{array}{rl}
n_{\nabla \rho} \mathrm{dx} & =\mathcal{P}(\rho=0 \mid \nabla \rho) \mathrm{d} \rho \\
\mathrm{~d} \rho & =-\nabla \rho \mathrm{dx}
\end{array}\right\} \Rightarrow n_{\nabla \rho}=\mathcal{P}(\rho=0 \mid \nabla \rho)|\nabla \rho|
$$

$$
n_{\text {zeroes }}=\int_{\substack{-\infty \\ \infty}}^{\infty} \mathrm{d} \nabla \rho|\nabla \rho| \mathcal{P}(\rho=0, \nabla \rho) \propto \frac{\sigma_{1}}{\sigma_{0}}
$$

$$
n_{\text {extrem }}=\int_{-\infty} \mathrm{d} \nabla \nabla \rho|\nabla \nabla \rho| \mathcal{P}(\nabla \rho=0, \nabla \nabla \rho) \propto \frac{\sigma_{2}}{\sigma_{1}}
$$

Summary of 1D Gaussian calculations

Fundamental scales R_{0}, R_{*}

$$
\begin{aligned}
& n_{\text {zero }} \propto \frac{1}{R_{0}}=\frac{\sigma_{1}}{\sigma_{0}}, \quad n_{\text {maxima }} \propto \frac{1}{R_{*}}=\frac{\sigma_{2}}{\sigma_{1}} \\
& \frac{n_{\text {maxima }}}{n_{\text {zero }}}=\gamma \equiv \frac{\sigma_{1}^{2}}{\sigma_{0} \sigma_{2}}=\frac{R_{*}}{R_{0}}, \quad \gamma \in[0,1]
\end{aligned}
$$

More sophisticated result:
Maxima above threshold $\eta=\rho / \sigma_{0}$

$$
n_{\max }\left(\rho>\eta \sigma_{0}\right)= \begin{cases}n_{\max } \mathcal{P}(\eta) & \gamma \rightarrow 0 \\ n_{\max } \mathcal{P}(\eta)(\gamma \eta) & \gamma \rightarrow 1\end{cases}
$$

back to 2D Theory

without Hessian approximation

$$
\begin{gathered}
L_{k}=\varepsilon_{i j k} I_{l i} T_{l j} \\
\quad \approx \varepsilon_{i j n \pi} \frac{I T l i}{} T_{l j} \\
\text { Hessian }
\end{gathered}
$$

