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• matter model: dust – no pressure

• 3+1 foliation

• synchronous gauge – no rotation

• Einstein–de Sitter background – no Λ

• we will use the principal scalar invariants of extrinsic curvature Kij I, II, III and

• standard kinematical decomposition into: expansion rate Θ = −Kk
k and shear

σi
j = −Ki

j −
1
3Θδij

• Buchert equations – solvable for special cases; Buchert equations + RZA –solvable
for generic fields
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• Euler-Newton system (ENS): 2 evolution + 2 field equations:
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• Euler-Newton system (ENS): 2 evolution + 2 field equations:

∂t~v = − (~v · ∇)~v + ~g

∂t̺ = −∇ · (̺~v)

∇× ~g = ~0

∇ · ~g = −4πG̺

• We introduce the trajectory field ~f( ~X, t) and the Jacobian
J = 1

6 ǫijkǫ
lmnf i

|lf
j
|mfk

|n and implicitly solve the evolution equations by:

~v = ~̇f ; ~g = ~̈f ; ̺ =
˚̺

J
, J > 0
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• We define the functional determinant of three functions A, B, C:

J (A,B,C) :=
∂(A,B,C)

∂(X1, X2, X3)
= ǫijkA|iB|jC|k
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• We define the functional determinant of three functions A, B, C:

J (A,B,C) :=
∂(A,B,C)

∂(X1, X2, X3)
= ǫijkA|iB|jC|k

• The Lagrange-Newton System (LNS) takes the form:
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• We define the functional determinant of three functions A, B, C:

J (A,B,C) :=
∂(A,B,C)

∂(X1, X2, X3)
= ǫijkA|iB|jC|k

• The Lagrange-Newton System (LNS) takes the form:

J (f̈ i, f i, fk) = 0

J (f̈1, f2, f3) + cycl. = −4πG˚̺

• This is equivalent to ENS provided that the trajectory field is unique and the
Jacobian is greater than 0



First order scheme

5 / 26

• We decompose ~f into a homogeneous and isotropic background deformation
~fH( ~X, t) = a(t) ~X and an inhomogeneous deformation field ~p( ~X, t)

~f( ~X, t) = a(t) ~X + ~p( ~X, t)
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• We decompose ~f into a homogeneous and isotropic background deformation
~fH( ~X, t) = a(t) ~X and an inhomogeneous deformation field ~p( ~X, t)

~f( ~X, t) = a(t) ~X + ~p( ~X, t)

• We introduce rescaled quantities ~q = ~F ( ~X, t) ≡ ~f( ~X, t)/a(t) and
~P ( ~X, t) ≡ ~p( ~X, t)/a(t)

• First-order equations for the inhomogeneous part are:

a2∇0 × ~̈p− äa∇0 × ~p = ~0

a2∇0 · ~̈p+ (2äa)∇0 · ~p− 4πG (˚̺− ˚̺H)
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• Splitting scaled perturbation field into transverse (divergence-free) and longitudinal
(curl-free) parts we obtain:
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(curl-free) parts we obtain:

~̈P T + 2H ~̇P T = ~0

~̈PL + 2H ~̇PL − 4πG̺H ~PL =
1

a3
~W ( ~X)

where ~W ( ~X) ≡ ~̈PL( ~X, t0) + 2H(t0) ~̇P
L( ~X, t0) is the initial peculiar-acceleration

field.
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• Splitting scaled perturbation field into transverse (divergence-free) and longitudinal
(curl-free) parts we obtain:

~̈P T + 2H ~̇P T = ~0

~̈PL + 2H ~̇PL − 4πG̺H ~PL =
1

a3
~W ( ~X)

where ~W ( ~X) ≡ ~̈PL( ~X, t0) + 2H(t0) ~̇P
L( ~X, t0) is the initial peculiar-acceleration

field.
• Special case of first-order solution - Zel’dovich approximation:

~u( ~X, t) = ~w( ~X, t) t ; t = t0 ,

where

~u = a ~̇P , and ~w = ~̇u+H~u = 2ȧ ~̇P + a ~̈P .
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• We employ the ADM equations and express them with a single variable i.e. the
cartan co-frame ηai (M.Kasai, PRD 52, 5605 (1995); T.Buchert and M.Ostermann,
PRD 86, 023520 (2012) arXiv:1203.6263
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• We employ the ADM equations and express them with a single variable i.e. the
cartan co-frame ηai (M.Kasai, PRD 52, 5605 (1995); T.Buchert and M.Ostermann,
PRD 86, 023520 (2012) arXiv:1203.6263

• Whenever possible we reduce the constraint equations to constraints on the initial
hypersurface together with time dependent functions

• We derive the general first order solutions for the dynamical variable

• We use the perturbed deformation to functionally evaluate the quantities of interest
e.g. density, curvature
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• Lagrange-Einstein System in ADM formulation

δabη̈
a
[iη

b
j] = 0

1

2
ǫabcǫ

iklη̈aiη
b
kη

c
l = ΛJ − 4πGJ̊˚̺

(

ǫabcǫ
iklη̇ajη

b
kη

c
l

)

‖i
=

(

ǫabcǫ
iklη̇aiη

b
kη

c
l

)

‖j

ǫabcǫ
mklη̇amη̇bkη

c
l = 16πGJ̊˚̺− JR

1

2

(

ǫabcǫ
iklη̈ajη

b
kη

c
l −

1

3
ǫabcǫ

mklη̈amηbkη
c
lδ

i
j

)

+
(

ǫabcǫ
iklη̇aj η̇

b
kη

c
l −

1

3
ǫabcǫ

mklη̇amη̇bkη
c
lδ

i
j

)

= −Jτ ij
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• We decompose the Cartan coframe into a flat, homogeneous, isotropic background
and an inhomogeneous deviation. We also define the peculiar coframe
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• We decompose the Cartan coframe into a flat, homogeneous, isotropic background
and an inhomogeneous deviation. We also define the peculiar coframe

ηai = a(t) [δai + P a
i(X, t)] , η̃ai ≡

1

a
ηai
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• We decompose the Cartan coframe into a flat, homogeneous, isotropic background
and an inhomogeneous deviation. We also define the peculiar coframe

ηai = a(t) [δai + P a
i(X, t)] , η̃ai ≡

1

a
ηai

• We derive the linearized evolution equations and divide them into trace and trace-free
part

P̈ + 3HṖ =
1

a2
(

P̈ (t0) + 3H(t0)Ṗ (t0)
)



First order scheme

9 / 26

• We decompose the Cartan coframe into a flat, homogeneous, isotropic background
and an inhomogeneous deviation. We also define the peculiar coframe

ηai = a(t) [δai + P a
i(X, t)] , η̃ai ≡

1

a
ηai

• We derive the linearized evolution equations and divide them into trace and trace-free
part

P̈ + 3HṖ =
1

a2
(

P̈ (t0) + 3H(t0)Ṗ (t0)
)

Π̈i
j + 3HΠ̇i

j = −(1)τ ij

where Πi
j ≡ P i

j −
1
3Pδij .
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• We separate the time and spatial derivatives and make the ansatz

P a
i(X, t) = 0Qa

i(X) + q1(t)
1Qa

i(X) + q2(t)
2Qa

i(X)

where the time functions q1/2(t) are the two solutions of:

q̈ + 2
ȧ

a
q̇ +

(

3
ä

a
− Λ

)

(q + q(t0)) = 0 .
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• We separate the time and spatial derivatives and make the ansatz

P a
i(X, t) = 0Qa

i(X) + q1(t)
1Qa

i(X) + q2(t)
2Qa

i(X)

where the time functions q1/2(t) are the two solutions of:

q̈ + 2
ȧ

a
q̇ +

(

3
ä

a
− Λ

)

(q + q(t0)) = 0 .

• With the ansatz and its time derivatives we find

1Qa
i = +

q̇2(t0)P̈
a
i(t0)− q̈2(t0)Ṗ

a
i(t0)

q̈1(t0)q̇2(t0)− q̇1(t0)q̈2(t0)
,

2Qa
i = −

q̇1(t0)P̈
a
i(t0)− q̈1(t0)Ṗ

a
i(t0)

q̈1(t0)q̇2(t0)− q̇1(t0)q̈2(t0)
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• ... together with

0Qa
i = P a

i(t0)− q1(t0)
1Qa

i − q2(t0)
2Qa

i
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• ... together with

0Qa
i = P a

i(t0)− q1(t0)
1Qa

i − q2(t0)
2Qa

i

• Finally we obtain an expression for the first-order peculiar coframe:

(1)η̃ai = η̊ai +
(

q1(t)− q1(t0)
)

1Qa
i +

(

q2(t)− q2(t0)
)

2Qa
i

where η̊ai ≡ δai + P a
i(t0) is the coframe at the initial time.
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• ... together with

0Qa
i = P a

i(t0)− q1(t0)
1Qa

i − q2(t0)
2Qa

i

• Finally we obtain an expression for the first-order peculiar coframe:

(1)η̃ai = η̊ai +
(

q1(t)− q1(t0)
)

1Qa
i +

(

q2(t)− q2(t0)
)

2Qa
i

where η̊ai ≡ δai + P a
i(t0) is the coframe at the initial time.

• Additionally, we define some useful peculiar-quantities ua
i and wa

i:

η̇ai = Hηai + ua
i , ua

i ≡ aṖ a
i ,

η̈ai =
ä

a
ηai + wa

i , wa
i ≡ aP̈ a

i + 2ȧṖ a
i
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• In analogy to the Newtonian investigation we restrict ourselves to the trace part and
we impose the following slaving conditions:

2Qa
i(X) = 0 wa

i =
(

2H +
q̈1
q̇1

)

ua
i
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• In analogy to the Newtonian investigation we restrict ourselves to the trace part and
we impose the following slaving conditions:

2Qa
i(X) = 0 wa

i =
(

2H +
q̈1
q̇1

)

ua
i

resulting in:

1Qa
i(X) =

1

q̇1(t0)
Ṗ a

i(X, t0)

• Thus, we obtain the expression for the peculiar coframe:

RZAη̃ai(X, t) = δai + P a
i(X, t0) + ξ(t)Ṗ a

i(X, t0)

ξ(t) ≡ (q1(t)− q1(t0))/q̇1(t0)
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• We define the domain dependent scale factor

aD(t) :=

(

VD(t)

VDi

)1/3

where the volume of the domain is given by:

VD(t) :=

∫

D

dµg
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• We define the domain dependent scale factor

aD(t) :=

(

VD(t)

VDi

)1/3

where the volume of the domain is given by:

VD(t) :=

∫

D

dµg

• We apply the following commutation rule to the Raychaudhuri and Hamilton
equations

∂t〈Ψ(t,Xk)〉D − 〈∂tΨ(t,Xk)〉D = 〈ΘΨ〉D − 〈Θ〉D〈Ψ〉D
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• We obtain the generalised Friedmann equations for inhomogeneous fluids:

→ the averaged Raychaudhuri equation:

3
äD
aD

+ 4πG
MDi

VDi
a3D

= QD
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• We obtain the generalised Friedmann equations for inhomogeneous fluids:

→ the averaged Raychaudhuri equation:

3
äD
aD

+ 4πG
MDi

VDi
a3D

= QD

→ the averaged Hamiltonian constraint

(

ȧD
aD

)2

−
8πG

3

MDi

VDi
a3D

+
〈R〉D
6

= −
QD

6
,
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• We obtain the generalised Friedmann equations for inhomogeneous fluids:

→ the averaged Raychaudhuri equation:

3
äD
aD

+ 4πG
MDi

VDi
a3D

= QD

→ the averaged Hamiltonian constraint

(

ȧD
aD

)2

−
8πG

3

MDi

VDi
a3D

+
〈R〉D
6

= −
QD

6
,

where the kinematical backreaction term is given by:

QD = 2〈II〉D −
2

3
〈I〉2D =

2

3
〈(Θ− 〈Θ〉D)

2
〉D − 2〈σ2〉D
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With the perturbed co-frame RZAη̃ai(X, t) = δai + P a
i(X, t0) + ξ(t)Ṗ a

i(X, t0) the
backreaction takes the form (T.Buchert et al., PRD 87, 123503 (2013), arXiv:
1303.6193):

RZAQD =
ξ̇2

(

γ1 + ξγ2 + ξ2γ3
)

(1 + ξ〈Ii〉I + ξ2〈IIi〉I + ξ3〈IIIi〉I)
2

with:

γ1 := 2〈IIi〉I −
2

3
〈Ii〉

2
I(1)

γ2 := 6〈IIIi〉I −
2

3
〈IIi〉I〈Ii〉I(2)

γ3 := 2〈Ii〉I〈IIIi〉I −
2

3
〈IIi〉

2
I(3)



Intrinsic curvature
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RZARD =
ξ̇2

(

γ̃1 + ξγ̃2 + ξ2γ̃3
)

1 + ξ〈Ii〉I + ξ2〈IIi〉I + ξ3〈IIIi〉I

with:

γ̃1 = −2〈IIi〉I − 12〈Ii〉I
H

ξ̇
− 4〈Ii〉I

ξ̈

ξ̇2

γ̃2 = −6〈IIIi〉I − 24〈IIi〉I
H

ξ̇
− 8〈IIi〉I

ξ̈

ξ̇2

γ̃3 = −36〈IIIi〉I
H

ξ̇
− 12〈IIIi〉I

ξ̈

ξ̇2
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Examples of the intrinsic curvature effects on scale factor and expansion rate of
collapsing domain
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• Ishibashi and Wald: ’Can the Acceleration of Our Universe Be Explained by the
Effects of Inhomogeneities?’(arXiv:gr-qc/0509108) – negligible backreaction

• Introduction of the formalism by Green and Wald: ’A new framework for analyzing
the effects of small scale inhomogeneities in cosmology’ (arXiv: 1011.4920[gr-qc]) –
backreaction can be large but it’s traceless

• Examples by Green and Wald: ’Examples of backreaction of small scale
inhomogeneities in cosmology’ (arXiv:1304.2318[gr-qc])

• Overview paper by Green and Wald: ’How well is our universe described by an FLRW
model?’ (arXiv:1407.8084[gr-qc]

• Rebuttal paper by Buchert et al.: ’Is there proof that backreaction of inhomogeneities
is irrelevant in cosmology?’ (arXiv:1505.07800[gr-qc])

• Response to rebuttal, by Green and Wald: ’Comments on Backreaction’ (arXiv:
1506.06452[gr-qc])
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• For all λ > 0 the metric gab(λ, x) satisfies:

Gab(g(λ, x)) + Λgab(λ, x) = 8πTab(λ),

where Tab(λ) obeys the weak energy condition
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• For all λ > 0 the metric gab(λ, x) satisfies:

Gab(g(λ, x)) + Λgab(λ, x) = 8πTab(λ),

where Tab(λ) obeys the weak energy condition

• There exists a smooth function C1(x) on M such that:

|hab(λ, x)| ≤ λC1(x) ; hab(λ, x) = gab(λ, x)− gab(0, x).

• There exists a smooth function C2(x) on M such that: |∇chab(λ, x)| ≤ C2(x).

• There exists a smooth tensor field µabcdef on M such that:

w–lim
λց0

(∇ahcd(λ, x)∇bhef (λ, x)) = µabcdef .
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• We say that Aa1...an
(λ) converges weakly to Ba1...an

i.e.
w–limλց0 Aa1...an

(λ) = Ba1...an
when for all fa1...an of compact support:

lim
λց0

∫

fa1...anBa1...an
(λ) =

∫

fa1...anAa1...an
.
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• We say that Aa1...an
(λ) converges weakly to Ba1...an

i.e.
w–limλց0 Aa1...an

(λ) = Ba1...an
when for all fa1...an of compact support:

lim
λց0

∫

fa1...anBa1...an
(λ) =

∫

fa1...anAa1...an
.

• Green and Wald equations for the background metric gab(0, x) then reads:

∫

fabGab(gab(0, x)) + Λgab(0, x) = 8πw–lim
λց0

(Tab(λ) + tab(λ)) ,

where:

tab(λ) = 2∇[aC
e
e]b − 2Cf

b[aC
e
e]f − gab(λ)g

cd(λ)∇[cC
e
e]d + gab(λ)g

cd(λ)Cf
d[cC

e
e]f ,

and

Cc
ab =

1

2
gcd(λ) {∇agbd(λ) +∇bgad(λ)−∇dgab(λ)} .
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• Green and Wald equation can be written symbolically:

Gab(g
(0)) + Λg

(0)
ab = 8πT

(0)
ab + 8πt

(0)
ab

• Green and Wald theorems concern the features of ’effective’ stress-energy tensor: t
(0)
ab :

→ t
(0)
ab is traceless i.e. t(0)aa = 0

→ t
(0)
ab obeys the weak energy condition i.e. t

(0)
ab t

atb ≥ 0

• To put it in words: t
(0)
ab can not mimic the dark energy.
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• Green and Wald formalism does not apply to the situations when:

→ the actual metric is far from FLRW (e.g. LTB metric)

→ one wishes to construct an effective metric (or other effective quantities) via
some averaging or smoothing procedure (it does not apply to e.g. Buchert
formalism and many others in the literature as explicitly stated by Green and
Wald in ’Comments on backreaction’ )

• What is then Green and Wald formalism’ domain of application?

→ backreaction with no backreaction
→ averaging without averaging
→ uniform vs non-uniform convergence



Problems with interpretation

24 / 26

• Example of hab(λ, x) behaviour: λ sin(x/λ)



Problems with interpretation

24 / 26

• Example of hab(λ, x) behaviour: λ sin(x/λ)
• Second derivatives: (1/λ) sin(x/λ) – oscillations amplitude → ∞



Problems with interpretation

24 / 26

• Example of hab(λ, x) behaviour: λ sin(x/λ)
• Second derivatives: (1/λ) sin(x/λ) – oscillations amplitude → ∞

-10

-5

 0

 5

 10

 15

-10 -5  0  5  10

Example of density profile

i=1
i=2
i=3



Problems with interpretation

24 / 26

• Example of hab(λ, x) behaviour: λ sin(x/λ)
• Second derivatives: (1/λ) sin(x/λ) – oscillations amplitude → ∞
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Example of density profile

i=1
i=2
i=3

• w–limTab(λ) = T
(0)
ab ? - averaging over inhomogeneities that were not originally there



Further reading
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For further details see: Is there proof that backreaction of inhomogeneities is irrelevant in
cosmology? by T. Buchert et al. (arXiv:1505.07800[gr-qc])



Summary

26 / 26

• RZA provides a potentially powerful tool for describing the large scale structure of the
Universe

• Intrinsic curvature plays a role in the evolution of the scale factor

• Small metric perturbations may cause significant curvature deviations and thus
deviate from the homogeneous model

• The ’inhomog’ code will provide a tool for RZA calculations
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