

Modern reconstruction techniques of the non-linear dynamics of Large Scale Structures

Guilhem Lavaux

Institut d'Astrophysique de Paris

Collaboration:

Jens Jasche (TUM/ExC), Michael Hudson (UoW), Benjamin D. Wandelt (UPMC/IAP), Florent Leclercq (IAP \rightarrow Portsmouth) Stephen Turnbull (UoW), Jonathan Carrick

1st Roman Juszkiewicz symposium

What is "reconstruction"?

What is "reconstruction"?

• Extrapolation from the observed velocities (POTENT, Wiener, UMV method)

Bertschinger & al (1990), Dekel & al (1999), Branchini & al (2000) Zaroubi & al (1999, 2002)

 Prediction from the observed fluctuation (Linear theory, Least action, MAK) ⇒ velocity-velocity comparison

> e.g. Peebles (1980); Peebles (1989); Brenier & al (2003), Shaya, Peebles, Tully (1995); Lavaux, Tully & al (2010); etc.

Introduction

Earlier methods

- Linear theory/POTENT
- Least action/MAK
- Recent results

New statistical reconstruction methods

- ARES/VIRBIUS
- BORG
- Results on data

Conclusion / Summary

Introduct

- Earlier methods
 - Linear theory/POTENT

JS

- Least action/MAK
- Recent results

Astruction methods

- ► ARE
- BORG

New statis

Results on data

Conclusion / Summary

1. Earlier reconstruction methods

POTENT, Linear theory, MAK & friends

Extrapolation methods (Eulerian POTENT)

Dekel et al. (1990), Bertschinger et al. (1990), Nusser & Dekel (1992)

Extrapolation methods (Wiener filter)

Zaroubi et al. (1995), and later

Prediction method (Linear reconstruction)

Reconstruction 10

e.g. Peebles (1980)

Prediction method (MAK reconstruction)

Brenier et al. (2003),

Mohayaee et al. (2005), Lavaux et al. (2008), Lavaux et al. (2010)

Updated analysis framework for linear theory

velocity field reconstruction from density

Carrick, Turnbull, Lavaux & Hudson (2015, MNRAS)

Analysis framework

velocity field reconstruction from density

Carrick, Turnbull, Lavaux & Hudson (2015, MNRAS)

The 2M++ catalog

Results: gravity

Carrick, Turnbull, Lavaux & Hudson (2015, MNRAS)

Large scale structure calibrated map

Carrick, Turnbull, Lavaux & Hudson (2015, MNRAS)

Summaries of results

- LG convergence as **expected** by LCDM
- Misalignment fluctuations within LCDM predictions
- $f\sigma_8$ in **agreement** with results from other probes
- **Bulk flow** still **high** but in **good agreement** with both observations and expectations

Calibrated velocities and maps at http://cosmicflows.uwaterloo.ca .

Introduction

- Earlier methods
 - Linear theory/POTENT
 - Least action/MAK
 - Recent results

New statistical reconstruction methods

- ARES/VIRBIUS
- BORG
- Results on data

Conclusion / Summary

New statistical reconstruction methods ("linear" approaches)

Velocity Reconstruction using Bayesian Inference Scheme

VIRBIuS

Lavaux (2015, submitted, in review)

Algorithm for **RE**construction and **S**ampling (ARES)

Jasche & Wandelt (2013), Jasche & Lavaux (2014), Lavaux & Jasche (2015, submitted) Jasche & Lavaux (2015, submitted)

The VIRBIuS model

Two observational constraints:

Simplifying assumptions:

Curl-free velocity field $heta(\mathbf{x}) =
abla.\mathbf{v}(\mathbf{x})$

(POTENT-like)

Velocity tracers are not biased

Isotropic radial selection effect for distances

Residual ϵ uncorrelated

Priors: Velocity field θ Gaussian Random field $\langle \hat{\theta}(\mathbf{k}) \hat{\theta}(\mathbf{k}') \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') P(k)$ Distances $\pi(d) \propto d^p \exp\left[-\left(\frac{d}{d_{\text{cut}}}\right)^n\right]$ Extra free parameters

Lavaux (submitted, 2015)

Numerical issues: The problem

<u>Huge posterior:</u> > 10⁷ parameters

$$P(\lbrace d_i \rbrace, \lbrace \hat{\theta}_{i,j,k} \rbrace, \sigma_{\mathrm{NL}}, A_S, H, \tilde{H}, n, p, d_{\mathrm{cut}} | \lbrace z_i \rbrace, \lbrace \mu_i \rbrace, \lbrace \sigma_{z,i} \rbrace, \lbrace \sigma_{\mu,i} \rbrace)$$

Numerical issues: The problem

<u>Huge posterior:</u> > 10⁷ parameters

$$P(\{d_i\},\{\hat{\theta}_{i,j,k}\},\sigma_{\rm NL},A_S,H,\tilde{H},n,p,d_{\rm cut}|\{z_i\},\{\mu_i\},\{\sigma_{z,i}\},\{\sigma_{\mu,i}\})$$

Cannot evaluate a gridded posterior

Cannot run a classical Metropolis-Hasting Markov-Chain algorithm

BUT if we have a good proposal for a step of the chain it is doable

Reconstructed « density » and velocity field

Application: halo mock catalog

The ARES data model

Linear response operator (mask, radial selection)

Jasche et al. (2010)

ARES on 2M++: Map and Bias

Equatorial y-z plane (ra=0)

Lavaux & Jasche (2015, submitted)

ARES on 2M++: Map and Power spectrum

Blind power spectrum measurement

Equatorial y-z plane (ra=0)

Lavaux & Jasche (2015, submitted)

New statistical reconstruction methods (fully non-linear approaches)

Bayesian Origins Reconstruction from Galaxies (BORG)

Jasche & Wandelt (2013), Jasche & Lavaux (2014), Lavaux & Jasche (2015, submitted)

Field $\delta_{\scriptscriptstyle NL}[\delta]\,$ derived from Cloud-In-Cell + 2LPT dynamics

 δ sampled using Hamiltonian Monte Carlo algorithm

Jasche & Wandelt (2013)

Parameter exploration using HMC

Parameter exploration using HMC

Gaussian model vs BORG reconstruction

Jasche & Lavaux (2015, submitted)

Gaussian model vs BORG reconstruction

Initial condition reconstruction

Ensemble mean density field at present time

Ensemble mean density field at z=1000

Lavaux & Jasche (2015, submitted)

Application to CMB cross-correlations

Producing LSS/CMB observables

kSZ maps

Raytraced from 0 to 100 Mpc/h

Rees Sciama maps

Rees-Sciama+ISW effect, raytraced through the resimulation (0-100 Mpc/h)

Only non-linear effects (RS - ISW)

Pure Rees-Sciama effect, raytraced through the resimulation

Conclusion

Modernizing the analysis of Large Scale Structures

Understand the data collection Proper statistical modeling Develop <u>analytical</u> description of dynamics **Numerical integration, scaling to large computing farms** Posterior interpretation

> Chronocosmography + Full non-linear analysis