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The Universe in a nutshell
The ΛCDM cosmological model

Image credit: NASA / WMAP Science Team
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The Universe in a nutshell
The ΛCDM cosmological model

Planck’s cosmic recipe

Image credit: ESA and the Planck Collaboration
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Growth rate of density perturbations
Probing the nature of cosmic acceleration

z = 6

z = 2

z = 0

δ(x, z) = D(z)δ0(x)

f (Ω) =
d log D
d log a

' Ωγ(a)→ growth rate

Image credit: V. Springel / MPIA Garching



Motivation Methodology and data Application to SDSS Conclusions

Growth rate of density perturbations
Probing the nature of cosmic acceleration

Huterer et al., Astropart.Phys. 63 (2015)
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Growth rate of density perturbations
Measuring the growth rate with redshift-space distortions

Peacock et al., Nature 410 (2001)
Guzzo et al., Nature 451 (2008)
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Peculiar velocities from LF variations
Basic concepts

• Peculiar motion introduces systematic variations in the observed luminosity
distribution of galaxies (Nusser et al. 2011; Tammann et al. 1979)

M = Mobs + 5 log10
DL(zobs)

DL(z)

• Linear theory (c = 1):

zobs − z
1 + zobs

= V(t, r) − Φ(t, r) − ISW ≈ V(t, r)

• Maximize probability of observing galaxies given their magnitudes and redshifts:

log Ptot =
∑
i

log Pi(Mi |zi,Vi) =
φ(Mi)∫ bi

ai
φ(M)dM

• Velocity models:

V(t, r)→ V ({xi}) , V(t, r)→V(β) (linear reconstruction; β = f /b)

• Method independent of galaxy bias and traditional distance indicators
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SDSS Data Release 7
NYU Value-Added Galaxy Catalog (Blanton et al. 2005)

• Use r-band magnitudes (Petrosian)

• 14.5 < mr < 17.6

• −22.5 < Mobs < −17.0

• 0.02 < z < 0.22

• N ∼ 5 × 105

• Adopt pre-Planck cosmological parameters
(Calabrese et al. 2013)

• Realistic mocks for testing

→ SDSS footprint
→ photometric offsets between stripes
→ overall tilt over the sky
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SDSS Data Release 7
NYU Value-Added Galaxy Catalog (Blanton et al. 2005)

• Use r-band magnitudes (Petrosian)

• 14.5 < mr < 17.6

• −22.5 < Mobs < −17.0

• 0.02 < z < 0.22→ 0.06 < z < 0.12

• N ∼ 5 × 105 → 2 × 105

• Adopt pre-Planck cosmological parameters
(Calabrese et al. 2013)

• Realistic mocks for testing

→ SDSS footprint
→ photometric offsets between stripes
→ overall tilt over the sky
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LF estimators
“Non-parametric” spline-estimator of φ(M)
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Feix et al., JCAP 09 (2014) — arXiv:1405.6710

• Normalization unimportant for our analysis

• Two-parameter Schechter function does
quite well

• To reduce errors, adopt more flexible form
for φ(M)

• Model φ(M) as a spline with sampling
points {φ j(M)} for M j < M < M j+1

• Advantage: smoothness, nice analytic
properties for integrals / derivatives)

• Parameterize luminosity evolution:

e(z) = Q0(z − z0) + O
(
z2

)
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An example
Redshift-binned velocity model

• Expand binned velocity field in SHs:

V(t, r)→ Ṽ(r̂) Ṽ(r̂) =
∑
l,m

almYlm(r̂)

• For N � 1, Ptot is well approximated by a Gaussian (simplifies computation):

log Ptot(d|x) ≈ −
1
2

(x − x0)T Σ−1(x − x0) + const, where xT =
(
{q j}, {alm}

)
• Marginalize over LF parameters {q j} and construct posterior for Cl =

〈
|alm |

2
〉

by
applying Bayes’ theorem:

P ({Cl}) ∝
∫

P (d|{alm}) P ({alm}|{Cl}) dalm

• Assume {alm} as normally distributed

• For a ΛCDM model prior, Cl = Cl ({ck}):

Cl =
2
π

∫
dkk2PΦ(k)

∣∣∣∣∣∣∫ drW(r)
(

l jl
r
− k jl+1

)∣∣∣∣∣∣2
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Constraints on σ8
Results from SDSS data analysis (lmax = 5 in two redshift bins)

σ8 = 1.61±0.38

σ8 = 1.52±0.37

σ8 = 1.55±0.40

σ8 = 1.08±0.53

σ8 = 1.01±0.45

σ8 = 1.06±0.51

both bins low-z bin only
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Feix et al., JCAP 09 (2014) — arXiv:1405.6710

σ8 ≈ 1.1 ± 0.4 σ8 ≈ 1.0 ± 0.5
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Building the velocity field of SDSS galaxies
Linear velocity reconstruction (Nusser & Davis 1994; Nusser et al. 2012)

• Reconstruct the large-scale velocity field as a function of β = f /b

• Assume β = const over sample range

• Smooth redshift-space density field on a scale Rs ∼ 10h−1 Mpc

• Problem in “harmonic” space:

1
s2

d
ds

(
s2 dΦlm

ds

)
−

1
1 + β

l(l + 1)Φlm

s2 =
β

1 + β

(
δ

g
lm −

d log S
ds

dΦlm

ds

)
• Boundary conditions: set δ = 0 outside data volume (zero-padding)

• Must exclude monopole and dipole terms

• Models robust w.r.t. small-scale issues, e.g. details of galaxy bias

• Assign galaxy velocities for discrete β-values→ likelihood analysis



Motivation Methodology and data Application to SDSS Conclusions

Constraints on fσ8 at z ∼ 0.1
Results for SDSS mock catalogs (lmax = 150)
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Feix et al., PRL 115, 011301 (2015) — arXiv:1503.05945

f σ8 = 0.49±0.22
(l > 5)

f σ8 = 0.48±0.19
(l > 1)
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Constraints on fσ8 at z ∼ 0.1
Results from SDSS data analysis (lmax = 150)

f σ8 = 0.37±0.13 (l > 1)

f σ8 = 0.56±0.25 (l > 5)
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Conclusions

• ML estimators extracting the large-scale velocity field through spatial modulations in
the observed LF of galaxies offer a powerful and complementary alternative to
currently used methods

• New growth measurements are in agreement with the results from Planck

• Luminosity-based constraints on the growth rate at z ∼ 0.1 are both compatible and
consistent with those coming from RSD analyses of similar datasets

• Consistency is striking in view of the different possible systematic biases associated
with the different methods

• Luminosity-based techniques are less sensitive to nonlinear corrections than the
two-point statistics which enter the analysis of RSDs
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