Methodology and data

Application to SDSS

Conclusions

The cosmic growth rate from an alternative observational test

Martin Feix

(in collaboration with Adi Nusser and Enzo Branchini)

Technion / IAP

1st Roman Juszkiewicz Symposium, August 25th 2015

イロト イポト イヨト イヨト

Application to SDSS

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

Motivation

ΛCDM model Growth rate of density perturbations RSDs

2 Methodology and data

3 Application to SDSS

Methodology and data

Application to SDSS

Conclusions

The Universe in a nutshell The ACDM cosmological model

Image credit: NASA / WMAP Science Team

Methodology and data

Application to SDSS

Conclusions

The Universe in a nutshell The ACDM cosmological model

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Methodology and data

Application to SDSS

Conclusions

Growth rate of density perturbations Probing the nature of cosmic acceleration

Image credit: V. Springel / MPIA Garching

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Motivation ○○○●○ Methodology and data

Application to SDSS

Conclusions

Growth rate of density perturbations Probing the nature of cosmic acceleration

Huterer et al., Astropart. Phys. 63 (2015)

イロト 不得 トイヨト イヨト

э.

Motivation ○○○○● Methodology and data

Application to SDSS

Conclusions

Growth rate of density perturbations Measuring the growth rate with redshift-space distortions

Peacock et al., Nature 410 (2001)

Guzzo et al., Nature 451 (2008)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Application to SDSS

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

Motivation

2 Methodology and data

Peculiar velocities from luminosity variations SDSS DR7 data An example

3 Application to SDSS

Methodology and data

Application to SDSS

Conclusions

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peculiar velocities from LF variations Basic concepts

 Peculiar motion introduces systematic variations in the observed luminosity distribution of galaxies (Nusser et al. 2011; Tammann et al. 1979)

$$M = M_{\rm obs} + 5\log_{10}\frac{D_L(z_{\rm obs})}{D_L(z)}$$

$$\frac{z_{\rm obs} - z}{1 + z_{\rm obs}} = V(t, r) - \Phi(t, r) - \text{ISW} \approx V(t, r)$$

Maximize probability of observing galaxies given their magnitudes and redshifts:

$$\log P_{\text{tot}} = \sum_{i} \log P_i(M_i | z_i, V_i) = \frac{\phi(M_i)}{\int_{a_i}^{b_i} \phi(M) dM}$$

Velocity models:

 $V(t, \mathbf{r}) \rightarrow V(\{x_i\}), \quad V(t, \mathbf{r}) \rightarrow V(\beta)$ (linear reconstruction; $\beta = f/b$)

Method independent of galaxy bias and traditional distance indicators

Mo	otiv	ati	10	
00	00	oc		

Methodology and data

Application to SDSS

Conclusions

SDSS Data Release 7 NYU Value-Added Galaxy Catalog (Blanton et al. 2005)

- Use r-band magnitudes (Petrosian)
- $14.5 < m_r < 17.6$
- $-22.5 < M_{\rm obs} < -17.0$
- 0.02 < *z* < 0.22
- $N \sim 5 \times 10^5$
- Adopt pre-Planck cosmological parameters (Calabrese et al. 2013)
- Realistic mocks for testing
 - \rightarrow SDSS footprint
 - \rightarrow photometric offsets between stripes

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

 \rightarrow overall tilt over the sky

Methodology and data

Application to SDSS

Conclusions

SDSS Data Release 7 NYU Value-Added Galaxy Catalog (Blanton et al. 2005)

- Use r-band magnitudes (Petrosian)
- $14.5 < m_r < 17.6$
- $-22.5 < M_{\rm obs} < -17.0$
- $0.02 < z < 0.22 \rightarrow 0.06 < z < 0.12$
- $N \sim 5 \times 10^5 \rightarrow 2 \times 10^5$
- Adopt pre-Planck cosmological parameters (Calabrese et al. 2013)
- Realistic mocks for testing
 - \rightarrow SDSS footprint
 - \rightarrow photometric offsets between stripes

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 \rightarrow overall tilt over the sky

Methodology and data

Application to SDSS

LF estimators "Non-parametric" spline-estimator of $\phi(M)$

Feix et al., JCAP 09 (2014) - arXiv:1405.6710

- Normalization unimportant for our analysis
- Two-parameter Schechter function does quite well
- To reduce errors, adopt more flexible form for $\phi(M)$
- Model φ(M) as a spline with sampling points {φ_j(M)} for M_j < M < M_{j+1}
- Advantage: smoothness, nice analytic properties for integrals / derivatives)
- Parameterize luminosity evolution:

$$e(z)=Q_0(z-z_0)+O\left(z^2\right)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Motivation 00000	Methodology and data	Application to SDSS	Conclusions
An example Redshift-binned ve	elocity model		

• Expand binned velocity field in SHs:

$$V(t, \mathbf{r}) \rightarrow \tilde{V}(\hat{\mathbf{r}}) \quad \tilde{V}(\hat{\mathbf{r}}) = \sum_{l,m} a_{lm} Y_{lm}(\hat{\mathbf{r}})$$

• For $N \gg 1$, P_{tot} is well approximated by a Gaussian (simplifies computation):

$$\log P_{\text{tot}}(\mathbf{d}|\mathbf{x}) \approx -\frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \Sigma^{-1}(\mathbf{x} - \mathbf{x}_0) + \text{const}, \quad \text{where } \mathbf{x}^T = \left(\{q_j\}, \{a_{lm}\}\right)$$

 Marginalize over LF parameters {q_j} and construct posterior for C_l = (|a_{lm}|²) by applying Bayes' theorem:

$$P(\lbrace C_l \rbrace) \propto \int P(\mathbf{d}|\lbrace a_{lm} \rbrace) P(\lbrace a_{lm} \rbrace|\lbrace C_l \rbrace) da_{lm}$$

- Assume {a_{lm}} as normally distributed
- For a Λ CDM model prior, $C_l = C_l(\{c_k\})$:

$$C_{l} = \frac{2}{\pi} \int dk k^{2} P_{\Phi}(k) \left| \int dr W(r) \left(\frac{lj_{l}}{r} - kj_{l+1} \right) \right|^{2}$$

ション キョン キョン キョン しょう

 Motivation
 Methodology and data
 Application to SDSS

 00000
 00000●
 000

Constraints on σ_8 Results from SDSS data analysis ($l_{max} = 5$ in two redshift bins)

Feix et al., JCAP 09 (2014) - arXiv:1405.6710

Methodology and data

Application to SDSS

Conclusions

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

Motivation

2 Methodology and data

3 Application to SDSS

Linear velocity reconstruction Growth constraints at $z \sim 0.1$

Application to SDSS ●○○

Building the velocity field of SDSS galaxies Linear velocity reconstruction (Nusser & Davis 1994; Nusser et al. 2012)

- Reconstruct the large-scale velocity field as a function of $\beta = f/b$
- Assume $\beta = \text{const}$ over sample range
- Smooth redshift-space density field on a scale $R_s \sim 10h^{-1}$ Mpc
- Problem in "harmonic" space:

$$\frac{1}{s^2}\frac{\mathrm{d}}{\mathrm{d}s}\left(s^2\frac{\mathrm{d}\Phi_{lm}}{\mathrm{d}s}\right) - \frac{1}{1+\beta}\frac{l(l+1)\Phi_{lm}}{s^2} = \frac{\beta}{1+\beta}\left(\delta_{lm}^g - \frac{\mathrm{d}\log S}{\mathrm{d}s}\frac{\mathrm{d}\Phi_{lm}}{\mathrm{d}s}\right)$$

- Boundary conditions: set $\delta = 0$ outside data volume (zero-padding)
- Must exclude monopole and dipole terms
- Models robust w.r.t. small-scale issues, e.g. details of galaxy bias
- Assign galaxy velocities for discrete β -values \rightarrow likelihood analysis

Methodology and data

Application to SDSS ○●○ Conclusions

Constraints on $f\sigma_8$ at $z \sim 0.1$ Results for SDSS mock catalogs ($l_{max} = 150$)

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Methodology and data

Application to SDSS

(日)

э

Conclusions

Constraints on $f\sigma_8$ at $z \sim 0.1$ Results from SDSS data analysis (l_{max} = 150)

Feix et al., PRL 115, 011301 (2015) - arXiv:1503.05945

Application to SDSS

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Outline

Motivation

- 2 Methodology and data
- 3 Application to SDSS
- 4 Conclusions

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- ML estimators extracting the large-scale velocity field through spatial modulations in the observed LF of galaxies offer a powerful and complementary alternative to currently used methods
- New growth measurements are in agreement with the results from Planck
- Luminosity-based constraints on the growth rate at $z \sim 0.1$ are both **compatible** and **consistent** with those coming from RSD analyses of similar datasets
- Consistency is striking in view of the different possible systematic biases associated with the different methods
- Luminosity-based techniques are less sensitive to nonlinear corrections than the two-point statistics which enter the analysis of RSDs