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ing procedure suboptimal for extracting cosmological infor-
mation. Simply put, the cosmological constraints are de-
rived by comparing the density inside voids with that at
their boundaries. For example, in some modified theories
of gravity the inner regions of voids are emptier than in the
standard cosmological model, with the evacuated matter de-
posited at the void boundaries. Stacking randomly oriented
voids of various shapes leads to an overlap of the voids in-
ner regions and boundaries. This “blurring” decreases the
density contrast between the inner and outer parts of voids,
leading to a lower signal. Additional e↵ects reduce this signal
further. For example, there is ambiguity in the definition of
the void centre used for stacking. Using the volume barycen-
tre is undesirable since it can be close to the void boundary
or even outside the void, while using the point of lowest
density is a↵ected by Poisson noise since the inner region is
devoid of tracers (Nadathur & Hotchkiss 2015).

In this work, we introduce a new method of both mea-
suring void profiles and stacking voids by taking into account
their shape. In contrast to the spherical method, we propose
that void profiles should be measured with respect to the
void boundary. This leads to a much sharper distinction be-
tween the inside, boundary and outside of voids, resulting
in at least two major gains. Firstly, it leads to a better un-
derstanding of the structure and dynamics of cosmic voids
enabling a closer comparison with analytical theories of void
evolution. Secondly, it increases the stacked lensing signal
of voids, which is the best probe for measuring void den-
sity profiles (Higuchi, Oguri & Hamana 2013; Krause et al.
2013).

The paper is organized as follows. In Sec. 2 we outline
the new method by applying it to a simplified void model; in
Sec. 3 we describe the cosmological simulation to which we
apply the method as well as the void catalogues we construct
from it; in Secs. 4-6 we present the density, velocity and weak
lensing profiles obtained using the new boundary stacking
approach. We conclude with a short discussion and summary
in Sec. 7.

2 THE BOUNDARY PROFILE OF VOIDS

Here we give an overview of the proposed method for com-
puting boundary void profiles, which we illustrate using a
simplified model of a void. We construct a void by randomly
selecting a shape for it from a cosmological N-body simu-
lation. A cross section through the boundary of the void is
shown in the top panel of Fig. 1. For simplicity, the inner re-
gion of the void is assigned constant density, 1+�

inside

= 0.1,
where, � = ⇢

⇢

� 1, denotes the density contrast. The void is
embedded within a uniform background, 1 + �

outside

= 1,
and the mass evacuated from within the void is deposited
uniformly on the boundary, which is shown as a solid curve.

Finding the spherically averaged profile involves finding
a void center, typically the volume-weighted barycentre,and
growing concentric shells around it. This process is schemat-
ically illustrated in the centre panel of Fig. 1, where, for
clarity, we only show a few radial shells, but, in practice, we
employ many more such shells. The spherical profile is given
by the mean density of matter inside each shell. Applying
this method to our model void provides the spherical density
profile shown in the top panel of Fig. 2. For small radial dis-

Figure 1. Illustration of the new method for measuring void

profiles. The top panel shows the void boundary, with the actual

void shape selected randomly from voids found in an N-body

simulation. For simplicity, the void is assigned a constant density,

1 + �
inside

= 0.1, inside its boundaries and is embedded in a

uniform background with 1 + �
outside

= 1. The mass evacuated

from inside the void is deposited at the void boundary, which has

1 + �
boundary

= 30. The center panel shows the spherical shells

around the barycentre of the void that are used for computing the

spherical profile. The bottom panel shows lines of equal distance

from the void boundary (thick black curve) that are used for

computing the boundary profile proposed in this paper.

tances, which correspond to shells fully enclosed by the void,
we recover the input density value, 1 + � = 0.1. At larger
radii, r > 9 h�1Mpc, the shells intersect the void boundary
giving rise to a “noisy” profile. Due to the irregular shape of
the void, di↵erent radial shells have varying degrees of over-
lap with the void boundary, giving rise to “noisy” features1.
These persist for as long as the shells intersect the bound-
ary, corresponding to r 6 26 h�1Mpc, while for even larger
radii we recover the background density. This simple exam-
ple illustrates that the spherical density profile is a complex
convolution of the shape of the void and its actual density
distribution.

To calculate the void profile with respect to the bound-

1

In contrast to our simplified model, in real voids the mass is

not distributed uniformly along the void boundary, resulting in

even larger “noisy” features.
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ing procedure suboptimal for extracting cosmological infor-
mation. Simply put, the cosmological constraints are de-
rived by comparing the density inside voids with that at
their boundaries. For example, in some modified theories
of gravity the inner regions of voids are emptier than in the
standard cosmological model, with the evacuated matter de-
posited at the void boundaries. Stacking randomly oriented
voids of various shapes leads to an overlap of the voids in-
ner regions and boundaries. This “blurring” decreases the
density contrast between the inner and outer parts of voids,
leading to a lower signal. Additional e↵ects reduce this signal
further. For example, there is ambiguity in the definition of
the void centre used for stacking. Using the volume barycen-
tre is undesirable since it can be close to the void boundary
or even outside the void, while using the point of lowest
density is a↵ected by Poisson noise since the inner region is
devoid of tracers (Nadathur & Hotchkiss 2015).

In this work, we introduce a new method of both mea-
suring void profiles and stacking voids by taking into account
their shape. In contrast to the spherical method, we propose
that void profiles should be measured with respect to the
void boundary. This leads to a much sharper distinction be-
tween the inside, boundary and outside of voids, resulting
in at least two major gains. Firstly, it leads to a better un-
derstanding of the structure and dynamics of cosmic voids
enabling a closer comparison with analytical theories of void
evolution. Secondly, it increases the stacked lensing signal
of voids, which is the best probe for measuring void den-
sity profiles (Higuchi, Oguri & Hamana 2013; Krause et al.
2013).

The paper is organized as follows. In Sec. 2 we outline
the new method by applying it to a simplified void model; in
Sec. 3 we describe the cosmological simulation to which we
apply the method as well as the void catalogues we construct
from it; in Secs. 4-6 we present the density, velocity and weak
lensing profiles obtained using the new boundary stacking
approach. We conclude with a short discussion and summary
in Sec. 7.

2 THE BOUNDARY PROFILE OF VOIDS

Here we give an overview of the proposed method for com-
puting boundary void profiles, which we illustrate using a
simplified model of a void. We construct a void by randomly
selecting a shape for it from a cosmological N-body simu-
lation. A cross section through the boundary of the void is
shown in the top panel of Fig. 1. For simplicity, the inner re-
gion of the void is assigned constant density, 1+�

inside

= 0.1,
where, � = ⇢

⇢

� 1, denotes the density contrast. The void is
embedded within a uniform background, 1 + �

outside

= 1,
and the mass evacuated from within the void is deposited
uniformly on the boundary, which is shown as a solid curve.

Finding the spherically averaged profile involves finding
a void center, typically the volume-weighted barycentre,and
growing concentric shells around it. This process is schemat-
ically illustrated in the centre panel of Fig. 1, where, for
clarity, we only show a few radial shells, but, in practice, we
employ many more such shells. The spherical profile is given
by the mean density of matter inside each shell. Applying
this method to our model void provides the spherical density
profile shown in the top panel of Fig. 2. For small radial dis-

Figure 1. Illustration of the new method for measuring void

profiles. The top panel shows the void boundary, with the actual

void shape selected randomly from voids found in an N-body

simulation. For simplicity, the void is assigned a constant density,

1 + �
inside

= 0.1, inside its boundaries and is embedded in a

uniform background with 1 + �
outside

= 1. The mass evacuated

from inside the void is deposited at the void boundary, which has

1 + �
boundary

= 30. The center panel shows the spherical shells

around the barycentre of the void that are used for computing the

spherical profile. The bottom panel shows lines of equal distance

from the void boundary (thick black curve) that are used for

computing the boundary profile proposed in this paper.

tances, which correspond to shells fully enclosed by the void,
we recover the input density value, 1 + � = 0.1. At larger
radii, r > 9 h�1Mpc, the shells intersect the void boundary
giving rise to a “noisy” profile. Due to the irregular shape of
the void, di↵erent radial shells have varying degrees of over-
lap with the void boundary, giving rise to “noisy” features1.
These persist for as long as the shells intersect the bound-
ary, corresponding to r 6 26 h�1Mpc, while for even larger
radii we recover the background density. This simple exam-
ple illustrates that the spherical density profile is a complex
convolution of the shape of the void and its actual density
distribution.

To calculate the void profile with respect to the bound-

1

In contrast to our simplified model, in real voids the mass is

not distributed uniformly along the void boundary, resulting in

even larger “noisy” features.
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ing procedure suboptimal for extracting cosmological infor-
mation. Simply put, the cosmological constraints are de-
rived by comparing the density inside voids with that at
their boundaries. For example, in some modified theories
of gravity the inner regions of voids are emptier than in the
standard cosmological model, with the evacuated matter de-
posited at the void boundaries. Stacking randomly oriented
voids of various shapes leads to an overlap of the voids in-
ner regions and boundaries. This “blurring” decreases the
density contrast between the inner and outer parts of voids,
leading to a lower signal. Additional e↵ects reduce this signal
further. For example, there is ambiguity in the definition of
the void centre used for stacking. Using the volume barycen-
tre is undesirable since it can be close to the void boundary
or even outside the void, while using the point of lowest
density is a↵ected by Poisson noise since the inner region is
devoid of tracers (Nadathur & Hotchkiss 2015).

In this work, we introduce a new method of both mea-
suring void profiles and stacking voids by taking into account
their shape. In contrast to the spherical method, we propose
that void profiles should be measured with respect to the
void boundary. This leads to a much sharper distinction be-
tween the inside, boundary and outside of voids, resulting
in at least two major gains. Firstly, it leads to a better un-
derstanding of the structure and dynamics of cosmic voids
enabling a closer comparison with analytical theories of void
evolution. Secondly, it increases the stacked lensing signal
of voids, which is the best probe for measuring void den-
sity profiles (Higuchi, Oguri & Hamana 2013; Krause et al.
2013).

The paper is organized as follows. In Sec. 2 we outline
the new method by applying it to a simplified void model; in
Sec. 3 we describe the cosmological simulation to which we
apply the method as well as the void catalogues we construct
from it; in Secs. 4-6 we present the density, velocity and weak
lensing profiles obtained using the new boundary stacking
approach. We conclude with a short discussion and summary
in Sec. 7.

2 THE BOUNDARY PROFILE OF VOIDS

Here we give an overview of the proposed method for com-
puting boundary void profiles, which we illustrate using a
simplified model of a void. We construct a void by randomly
selecting a shape for it from a cosmological N-body simu-
lation. A cross section through the boundary of the void is
shown in the top panel of Fig. 1. For simplicity, the inner re-
gion of the void is assigned constant density, 1+�

inside

= 0.1,
where, � = ⇢

⇢

� 1, denotes the density contrast. The void is
embedded within a uniform background, 1 + �

outside

= 1,
and the mass evacuated from within the void is deposited
uniformly on the boundary, which is shown as a solid curve.

Finding the spherically averaged profile involves finding
a void center, typically the volume-weighted barycentre,and
growing concentric shells around it. This process is schemat-
ically illustrated in the centre panel of Fig. 1, where, for
clarity, we only show a few radial shells, but, in practice, we
employ many more such shells. The spherical profile is given
by the mean density of matter inside each shell. Applying
this method to our model void provides the spherical density
profile shown in the top panel of Fig. 2. For small radial dis-

Figure 1. Illustration of the new method for measuring void

profiles. The top panel shows the void boundary, with the actual

void shape selected randomly from voids found in an N-body

simulation. For simplicity, the void is assigned a constant density,

1 + �
inside

= 0.1, inside its boundaries and is embedded in a

uniform background with 1 + �
outside

= 1. The mass evacuated

from inside the void is deposited at the void boundary, which has

1 + �
boundary

= 30. The center panel shows the spherical shells

around the barycentre of the void that are used for computing the

spherical profile. The bottom panel shows lines of equal distance

from the void boundary (thick black curve) that are used for

computing the boundary profile proposed in this paper.

tances, which correspond to shells fully enclosed by the void,
we recover the input density value, 1 + � = 0.1. At larger
radii, r > 9 h�1Mpc, the shells intersect the void boundary
giving rise to a “noisy” profile. Due to the irregular shape of
the void, di↵erent radial shells have varying degrees of over-
lap with the void boundary, giving rise to “noisy” features1.
These persist for as long as the shells intersect the bound-
ary, corresponding to r 6 26 h�1Mpc, while for even larger
radii we recover the background density. This simple exam-
ple illustrates that the spherical density profile is a complex
convolution of the shape of the void and its actual density
distribution.

To calculate the void profile with respect to the bound-

1

In contrast to our simplified model, in real voids the mass is

not distributed uniformly along the void boundary, resulting in

even larger “noisy” features.
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Figure 2. Void density profile. The top panel shows the spherical

profile of the simple void model illustrated in Fig. 1. The vertical

grey line marks the e↵ective radius of the void, R
e↵

, defined in

Eq. (1). The bottom panel shows the density profile of the void as

a function of the distance, D, from the void boundary. For clarity,

we define D as having negative values inside the void and positive

outside. The vertical grey line marks to the boundary of the void.

ary of the void we compute the boundary distance, D, that
corresponds to the minimum distance from each point to the
void boundary (see Eq. (3) for a formal definition). The out-
come is illustrated in the bottom panel of Fig. 1, where each
thin contour line corresponds to points that are at equal
distance from the boundary of the model void. Now we can
calculate the density profile as a function of D by computing
the mean density inside each shell of constant D (in prac-
tice, we use many more shells than those shown in Fig. 1).
To distinguish between points inside and outside the void we
adopt the convention that D takes on negative values inside
the void and positive outside, with D = 0 at the void bound-
ary. The resulting profile is plotted in the bottom panel of
Fig. 2 and shows that we recover the actual input density
distribution: 1+� = 0.1 inside the void, a large value of 1+�
at the void boundary due to the mass evacuated from inside
the void, and 1 + � = 1 outside the void.

The new void profile has two major advantages. Firstly,
it is independent of the shape of the void. For example, dis-
torting the boundary of the void in Fig. 1, while keeping
the same density distribution inside and outside the void,
would result in exactly the same density profile as a function

of D. Secondly, on average, the mass displaced from inside
the void is found at the void boundary, with the resulting
density at the boundary being at least an order of magni-
tude higher than inside the void (Sheth & van de Weygaert
2004, and Sec. 4). Thus, while the spherical profile for radial
shells that intersect the void boundary is dominated by the
density at the boundary and not by the density inside the
void, our proposed profile naturally di↵erentiates between
the boundary, the inside and the outside of the void.

3 VOID IDENTIFICATION

We make use of the high-resolution Millennium cosmologi-
cal N-body simulation (MS; Springel et al. 2005). The MS
follows the evolution of cold dark matter (DM) using 21603

particles, each of mass, m
p

= 8.6 ⇥ 108 h�1M�, to resolve
structure formation in a periodic cube 500 h�1Mpc on a
side. The MS assumes the WMAP-1 cosmogony (Spergel
et al. 2003) with the following cosmological parameters:
⌦

m

= 0.23, ⌦
⇤

= 0.75, h = 0.73, n
s

= 1 and �
8

= 0.9.
We identify voids using mock catalogues constructed

from the semi-analytic galaxy formation model of Guo et al.
(2011). For this, we select only galaxies with stellar masses,
M

?

> 3.8 ⇥ 1010 h�1M�, such that the number density is
n = 3.2 ⇥ 10�3 h3Mpc�3, similar to that of typical redshift
surveys (e.g. Zehavi et al. 2011). These galaxies are used as
input to the Delaunay Tessellation Field Estimator (DTFE;
Schaap & van de Weygaert 2000; van de Weygaert & Schaap
2009; Cautun & van de Weygaert 2011), which uses a Delau-
nay triangulation with the galaxies at its vertices to extrapo-
late a volume filling density field. The resulting density field
is used as input to the void identification method. We also
apply the DTFE method to the distribution of DM particles
to obtain continuous density and velocity fields, which are
used for computing the density, velocity and weak lensing
profile of voids. Both the galaxy density field and the DM
density and velocity fields are stored on a 12803 regular grid
with a grid cell size of 0.39 h�1Mpc.

The voids are determined using the Watershed Void
Finder (WVF; Platen, van de Weygaert & Jones 2007),
which identifies voids as the watershed basins of the large
scale density field, similar to the ZOBOV void finder
(Neyrinck 2008). Compared to other methods, the water-
shed void finders have the advantage of not imposing any a
priori constrains on the size, shape and mean underdensity
of the voids they identify (Colberg et al. 2008). The WVF
proceeds by first smoothing the galaxy density field with
a 2 h�1Mpc Gaussian filter, whose size corresponds to the
typical width of the filaments and walls forming the void
boundaries (e.g. Cautun, van de Weygaert & Jones 2013;
Cautun et al. 2014). This smoothing is applied in order to
dilute any substructures present on the void boundaries (e.g.
see Cautun et al. 2014), which could potentially give rise
to artificial voids. The smoothed density field is segmented
into watershed basins using the watershed transform imple-
mented using the steepest descent method (e.g. Bieniek &
Moga 2000). This process is equivalent to following the path
of a rain drop along a landscape: each volume element, in our
case the voxel of a regular grid, is connected to the neigh-
bour with the lowest density (i.e. steepest descent), with the
same process repeated for each neighbour until a minimum

c� 0000 RAS, MNRAS 000, 000–000
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Figure 2. Void density profile. The top panel shows the spherical

profile of the simple void model illustrated in Fig. 1. The vertical

grey line marks the e↵ective radius of the void, R
e↵

, defined in

Eq. (1). The bottom panel shows the density profile of the void as

a function of the distance, D, from the void boundary. For clarity,

we define D as having negative values inside the void and positive

outside. The vertical grey line marks to the boundary of the void.

ary of the void we compute the boundary distance, D, that
corresponds to the minimum distance from each point to the
void boundary (see Eq. (3) for a formal definition). The out-
come is illustrated in the bottom panel of Fig. 1, where each
thin contour line corresponds to points that are at equal
distance from the boundary of the model void. Now we can
calculate the density profile as a function of D by computing
the mean density inside each shell of constant D (in prac-
tice, we use many more shells than those shown in Fig. 1).
To distinguish between points inside and outside the void we
adopt the convention that D takes on negative values inside
the void and positive outside, with D = 0 at the void bound-
ary. The resulting profile is plotted in the bottom panel of
Fig. 2 and shows that we recover the actual input density
distribution: 1+� = 0.1 inside the void, a large value of 1+�
at the void boundary due to the mass evacuated from inside
the void, and 1 + � = 1 outside the void.

The new void profile has two major advantages. Firstly,
it is independent of the shape of the void. For example, dis-
torting the boundary of the void in Fig. 1, while keeping
the same density distribution inside and outside the void,
would result in exactly the same density profile as a function

of D. Secondly, on average, the mass displaced from inside
the void is found at the void boundary, with the resulting
density at the boundary being at least an order of magni-
tude higher than inside the void (Sheth & van de Weygaert
2004, and Sec. 4). Thus, while the spherical profile for radial
shells that intersect the void boundary is dominated by the
density at the boundary and not by the density inside the
void, our proposed profile naturally di↵erentiates between
the boundary, the inside and the outside of the void.

3 VOID IDENTIFICATION

We make use of the high-resolution Millennium cosmologi-
cal N-body simulation (MS; Springel et al. 2005). The MS
follows the evolution of cold dark matter (DM) using 21603

particles, each of mass, m
p

= 8.6 ⇥ 108 h�1M�, to resolve
structure formation in a periodic cube 500 h�1Mpc on a
side. The MS assumes the WMAP-1 cosmogony (Spergel
et al. 2003) with the following cosmological parameters:
⌦

m

= 0.23, ⌦
⇤

= 0.75, h = 0.73, n
s

= 1 and �
8

= 0.9.
We identify voids using mock catalogues constructed

from the semi-analytic galaxy formation model of Guo et al.
(2011). For this, we select only galaxies with stellar masses,
M

?

> 3.8 ⇥ 1010 h�1M�, such that the number density is
n = 3.2 ⇥ 10�3 h3Mpc�3, similar to that of typical redshift
surveys (e.g. Zehavi et al. 2011). These galaxies are used as
input to the Delaunay Tessellation Field Estimator (DTFE;
Schaap & van de Weygaert 2000; van de Weygaert & Schaap
2009; Cautun & van de Weygaert 2011), which uses a Delau-
nay triangulation with the galaxies at its vertices to extrapo-
late a volume filling density field. The resulting density field
is used as input to the void identification method. We also
apply the DTFE method to the distribution of DM particles
to obtain continuous density and velocity fields, which are
used for computing the density, velocity and weak lensing
profile of voids. Both the galaxy density field and the DM
density and velocity fields are stored on a 12803 regular grid
with a grid cell size of 0.39 h�1Mpc.

The voids are determined using the Watershed Void
Finder (WVF; Platen, van de Weygaert & Jones 2007),
which identifies voids as the watershed basins of the large
scale density field, similar to the ZOBOV void finder
(Neyrinck 2008). Compared to other methods, the water-
shed void finders have the advantage of not imposing any a
priori constrains on the size, shape and mean underdensity
of the voids they identify (Colberg et al. 2008). The WVF
proceeds by first smoothing the galaxy density field with
a 2 h�1Mpc Gaussian filter, whose size corresponds to the
typical width of the filaments and walls forming the void
boundaries (e.g. Cautun, van de Weygaert & Jones 2013;
Cautun et al. 2014). This smoothing is applied in order to
dilute any substructures present on the void boundaries (e.g.
see Cautun et al. 2014), which could potentially give rise
to artificial voids. The smoothed density field is segmented
into watershed basins using the watershed transform imple-
mented using the steepest descent method (e.g. Bieniek &
Moga 2000). This process is equivalent to following the path
of a rain drop along a landscape: each volume element, in our
case the voxel of a regular grid, is connected to the neigh-
bour with the lowest density (i.e. steepest descent), with the
same process repeated for each neighbour until a minimum
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ing procedure suboptimal for extracting cosmological infor-
mation. Simply put, the cosmological constraints are de-
rived by comparing the density inside voids with that at
their boundaries. For example, in some modified theories
of gravity the inner regions of voids are emptier than in the
standard cosmological model, with the evacuated matter de-
posited at the void boundaries. Stacking randomly oriented
voids of various shapes leads to an overlap of the voids in-
ner regions and boundaries. This “blurring” decreases the
density contrast between the inner and outer parts of voids,
leading to a lower signal. Additional e↵ects reduce this signal
further. For example, there is ambiguity in the definition of
the void centre used for stacking. Using the volume barycen-
tre is undesirable since it can be close to the void boundary
or even outside the void, while using the point of lowest
density is a↵ected by Poisson noise since the inner region is
devoid of tracers (Nadathur & Hotchkiss 2015).

In this work, we introduce a new method of both mea-
suring void profiles and stacking voids by taking into account
their shape. In contrast to the spherical method, we propose
that void profiles should be measured with respect to the
void boundary. This leads to a much sharper distinction be-
tween the inside, boundary and outside of voids, resulting
in at least two major gains. Firstly, it leads to a better un-
derstanding of the structure and dynamics of cosmic voids
enabling a closer comparison with analytical theories of void
evolution. Secondly, it increases the stacked lensing signal
of voids, which is the best probe for measuring void den-
sity profiles (Higuchi, Oguri & Hamana 2013; Krause et al.
2013).

The paper is organized as follows. In Sec. 2 we outline
the new method by applying it to a simplified void model; in
Sec. 3 we describe the cosmological simulation to which we
apply the method as well as the void catalogues we construct
from it; in Secs. 4-6 we present the density, velocity and weak
lensing profiles obtained using the new boundary stacking
approach. We conclude with a short discussion and summary
in Sec. 7.

2 THE BOUNDARY PROFILE OF VOIDS

Here we give an overview of the proposed method for com-
puting boundary void profiles, which we illustrate using a
simplified model of a void. We construct a void by randomly
selecting a shape for it from a cosmological N-body simu-
lation. A cross section through the boundary of the void is
shown in the top panel of Fig. 1. For simplicity, the inner re-
gion of the void is assigned constant density, 1+�

inside

= 0.1,
where, � = ⇢

⇢

� 1, denotes the density contrast. The void is
embedded within a uniform background, 1 + �

outside

= 1,
and the mass evacuated from within the void is deposited
uniformly on the boundary, which is shown as a solid curve.

Finding the spherically averaged profile involves finding
a void center, typically the volume-weighted barycentre,and
growing concentric shells around it. This process is schemat-
ically illustrated in the centre panel of Fig. 1, where, for
clarity, we only show a few radial shells, but, in practice, we
employ many more such shells. The spherical profile is given
by the mean density of matter inside each shell. Applying
this method to our model void provides the spherical density
profile shown in the top panel of Fig. 2. For small radial dis-

Figure 1. Illustration of the new method for measuring void

profiles. The top panel shows the void boundary, with the actual

void shape selected randomly from voids found in an N-body

simulation. For simplicity, the void is assigned a constant density,

1 + �
inside

= 0.1, inside its boundaries and is embedded in a

uniform background with 1 + �
outside

= 1. The mass evacuated

from inside the void is deposited at the void boundary, which has

1 + �
boundary

= 30. The center panel shows the spherical shells

around the barycentre of the void that are used for computing the

spherical profile. The bottom panel shows lines of equal distance

from the void boundary (thick black curve) that are used for

computing the boundary profile proposed in this paper.

tances, which correspond to shells fully enclosed by the void,
we recover the input density value, 1 + � = 0.1. At larger
radii, r > 9 h�1Mpc, the shells intersect the void boundary
giving rise to a “noisy” profile. Due to the irregular shape of
the void, di↵erent radial shells have varying degrees of over-
lap with the void boundary, giving rise to “noisy” features1.
These persist for as long as the shells intersect the bound-
ary, corresponding to r 6 26 h�1Mpc, while for even larger
radii we recover the background density. This simple exam-
ple illustrates that the spherical density profile is a complex
convolution of the shape of the void and its actual density
distribution.

To calculate the void profile with respect to the bound-

1

In contrast to our simplified model, in real voids the mass is

not distributed uniformly along the void boundary, resulting in

even larger “noisy” features.
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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(6)
where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Void detection
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• Use the Millennium cosmological simulation ( L = 500 Mpc/h ).

• Populate the simulation with galaxies using semi-analitycal galaxy 
formation models (Guo+ 2011).

• Select the most massive galaxies to obtain a number density,      
n = 3.2 x 10-3 (Mpc/h)3, equivalent to the SDSS main sample   
( M_stellar > 4 x 1010 M_solar/h ).

• Identify voids using the Watershed Void Finder (Platen+ 2007).
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Galaxy distribution
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Galaxy distribution

Density field (DTFE; Schaap & 
van de Weygaert 2000)
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Galaxy distribution

Density field (DTFE; Schaap & 
van de Weygaert 2000)

Voids (watershed basins;  
Platen+ 2007)
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1. Density profiles.

2. Velocity profiles.

3. Weak lensing from voids.
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Figure 1. The filamentary environments in a 100 × 100 × 10 (h−1 Mpc)3 slice centred on the most massive MS-II halo at present redshift z = 0. Five of the
panels show the filaments detected with: (a) NEXUS_den, (b) NEXUS_veldiv, (c) NEXUS_tidal, (d) NEXUS_velshear and (e) NEXUS+ methods. The sixth
panel, (f), shows a projection of the density field in the selected volume. The density scale 1 + δ is shown on the side of the panel.
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:

� =

8
>><

>>:

�
in

✓
1 +

⇣
�

max

�

in

� 1
⌘

e
� |D|

t
in

◆
(1�↵|D|) for D < 0

�
out

✓
1 +

⇣
�

max

�

out

� 1
⌘

e
� |D|

t
out

◆
for D > 0

,

(6)
where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:

� =

8
>><

>>:

�
in

✓
1 +

⇣
�

max

�

in

� 1
⌘

e
� |D|

t
in

◆
(1�↵|D|) for D < 0

�
out

✓
1 +

⇣
�

max

�

out

� 1
⌘

e
� |D|

t
out

◆
for D > 0

,

(6)
where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
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, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
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. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
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, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
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, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 5. The stacked density profile for voids in three ranges

in e↵ective radius, R
e↵

. The two panels show the spherical (top)

and the boundary (bottom) profiles.

4.2 Stacked profiles

In Fig. 5 we present the mean density profiles of voids in
three R

e↵

bins chosen to probe a variety of void sizes (see
Fig. 3). The spherical stacked profiles are underdense in the
inner parts, with � slowly rising to a maximum at r ' R

e↵

,
followed by a gradual transition towards the average back-
ground density (Hamaus, Sutter & Wandelt 2014; Nadathur
et al. 2015). The smaller voids have a large density peak
and correspond to collapsing voids embedded in overdense
regions (void-in-cloud). The height of the density peak de-
creases with R

e↵

because larger voids correspond to predom-
inantly expanding voids embedded in underdense regions
(void-in-void; Sheth & van de Weygaert 2004; Paz et al.
2013; Hamaus et al. 2014).

The boundary profile paints a di↵erent picture of the
structure of voids. In the inner most parts, D<⇠ �4 h�1Mpc,
the density is very low, �0.9 6 � 6 �0.5, and nearly con-
stant, with only a very small increase in � with D. This is
followed by a very steep rise of a density ridge at the bound-
ary, which decreases nearly as fast at D > 0. At even fur-
ther distances, the density gradually reaches the background
value.

The boundary density profile can be understood within
the multiscale picture of the cosmic web. Void interiors are
not fully empty, but instead are criss-crossed by tenuous fil-

Figure 6. A simple model to understand the boundary profile.

The thick black curves show the boundary of the central void

and that of its neighbours, which are coloured according to their

density, with dark (light) grey showing high (low) density. The

highest density regions correspond to the intersection points of

two or more void boundaries, with the density decreasing farther

away. The thin curves shows contours of constant distance, D,

from the boundary of the central void, with two of those con-

tours, D = �5 and 5 h�1

Mpc, highlighted in cyan. The outer

contours intersect the boundary of neighbouring voids and hence

correspond to a higher mean density than the inner contours.

aments and walls that become more densely packed as one
approaches the massive structures that delimit the voids
(Cautun et al. 2014). Thus, the mean density is expected
to increase close to the void boundary, in accord with the
results shown in the bottom panel of Fig. 5. Close to the
void boundary, the behaviour is dominated by the promi-
nent filaments and sheets that delimit the void and that are
substantially denser than the tenuous structures found in-
side the void (Cautun et al. 2014). The picture outside the
void is complicated by the presence of neighbouring voids
and their own dense ridges, as illustrated in Fig. 6. The
density profile is not symmetric around D = 0 since neigh-
bouring voids can have di↵erent sizes, and hence di↵erent
ridge thicknesses. In addition, the outer contours intersect
the boundary of neighbouring voids. Due to clustering, the
density varies along the void ridge, with higher density typ-
ically associated with the intersection points of two or more
void boundaries. The density profile is sensitive to this clus-
tering, which would explain why the slope,

�� d�

dD

��, is shallower
outside the void than inside the void.

Compared to the spherical profile, the average boundary
profile shows smaller di↵erences between voids of di↵erent
sizes and is close to a self-similar profile. Before discussing
these di↵erences, we proceed by fitting the boundary profile
with the empirical function:
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where, for brevity, we use the notation � = 1 + �. The fit is
a continuous function composed of two parts that describe
the inner, D < 0, and outer, D > 0, mean density profiles,
with �(D = 0) = �

max

.
The very interiors of the void are characterised by the

density parameter, �
in

, and by the slope ↵, the latter ac-
counting for the fact that � increases with D. The density
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Figure 7. The best-fitting function (Eq. 6) to the boundary

density profile of voids. The top panel shows the mean density

for voids with R
e↵

= 18 � 22 h�1

Mpc (symbols with error bars)

and the best-fit function (dashed line). The remaining panels show

the ratio between the data and the best-fitting function for voids

of di↵erent sizes. The fit was done using only data points with

D 6 10 h�1

Mpc.

ridge at D ' 0 is well described by an exponential function
that takes a maximum value, �

max

, at D = 0. This ridge is
not symmetric with respect to D = 0 and so we have two pa-
rameters in the exponential, t

in

and t
out

, that give the thick-
ness of the inner and outer void boundary, respectively. Just
outside the void boundary, the density has yet to converge
to the background value, so there is an additional parame-
ter, �

out

, to account for this e↵ect. The D > 0 part of the
fitting function should include an additional component to
account for the transition towards the background density at
large D, but, for simplicity, we omit such a component. Our
function is characterised by six parameters which is similar
to other empirical fits to spherical void profiles: Hamaus,
Sutter & Wandelt (2014) proposed a four parameter fit that
was latter extended by Barreira et al. (2015) to a five pa-
rameter fit to give a better description of voids identified
in the DM density field. Compared to the boundary profile,
the spherical one smooths over many density features, so it
is not surprising that the former requires more parameters.

The upper panel of Fig. 7 shows that the empirical
function of Eq. (6) describes, to very good approximation,
the mean density profile. To better assess the fit quality,
the lower panels of Fig. 7 show the ratio between the mea-
sured profile and the best-fitting value for three void sam-
ples. The fit matches the data well, except for a few points
around D ' 0, which show a ⇠10% di↵erence, and for the
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Figure 8. The best-fitting parameters of Eq. (6) obtained from

stacked void density profiles. The top panel show the thickness

of the inner void boundary, t
in

, as a function of void radius. The

remaining panels show the dependence of the other fit parameters:

�

in

, ↵, �

max

, �

out

and t
out

as a function of t
in

. The error bars

give the 1� uncertainty. The dashed lines show that the best-

fitting parameters follow simple relations with R
e↵

(top panel)

and t
in

(remaining panels).

D 6 �15 h�1Mpc region of the largest voids, which shows
a systematic deviation from the best-fit.

Fig. 8 shows the best-fitting parameters and their 1�
errors for voids of di↵erent size. These were computed us-
ing the Markov chain Monte Carlo method implemented
in the emcee package (Foreman-Mackey et al. 2013). The
figure shows t

in

as a function of R
e↵

and the remaining
parameters as a function of t

in

. The best-fitting parame-
ters follow linear relations with t

in

, which in turn can be
parametrized as a quadratic function of R

e↵

. This suggests
that the parametrization of Eq. (6) is overdetermined and
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Figure 7. The best-fitting function (Eq. 6) to the boundary
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e↵

= 18 � 22 h�1

Mpc (symbols with error bars)

and the best-fit function (dashed line). The remaining panels show

the ratio between the data and the best-fitting function for voids

of di↵erent sizes. The fit was done using only data points with

D 6 10 h�1

Mpc.

ridge at D ' 0 is well described by an exponential function
that takes a maximum value, �

max

, at D = 0. This ridge is
not symmetric with respect to D = 0 and so we have two pa-
rameters in the exponential, t

in

and t
out

, that give the thick-
ness of the inner and outer void boundary, respectively. Just
outside the void boundary, the density has yet to converge
to the background value, so there is an additional parame-
ter, �

out

, to account for this e↵ect. The D > 0 part of the
fitting function should include an additional component to
account for the transition towards the background density at
large D, but, for simplicity, we omit such a component. Our
function is characterised by six parameters which is similar
to other empirical fits to spherical void profiles: Hamaus,
Sutter & Wandelt (2014) proposed a four parameter fit that
was latter extended by Barreira et al. (2015) to a five pa-
rameter fit to give a better description of voids identified
in the DM density field. Compared to the boundary profile,
the spherical one smooths over many density features, so it
is not surprising that the former requires more parameters.

The upper panel of Fig. 7 shows that the empirical
function of Eq. (6) describes, to very good approximation,
the mean density profile. To better assess the fit quality,
the lower panels of Fig. 7 show the ratio between the mea-
sured profile and the best-fitting value for three void sam-
ples. The fit matches the data well, except for a few points
around D ' 0, which show a ⇠10% di↵erence, and for the
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Figure 8. The best-fitting parameters of Eq. (6) obtained from

stacked void density profiles. The top panel show the thickness

of the inner void boundary, t
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, as a function of void radius. The

remaining panels show the dependence of the other fit parameters:

�

in

, ↵, �

max

, �

out

and t
out

as a function of t
in

. The error bars

give the 1� uncertainty. The dashed lines show that the best-

fitting parameters follow simple relations with R
e↵

(top panel)

and t
in

(remaining panels).

D 6 �15 h�1Mpc region of the largest voids, which shows
a systematic deviation from the best-fit.

Fig. 8 shows the best-fitting parameters and their 1�
errors for voids of di↵erent size. These were computed us-
ing the Markov chain Monte Carlo method implemented
in the emcee package (Foreman-Mackey et al. 2013). The
figure shows t

in

as a function of R
e↵

and the remaining
parameters as a function of t

in

. The best-fitting parame-
ters follow linear relations with t

in

, which in turn can be
parametrized as a quadratic function of R

e↵

. This suggests
that the parametrization of Eq. (6) is overdetermined and
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that the number of free parameters is too large (similar re-
lations between the fit parameters have been reported by
Hamaus, Sutter & Wandelt 2014). One needs only 13 pa-
rameters, three for the dependence of t

in

on R
e↵

and two
for the dependence of each remaining parameter on t

in

, to
fit in one step voids of various sizes. We repeated the fit
using these parametrizations and obtained similarly good
fits.

According to Fig. 8, void interiors are characterised by
a nearly constant density, �

in

, but by di↵erent values of the
density slope, ↵, with larger voids having more slowly vary-
ing density profiles. The height of the density ridge, �

max

, is
largest for small voids since these are typically embedded in
overdense regions. This is illustrated also by the �

out

den-
sity parameter that is larger than 1 for the smallest voids
and that decreases with void size. The density ridge is asym-
metric and is thinner inside the void, i.e. t

in

< t
out

(see the
discussion of Fig. 6).

We also find that the smallest voids have lower t
in

values
and larger t

out

values than the largest voids. The increase of
t

in

and decrease of t
out

with void size can be a manifestation
of both the age and the environment characterising voids of
di↵erent size. Firstly, just as low mass haloes, small voids are
dynamically old, so the density ridge has been squeezed for a
longer time. Larger voids, which originate from larger scale
density fluctuations, have not had enough time to pile up
mass at the ridge to the same extent as the small ones. Sec-
ondly, small voids are predominantly contracting, i.e. show
the void-in-cloud phenomenon, which means that, on aver-
age, their density ridge is moving inward. In contrast, large
voids are expanding, with their density ridges systematically
moving outwards (see Sec. 5 where we study the velocity pro-
file). Such an e↵ect would also lead to a thinner inner ridge
for small voids and a thicker one for large voids.

4.3 The self-similarity of stacked profiles

The boundary density profile of voids of di↵erent size is very
similar, but not exactly the same (see bottom panel of Fig.
5). Those di↵erences are minimized, or even disappear en-
tirely, when rescaling the inner profile by the thickness, t

in

,
of the inner void boundary. The rescaled profiles are given
in Fig. 9 which clearly shows that all voids, independently of
their size, have a self-similar profile. To better highlight this,
in the bottom panel of the figure we take the ratio with re-
spect to a weighted mean density. This weighted mean was
obtained by averaging, at fixed D/t

in

values, over void of
di↵erent sizes, with the contribution of each void sample
weighted by the inverse of its associated density estimation
error. Small systematic di↵erences with void size are seen
only for D ' 0, which probably arise because small void are
embedded in overdense regions while large voids are found
in predominantly underdense regions. For the rest, all the
density profiles lie on the same curve with less than ⇠5%
scatter.

The self-similar nature of boundary profiles suggest that
voids of di↵erent sizes have, on average, the same dynamical
characteristics. In contrast, the same self-similarity is not
seen for spherical profiles (see top panel of Fig. 5). This could
be due to the limitations of spherical profiles, among which,
most importantly, is the mixing and inability to separate
between the inside, boundary and outside of voids, as we
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Figure 9. The self-similarity of voids. Top panel: the density

profile, 1+�, as a function of the rescaled void boundary distance,

D/t
in

, where t
in

is the thickness of the inner void boundary as

determined by fitting Eq. (6) to the density profile. The symbols

correspond to voids of various e↵ective radii, R
e↵

. All voids have

a self-similar density profile independent of R
e↵

. Bottom panel:

the ratio between the profiles and a weighted mean of the values

in the various R
e↵

bins showing that there is less than 5% scatter

among voids of various sizes.

exemplified in Sec. 2. This fits in with the results shown in
the bottom panel of Fig. 5 where the di↵erences between
voids of various sizes are most pronounced in the boundary
and outside regions of the voids.

Self-similar profiles are obtained only after rescaling by
the thickness of the inner void ridge, t

in

. This suggests that
the void interior knows about the boundary or vice-versa,
and that the two evolve together. The former possibility
seems ruled out by the simple picture of an expanding spher-
ical underdensity in which the evolution of a shell of matter
of radius, r, depends only on the mass contained within r
(Fillmore & Goldreich 1984; Sheth & van de Weygaert 2004,
but see Ruiz et al. 2015). The latter possibility is in conflict
with the dichotomy of void types, void-in-cloud versus void-
in-void, wherein the boundary of the void should be a↵ected
di↵erently by the large scale environment, i.e contraction for
void-in-cloud and expansion for void-in-void.

Spherical void profiles have also been claimed to be self-
similar (Ricciardelli, Quilis & Varela 2014; Nadathur et al.
2015, e.g.), but there are contradictory results in the liter-
ature (e.g. Hamaus, Sutter & Wandelt 2014; Sutter et al.
2014; Nadathur & Hotchkiss 2015, this work). The self-
similarity of spherical profiles seems to be dependent on sev-
eral factors: the void finder, the population of tracers used to
identify the voids and the tracers used to measure the void
profile. This could be the case for boundary profiles too,
though it is reassuring that self-similarity of boundary pro-
files has been found for both voids identified using galaxies
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Figure 10. Comparison of analytical and measured density

profiles of voids. The solid line corresponds to an initial top-

hat spherical underdensity with linearly extrapolated present

day, �
lin

= �4. The dotted and dashed curves give the spher-

ical and boundary distance profiles of MS voids with R
e↵

=

18�22 h�1

Mpc. The top-hat void shows a good qualitative agree-

ment with the boundary distance profile of MS voids.

(this work) and for voids identified in the DM density field
(Cautun et al. 2015).

4.4 Comparison to analytical predictions

To better understand the boundary profile of voids, it is
illustrative to compare with analytical predictions, among
which the isolated spherical underdensity model is the most
popular (Fillmore & Goldreich 1984; Sheth & van de Wey-
gaert 2004). For this purpose, we select a top-hat spher-
ical underdensity that at the present time has a linearly
extrapolated density contrast, �

lin

= �4, resulting in an
R

e↵

= 20 h�1Mpc void. While MS voids do not have initial
top-hat profiles, such a simple model captures most of the
features of initial underdensities representative of cosmolog-
ical environments (see Fig. 3 of Sheth & van de Weygaert
2004). Fig. 10 shows the density profile of the resulting void
as a function of the rescaled radial distance, r/R

e↵

. The
figure also shows the spherical and boundary profile of MS
voids with sizes, R

e↵

= 18 � 22 h�1Mpc. To plot all three
profiles on the same x-axis, we give the boundary profile
in terms of the rescaled coordinate, (D + R

e↵

)/R
e↵

, with
R

e↵

= 20 h�1Mpc.
The analytical top-hat profile shows large di↵erences

with respect to the spherical profile of MS voids, but is
in approximate agreement with the boundary profile of the
same voids. In particular, the boundary profile matches the
main prediction of the analytical model, the formation of a
density ridge at the edge of the void due to shell crossing.
Thus, this simple model o↵ers a good qualitative descrip-
tion of the density profiles of realistic voids, but only after
accounting for the fact that real voids are non-spherical.

Note, however, that there are significant di↵erences be-
tween the top-hat and the boundary profile, which are driven
by many factors. Our goal is not to test the accuracy of
the analytical model, but rather to show that such a model
performs better than one would expect from a comparison
to spherical profiles. For example, the di↵erences relative
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Figure 11. The peculiar velocity profile of the six randomly

selected voids shown in Fig. 4. It shows the velocity component,

vk, along the direction of r and D, respectively. The two panels

show the spherical (top) and boundary (bottom) profiles of those

voids.

to the boundary profile in the inner region of the void are
due to comparing voids traced by two di↵erent populations.
The analytical top-hat underdensity refers to the profile of
voids identified in the DM density field, while here we us-
ing voids identified in the galaxy distribution. These contain
substructures, i.e. tenuous walls and filaments (Rieder et al.
2013; Cautun et al. 2014), which result in higher � values
than in DM voids (Cautun et al. 2015, shows that the in-
ner region of DM voids corresponds to � ' �0.9). Secondly,
replacing the top-hat underdensity with more realistic ini-
tial density profiles results in a more gradual increase of the
density ridge (Sheth & van de Weygaert 2004), closer to the
profile of MS voids.

Fig. 10 also shows that the inner region of the spherical
profile has a higher � than its counterpart in the boundary
profile. This di↵erence is another indication that the volume
barycenter of a void is poorly correlated with the regions of
lowest density (Nadathur & Hotchkiss 2015).

5 VOID VELOCITY PROFILE

The velocity field of voids is another property that can be
better understood by analysing boundary profiles. As for
the density profile, we proceed by comparing the spherical
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Figure 12. The peculiar velocity profile as a function of radial

distance, r, for spherical stacking (top) and as a function of void

boundary distance, D, for boundary stacking (bottom). It shows

the velocity component, vk, along the direction of r and D, re-

spectively. To guide the eye, the data points are connected with

solid lines. The dotted lines show the linear theory prediction for

vk given the average density profiles of Fig. 5.

and boundary velocity profiles. We focus on the peculiar
velocity component, vk, that gives the rate at which matter
is evacuated in comoving coordinates through a surface of
r = const and D = const for the spherical and boundary
profiles, respectively. Positive vk values correspond to a net
outflow of matter through the surface while negative values
correspond to an inflow.

Fig. 11 shows the velocity profiles for the same six in-
dividual voids as in Fig. 4. Except for one void, the spher-

ical profiles show an outflow from the voids, which peaks
at slightly di↵erent positions in each case. This is followed
by regions that have lower outflow velocities or even inflow.
This complex behaviour is di�cult to understand, even after
comparing with the density profiles of these voids.

In contrast, the boundary profiles paint a clearer picture
of the dynamics of voids. For all six examples, the void in-
teriors are dominated by outflows that, on average, increase
linearly with D and have very similar slopes, dvk/dD. Even
for spherical profiles, the slope of vk in the inner most part
is independent of void size (Ceccarelli et al. 2006; Paz et al.
2013), but this is not seen in the top panel of Fig. 11 due
to the rescaling of the x-axis by R

e↵

. For the boundary pro-

file, the velocity, vk, increases until near the void boundary,
D<⇠ � 3 h�1Mpc, that is then followed by a rapid switch
from outflow to inflow. This behaviour at D ' 0 is consis-
tent with infall onto the void boundary, which, given its high
density, is the main local driver of dynamics. At further dis-
tances from the void boundary, the velocity slowly converges
towards 0, as expected.

The picture derived from the boundary velocity profile,
i.e. increasing large outflows until close to the void’s edge,
followed by a strong inflow into the void boundary, is critical
for understanding the spherical vk profile. It suggests that
the spherically averaged velocity increases up to the spheri-
cal shell that intersects the void boundary for the first time.
For larger radial distances, the large inflow just outside the
void boundary leads to a smaller average velocity, and hence
to a decrease in the vk profile. This interpretation suggests
that the position of the vk peak is determined by the shape
of the void. If voids of various sizes have the same distri-
bution of shapes, than the stacked spherical profile should
peak at the same rescaled distance, r/R

e↵

, independently of
void size, as may be seen in Fig. 12.

The stacked velocity profiles are shown in Fig. 12, where
we study the same three R

e↵

bins as in the case of the den-
sity profile. In addition to the conclusions reached during
the analysis of the individual void profiles, we note the fol-
lowing. For large radial distances, r/R

e↵

>⇠ 1.5, the spherical

profile shows an inflow for the two stacks of smaller radii and
a very small outflow for the largest voids. The inflows indi-
cate overdense regions which are predominantly populated
with void-in-cloud voids, while the outflows indicate under-
dense regions which are predominantly populated with void-
in-void voids. This lead Hamaus, Sutter & Wandelt (2014)
to interpret inflows and outflows at r/R

e↵

>⇠ 1.5 as evidence
that those void samples are on average either contracting or
expanding, respectively.

The same conclusion can be more easily reached by
studying the boundary profile. For example, expanding voids
correspond to a positive vk value at their boundary since the
boundary is moving outwards. Fig. 13 shows the values of
the velocity at the boundary, D = 0, and also the vk value
averaged over the interval |D| 6 1 h�1Mpc, with the lat-
ter being less prone to noise. These values show that indeed
the two stacks of smaller voids are, on average, contracting,
since vk(D = 0) < 0, while the largest voids are expanding.
In fact, such a test can be done for individual voids to de-
termine if they are expanding or contracting, as we show in
the bottom panel of Fig. 13. For example, while most small
voids are contracting, there is also a significant fraction that
are expanding. Similarly for the largest voids: while most are
expanding, there are large contracting voids too.

We also find that the vk peak is highest for spherical
profiles and that the same peak is up to 20% lower for
boundary profiles, even though in the latter case the velocity
increases until close to the void edge. This illustrates that
the main source behind the observed outflow is the matter
deficit inside the void, whose e↵ects are best seen in terms of
spherical shells. In contrast, not surprisingly, boundary pro-
files are especially well suited for capturing the infall onto
the void boundary.

The dotted lines in Fig. 12 show the vk values predicted
by linear theory given the density profiles shown in Fig. 5.
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Figure 12. The peculiar velocity profile as a function of radial

distance, r, for spherical stacking (top) and as a function of void

boundary distance, D, for boundary stacking (bottom). It shows

the velocity component, vk, along the direction of r and D, re-

spectively. To guide the eye, the data points are connected with

solid lines. The dotted lines show the linear theory prediction for

vk given the average density profiles of Fig. 5.

and boundary velocity profiles. We focus on the peculiar
velocity component, vk, that gives the rate at which matter
is evacuated in comoving coordinates through a surface of
r = const and D = const for the spherical and boundary
profiles, respectively. Positive vk values correspond to a net
outflow of matter through the surface while negative values
correspond to an inflow.

Fig. 11 shows the velocity profiles for the same six in-
dividual voids as in Fig. 4. Except for one void, the spher-

ical profiles show an outflow from the voids, which peaks
at slightly di↵erent positions in each case. This is followed
by regions that have lower outflow velocities or even inflow.
This complex behaviour is di�cult to understand, even after
comparing with the density profiles of these voids.

In contrast, the boundary profiles paint a clearer picture
of the dynamics of voids. For all six examples, the void in-
teriors are dominated by outflows that, on average, increase
linearly with D and have very similar slopes, dvk/dD. Even
for spherical profiles, the slope of vk in the inner most part
is independent of void size (Ceccarelli et al. 2006; Paz et al.
2013), but this is not seen in the top panel of Fig. 11 due
to the rescaling of the x-axis by R

e↵

. For the boundary pro-

file, the velocity, vk, increases until near the void boundary,
D<⇠ � 3 h�1Mpc, that is then followed by a rapid switch
from outflow to inflow. This behaviour at D ' 0 is consis-
tent with infall onto the void boundary, which, given its high
density, is the main local driver of dynamics. At further dis-
tances from the void boundary, the velocity slowly converges
towards 0, as expected.

The picture derived from the boundary velocity profile,
i.e. increasing large outflows until close to the void’s edge,
followed by a strong inflow into the void boundary, is critical
for understanding the spherical vk profile. It suggests that
the spherically averaged velocity increases up to the spheri-
cal shell that intersects the void boundary for the first time.
For larger radial distances, the large inflow just outside the
void boundary leads to a smaller average velocity, and hence
to a decrease in the vk profile. This interpretation suggests
that the position of the vk peak is determined by the shape
of the void. If voids of various sizes have the same distri-
bution of shapes, than the stacked spherical profile should
peak at the same rescaled distance, r/R

e↵

, independently of
void size, as may be seen in Fig. 12.

The stacked velocity profiles are shown in Fig. 12, where
we study the same three R

e↵

bins as in the case of the den-
sity profile. In addition to the conclusions reached during
the analysis of the individual void profiles, we note the fol-
lowing. For large radial distances, r/R

e↵

>⇠ 1.5, the spherical

profile shows an inflow for the two stacks of smaller radii and
a very small outflow for the largest voids. The inflows indi-
cate overdense regions which are predominantly populated
with void-in-cloud voids, while the outflows indicate under-
dense regions which are predominantly populated with void-
in-void voids. This lead Hamaus, Sutter & Wandelt (2014)
to interpret inflows and outflows at r/R

e↵

>⇠ 1.5 as evidence
that those void samples are on average either contracting or
expanding, respectively.

The same conclusion can be more easily reached by
studying the boundary profile. For example, expanding voids
correspond to a positive vk value at their boundary since the
boundary is moving outwards. Fig. 13 shows the values of
the velocity at the boundary, D = 0, and also the vk value
averaged over the interval |D| 6 1 h�1Mpc, with the lat-
ter being less prone to noise. These values show that indeed
the two stacks of smaller voids are, on average, contracting,
since vk(D = 0) < 0, while the largest voids are expanding.
In fact, such a test can be done for individual voids to de-
termine if they are expanding or contracting, as we show in
the bottom panel of Fig. 13. For example, while most small
voids are contracting, there is also a significant fraction that
are expanding. Similarly for the largest voids: while most are
expanding, there are large contracting voids too.

We also find that the vk peak is highest for spherical
profiles and that the same peak is up to 20% lower for
boundary profiles, even though in the latter case the velocity
increases until close to the void edge. This illustrates that
the main source behind the observed outflow is the matter
deficit inside the void, whose e↵ects are best seen in terms of
spherical shells. In contrast, not surprisingly, boundary pro-
files are especially well suited for capturing the infall onto
the void boundary.

The dotted lines in Fig. 12 show the vk values predicted
by linear theory given the density profiles shown in Fig. 5.
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Figure 13. The velocity of the void boundary, vk; boundary

, as

a function of void size. Negative values correspond to contract-

ing voids and positive values to expanding voids. The top panel

shows this velocity for voids stacked according to their size, R
e↵

.

It shows the velocity at D = 0 (solid curve) and the mean ve-

locity over the interval |D| 6 1 h�1

Mpc (dashed curve), which

is more robust. The bottom panel shows the probability distri-

bution function (PDF) of the ridge velocity for individual voids

of various sizes. The distribution is very broad with each sample

having both expanding and contracting voids.

The linear predictions are given by

vk,lin

= �Hf

⇢
m

M(< x)
S(x)

, (7)

with H the Hubble factor, f ' ⌦0.55

m

the linear growth factor
and ⇢

m

the mean background density of matter. The symbol
x stands for the radial distance, r, for spherical profiles and
for the distance, D, for boundary profiles. The factor M(<
x) denotes the mass contrast inside x and S(x) denotes the
area of a surface of constant x. See Appendix A for details
and for a short derivation of the relation.

The linear theory prediction agrees with the data for
the spherical profile, except for a few small systematic ef-
fects: the velocity of small voids is overpredicted while that
of large voids is underpredicted. These discrepancies, seen
also by Hamaus, Sutter & Wandelt (2014), have been at-
tributed to the e↵ect of surrounding structures on void inte-
riors (Ruiz et al. 2015). In the case of boundary profiles, the
linear theory is in agreement only for the void interior, i.e.
D<⇠ 0, and at large distances, D>⇠ 10 h�1Mpc. Large discrep-

ancies are present at the void boundary and just outside
the void where the linear predictions can be o↵ by up to
100 km/s. Such di↵erences are not surprising since linear
theory is valid in the regime |�| ⌧ 1. For spherical profiles,
while � is not very small, it is below unity at every point. In
the case of the boundary profile, � is very large, as high as
3, at the void edge, which explains why large discrepancies
are seen only at, and just outside, the void boundary.

6 WEAK LENSING FROM VOIDS

We now address how boundary stacking can be used to en-
hance the weak lensing signal of voids. Since it is a small
e↵ect, void lensing is di�cult to measure (Melchior et al.
2014), although recently multiple detections of this signal
have been reported (Clampitt & Jain 2014; Gruen et al.
2015). Increasing the signal to noise of this measurement, by
either having a larger sample of voids and/or by improving
how voids are stacked, would result in a powerful cosmolog-
ical probe, especially for tests of modified gravity theories
(Cai, Padilla & Li 2015; Barreira et al. 2015).

The lensing signal is related to the matter density via
the relation,

(⇠) =
⇢

m

⌃
c

Z
�(⇠, z)dz , (8)

where  is the convergence, ⇠ is the position vector in the
plane of the lens and z is the direction along the line-of-
sight. The quantity, ⌃

c

= c2D
S

/(4⇡GD
L

D
LS

), is the criti-
cal surface mass density for lensing, where D

S

, D
L

and D
LS

denote the angular diameter distance between the observer
and the source, the observer and the lens, and the lens and
the source. The exact value of ⌃

c

, which depends on the
characteristics of the lensing survey, is unimportant when
comparing between the spherical and boundary stacking ap-
proaches.

Using Eq. (8), we compute the surface mass density,
⌃(⇠) = ⌃

c

(⇠), for three lines-of-sight that correspond to
the simulation principal axes. In each case we obtain ⌃(⇠) on
a 12802 regular grid with grid spacing 0.39 h�1Mpc. We then
proceed to compute the lensing signal for the two stacking
methods. In the conventional approach, we obtain the mean
value of ⌃ as a function of the projected radial distance,
r

2D

, from the void centre, which gives ⌃(r
2D

). For boundary
stacking, the procedure is slightly di↵erent, since we need
to identify the boundary of the void in the lens plane. We
do so by slicing the boundary of the void, which is a 2D
surface, along the plane of the lens, with the slice centred at
the point inside the void that is the farthest from the void
boundary (this is the point corresponding to the minimum
distance, D

min

). Following this, we obtain a closed curve in
the lens plane that corresponds to one particular choice of
the void boundary (see discussion below). The mean value of
⌃ is computed as a function of the projected distance, D

2D

,
from the void boundary resulting in the quantity ⌃(D

2D

).
We note that this is just one possible choice for stack-

ing with respect to the void boundary, and may not be the
optimal choice. For lensing studies, it is better to identify
2D voids in thin redshift slices, since this greatly enhances
the lensing signal (Clampitt & Jain 2014). The boundary
of these 2D voids is a 1D curve in the plane of the sky. In
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Figure 13. The velocity of the void boundary, vk; boundary

, as

a function of void size. Negative values correspond to contract-

ing voids and positive values to expanding voids. The top panel

shows this velocity for voids stacked according to their size, R
e↵

.

It shows the velocity at D = 0 (solid curve) and the mean ve-

locity over the interval |D| 6 1 h�1

Mpc (dashed curve), which

is more robust. The bottom panel shows the probability distri-

bution function (PDF) of the ridge velocity for individual voids

of various sizes. The distribution is very broad with each sample

having both expanding and contracting voids.

The linear predictions are given by

vk,lin

= �Hf

⇢
m

M(< x)
S(x)

, (7)

with H the Hubble factor, f ' ⌦0.55

m

the linear growth factor
and ⇢

m

the mean background density of matter. The symbol
x stands for the radial distance, r, for spherical profiles and
for the distance, D, for boundary profiles. The factor M(<
x) denotes the mass contrast inside x and S(x) denotes the
area of a surface of constant x. See Appendix A for details
and for a short derivation of the relation.

The linear theory prediction agrees with the data for
the spherical profile, except for a few small systematic ef-
fects: the velocity of small voids is overpredicted while that
of large voids is underpredicted. These discrepancies, seen
also by Hamaus, Sutter & Wandelt (2014), have been at-
tributed to the e↵ect of surrounding structures on void inte-
riors (Ruiz et al. 2015). In the case of boundary profiles, the
linear theory is in agreement only for the void interior, i.e.
D<⇠ 0, and at large distances, D>⇠ 10 h�1Mpc. Large discrep-

ancies are present at the void boundary and just outside
the void where the linear predictions can be o↵ by up to
100 km/s. Such di↵erences are not surprising since linear
theory is valid in the regime |�| ⌧ 1. For spherical profiles,
while � is not very small, it is below unity at every point. In
the case of the boundary profile, � is very large, as high as
3, at the void edge, which explains why large discrepancies
are seen only at, and just outside, the void boundary.

6 WEAK LENSING FROM VOIDS

We now address how boundary stacking can be used to en-
hance the weak lensing signal of voids. Since it is a small
e↵ect, void lensing is di�cult to measure (Melchior et al.
2014), although recently multiple detections of this signal
have been reported (Clampitt & Jain 2014; Gruen et al.
2015). Increasing the signal to noise of this measurement, by
either having a larger sample of voids and/or by improving
how voids are stacked, would result in a powerful cosmolog-
ical probe, especially for tests of modified gravity theories
(Cai, Padilla & Li 2015; Barreira et al. 2015).

The lensing signal is related to the matter density via
the relation,

(⇠) =
⇢

m

⌃
c

Z
�(⇠, z)dz , (8)

where  is the convergence, ⇠ is the position vector in the
plane of the lens and z is the direction along the line-of-
sight. The quantity, ⌃

c

= c2D
S

/(4⇡GD
L

D
LS

), is the criti-
cal surface mass density for lensing, where D

S

, D
L

and D
LS

denote the angular diameter distance between the observer
and the source, the observer and the lens, and the lens and
the source. The exact value of ⌃

c

, which depends on the
characteristics of the lensing survey, is unimportant when
comparing between the spherical and boundary stacking ap-
proaches.

Using Eq. (8), we compute the surface mass density,
⌃(⇠) = ⌃

c

(⇠), for three lines-of-sight that correspond to
the simulation principal axes. In each case we obtain ⌃(⇠) on
a 12802 regular grid with grid spacing 0.39 h�1Mpc. We then
proceed to compute the lensing signal for the two stacking
methods. In the conventional approach, we obtain the mean
value of ⌃ as a function of the projected radial distance,
r

2D

, from the void centre, which gives ⌃(r
2D

). For boundary
stacking, the procedure is slightly di↵erent, since we need
to identify the boundary of the void in the lens plane. We
do so by slicing the boundary of the void, which is a 2D
surface, along the plane of the lens, with the slice centred at
the point inside the void that is the farthest from the void
boundary (this is the point corresponding to the minimum
distance, D

min

). Following this, we obtain a closed curve in
the lens plane that corresponds to one particular choice of
the void boundary (see discussion below). The mean value of
⌃ is computed as a function of the projected distance, D

2D

,
from the void boundary resulting in the quantity ⌃(D

2D

).
We note that this is just one possible choice for stack-

ing with respect to the void boundary, and may not be the
optimal choice. For lensing studies, it is better to identify
2D voids in thin redshift slices, since this greatly enhances
the lensing signal (Clampitt & Jain 2014). The boundary
of these 2D voids is a 1D curve in the plane of the sky. In
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• Void density profiles are sensitive to: modifications of gravity (e.g. 
f(R), Galileon, Nonlocal), neutrino mass (Massara+ 2015); … 

• Difference w.r.t. LCDM is small, voids are ~a few percent emptier in 
some modified theories of gravity.

16 Cai et al.

Figure 15. Left: like Fig. 13 but showing the lensing tangential shear profiles from stacking all voids with 15 < r < 55 Mpc/h. They are projected over two
times the void radius along the line of sight. Σ(< R)−Σ(R) is proportional to the surface mass density within the projected radius of R to which we subtract
the surface mass density at R. Right: the corresponding cumulative (from small to large radius) S/N for the differences between GR and f(R) models.

Figure 16. Covariance matrices of the predicted lensing tangential shear from stacking all voids with 15 < r < 55 Mpc/h from the 1-Gpc/h-aside GR
simulation. Left: the projection length along the line-of-sight is 2×rvoid; Right: the projection length is 8×rvoid.

14

FIG. 7. Relative impact of the fifth force and modified density pro-
files on the lensing signal of halo field voids in the Cubic Galileon
(upper panel) and Nonlocal (lower panel) gravity models. For both
models, the red and blue lines have the same meaning as those in
Fig. 6. The black curves are obtained by calculating the lensing sig-
nal with the full Galileon and full Nonlocal model force equations,
but using the best-fitting void density profile of the QCDM voids.
The comparison between the red and black measures the effects of
the fifth force alone; whereas comparing the black and blue curves
shows the impact of the modified void density profiles.

in Ref. [50]. This suggests that, indeed, lensing by voids may
have the potential to constrain models like the Galileon.

Before summarizing our results in the next section, we find
it instructive to briefly comment on a number of aspects that
should to be taken into account before properly confronting
these (and other) models to lensing observations. These as-
pects include:

1. Impact of ⌃c In Fig. 6, we quote our results in terms of �⌃,
but in reality, what one measures directly from galaxy el-
lipticities is the shear, g ⇡ �t = �⌃/⌃c. The calcula-
tion of ⌃c depends on the cosmological background, which
can be different between the Galileon, Nonlocal, and the
standard ⇤CDM models. Consequently, if in observational
studies, one measures �t, but quotes the results in terms of
�⌃ by assuming a background cosmology to compute ⌃c,

then this may introduce some bias that should be carefully
addressed. Furthermore, ⌃c depends also on the redshift
distribution of the source galaxy population, although this
can always be set accordingly using the properties of the
observed galaxies.

2. Void redshift distribution The lensing signal in Fig. 6 was
obtained analytically using the density profiles of the voids
in the simulations at z = 0. In the observations, however,
the lensing signal is detected by stacking voids that span a
given redshift distribution z > 0. In the particular case of
the Galileon and Nonlocal gravity models, the fifth force
is weaker at earlier times (see e.g. Fig. 3 of Ref. [68] and
Fig. 2 fo Ref. [56]), which reduces the amplitude of the
signal depicted in Fig. 6.

3. Void stacking The lensing signal associated with individ-
ual voids is too weak to be detected in current observa-
tions, which is why Refs. [49, 50] used stacked voids in
their analyses. When interpreting such results in modified
gravity, for a given stack, voids at different redshifts have
different weights in the observed lensing signal because of
the redshift dependence of the fifth force, ⌃c and also of
the screening efficiency. Such effects should be taken into
account if one, for instance, tries to use the lensing obser-
vations to reconstruct a mean density profile for the stack.
Here, an interesting analysis would involve stacks of voids
binned not only by size, but also by redshift.

4. Systematic biases The lensing calculations performed here
assume that the density distribution in voids is perfectly
smooth. In reality, however, voids contain substructure and
its amount is expected to be different in models with differ-
ent growth rates of structure. Given that the lensing signal
from voids is relatively weak (compared to that induced by
DM haloes) it may be interesting to investigate the extent
to which void substructure can impact on the overall lens-
ing signal. This can be studied by looking at the lensing
signal using ray-tracing methods in the simulations, with-
out modelling their profiles as a smooth distribution. Our
lensing calculations also assume that the void is the only
source of lensing. A ray-tracing analysis would also help
to better quantify the contamination of the lensing signal
coming from intervening matter along the line of sight. It
could also be of interest to assess any impact that baryonic
physics (e.g. galaxy type used as density tracer) may have
on the lensing by voids.

5. Screening effects Related to the above point, a ray-tracing
analysis is also able to capture more accurately the effects
of the nonlinear screening mechanism. In Sec. III D, we
saw that, in the full variant of the Galileon model, it makes
a difference whether one computes the force profiles analyt-
ically from the spherically averaged density profiles, or by
spherically averaging the force field directly. Moreover, the
efficiency of the Vainshtein mechanism depends also on the
geometry of the mass distribution as investigated recently
in Refs. [23, 24]. This means that calculations based on the
mean spherical profile of a stack of voids may not fully cap-
ture the fifth force effects from each individual nonspheri-
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files on the lensing signal of halo field voids in the Cubic Galileon
(upper panel) and Nonlocal (lower panel) gravity models. For both
models, the red and blue lines have the same meaning as those in
Fig. 6. The black curves are obtained by calculating the lensing sig-
nal with the full Galileon and full Nonlocal model force equations,
but using the best-fitting void density profile of the QCDM voids.
The comparison between the red and black measures the effects of
the fifth force alone; whereas comparing the black and blue curves
shows the impact of the modified void density profiles.

in Ref. [50]. This suggests that, indeed, lensing by voids may
have the potential to constrain models like the Galileon.

Before summarizing our results in the next section, we find
it instructive to briefly comment on a number of aspects that
should to be taken into account before properly confronting
these (and other) models to lensing observations. These as-
pects include:

1. Impact of ⌃c In Fig. 6, we quote our results in terms of �⌃,
but in reality, what one measures directly from galaxy el-
lipticities is the shear, g ⇡ �t = �⌃/⌃c. The calcula-
tion of ⌃c depends on the cosmological background, which
can be different between the Galileon, Nonlocal, and the
standard ⇤CDM models. Consequently, if in observational
studies, one measures �t, but quotes the results in terms of
�⌃ by assuming a background cosmology to compute ⌃c,

then this may introduce some bias that should be carefully
addressed. Furthermore, ⌃c depends also on the redshift
distribution of the source galaxy population, although this
can always be set accordingly using the properties of the
observed galaxies.

2. Void redshift distribution The lensing signal in Fig. 6 was
obtained analytically using the density profiles of the voids
in the simulations at z = 0. In the observations, however,
the lensing signal is detected by stacking voids that span a
given redshift distribution z > 0. In the particular case of
the Galileon and Nonlocal gravity models, the fifth force
is weaker at earlier times (see e.g. Fig. 3 of Ref. [68] and
Fig. 2 fo Ref. [56]), which reduces the amplitude of the
signal depicted in Fig. 6.

3. Void stacking The lensing signal associated with individ-
ual voids is too weak to be detected in current observa-
tions, which is why Refs. [49, 50] used stacked voids in
their analyses. When interpreting such results in modified
gravity, for a given stack, voids at different redshifts have
different weights in the observed lensing signal because of
the redshift dependence of the fifth force, ⌃c and also of
the screening efficiency. Such effects should be taken into
account if one, for instance, tries to use the lensing obser-
vations to reconstruct a mean density profile for the stack.
Here, an interesting analysis would involve stacks of voids
binned not only by size, but also by redshift.

4. Systematic biases The lensing calculations performed here
assume that the density distribution in voids is perfectly
smooth. In reality, however, voids contain substructure and
its amount is expected to be different in models with differ-
ent growth rates of structure. Given that the lensing signal
from voids is relatively weak (compared to that induced by
DM haloes) it may be interesting to investigate the extent
to which void substructure can impact on the overall lens-
ing signal. This can be studied by looking at the lensing
signal using ray-tracing methods in the simulations, with-
out modelling their profiles as a smooth distribution. Our
lensing calculations also assume that the void is the only
source of lensing. A ray-tracing analysis would also help
to better quantify the contamination of the lensing signal
coming from intervening matter along the line of sight. It
could also be of interest to assess any impact that baryonic
physics (e.g. galaxy type used as density tracer) may have
on the lensing by voids.

5. Screening effects Related to the above point, a ray-tracing
analysis is also able to capture more accurately the effects
of the nonlinear screening mechanism. In Sec. III D, we
saw that, in the full variant of the Galileon model, it makes
a difference whether one computes the force profiles analyt-
ically from the spherically averaged density profiles, or by
spherically averaging the force field directly. Moreover, the
efficiency of the Vainshtein mechanism depends also on the
geometry of the mass distribution as investigated recently
in Refs. [23, 24]. This means that calculations based on the
mean spherical profile of a stack of voids may not fully cap-
ture the fifth force effects from each individual nonspheri-
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Figure 14. The stacked tangential shear, �
t

, of voids in three

ranges in e↵ective radius, R
e↵

. The top panel shows the spher-

ically averaged result. The bottom panel shows the result when

voids are stacked with respect to their boundary. The error bars

show the 1� uncertainties due to object-to-object variation.

such a case there is no ambiguity in choosing the 1D void
boundary in the plane of the lens.

The quantity ⌃(x) = ⌃
c

(x) gives the lensing conver-
gence, with x ⌘ r

2D

for spherical stacking and x ⌘ D
2D

for
boundary stacking. The tangential shear is given by

⌃
c

�
t

= ⌃
c

[(<x) � (x)] = ⌃(<x) � ⌃(x) (9)

where (<x) and ⌃(<x) are the mean convergence and sur-
face mass density inside a curve of constant x. This curve
corresponds to a circle for spherical profiles and to a more
complex contour for distance profiles (e.g. see bottom panel
of Fig. 1).

In Fig. 14 we show the void tangential shear obtained
using the two stacking procedures. The spherically averaged
�

t

shows the characteristic dip of void lensing at r
2D

' R
e↵

,
which is nearly the same for the three void samples. This de-
pression is more pronounced when using boundary stacking
for which the signal is twice as large. Using boundary stack-
ing increases the convergence, , also by a factor of about
two, as can be inferred from Fig. 15. This doubling of the
lensing signal is the result of a better separation between the
void border, where most of the mass is, and the void interior,
which is mostly empty. This factor of two represents only a
lower limit to the potential improvements resulting from the
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Figure 15. Same as Fig. 14, but for the the stacked lensing

convergence, , of voids.

use of boundary stacking. Likely, the gain can be increased
further by optimizing the selection of the void boundary in
the plane of the sky.

7 DISCUSSION AND CONCLUSIONS

We have proposed a new method for characterising voids
that has several advantages over the conventional spherical
approach, as demonstrated by our analysis of galaxy voids
in the Millennium cosmological simulation. This approach,
which we call the boundary profile, is based on describing
the structure of voids as a function of the distance from
their boundary, which allows for a natural segregation of
the inner, boundary and outer regions of each void.

Voids are characterised by two defining features: they
consist of large, fairly underdense volumes, with the evacu-
ated matter found in a thin overdense region at the bound-
ary, and they have very complex, non-spherical, shapes. The
spherical averaging approach is inadequate for describing
voids due to this very combination of features, as we ex-
emplify for a simplified void model (Figs 1 and 2) and for
realistic voids (Figs 4 and 5). This is a consequence of the
fact that taking a spherical average over an intrinsically non-
spherical object leads to a complex juxtaposition of the in-
ner, border and outer regions of that object, with each re-
gion having very di↵erent density. By contrast, the boundary
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Figure 14. The stacked tangential shear, �
t

, of voids in three

ranges in e↵ective radius, R
e↵

. The top panel shows the spher-

ically averaged result. The bottom panel shows the result when

voids are stacked with respect to their boundary. The error bars

show the 1� uncertainties due to object-to-object variation.

such a case there is no ambiguity in choosing the 1D void
boundary in the plane of the lens.

The quantity ⌃(x) = ⌃
c

(x) gives the lensing conver-
gence, with x ⌘ r

2D

for spherical stacking and x ⌘ D
2D

for
boundary stacking. The tangential shear is given by

⌃
c

�
t

= ⌃
c

[(<x) � (x)] = ⌃(<x) � ⌃(x) (9)

where (<x) and ⌃(<x) are the mean convergence and sur-
face mass density inside a curve of constant x. This curve
corresponds to a circle for spherical profiles and to a more
complex contour for distance profiles (e.g. see bottom panel
of Fig. 1).

In Fig. 14 we show the void tangential shear obtained
using the two stacking procedures. The spherically averaged
�

t

shows the characteristic dip of void lensing at r
2D

' R
e↵

,
which is nearly the same for the three void samples. This de-
pression is more pronounced when using boundary stacking
for which the signal is twice as large. Using boundary stack-
ing increases the convergence, , also by a factor of about
two, as can be inferred from Fig. 15. This doubling of the
lensing signal is the result of a better separation between the
void border, where most of the mass is, and the void interior,
which is mostly empty. This factor of two represents only a
lower limit to the potential improvements resulting from the
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Figure 15. Same as Fig. 14, but for the the stacked lensing

convergence, , of voids.

use of boundary stacking. Likely, the gain can be increased
further by optimizing the selection of the void boundary in
the plane of the sky.

7 DISCUSSION AND CONCLUSIONS

We have proposed a new method for characterising voids
that has several advantages over the conventional spherical
approach, as demonstrated by our analysis of galaxy voids
in the Millennium cosmological simulation. This approach,
which we call the boundary profile, is based on describing
the structure of voids as a function of the distance from
their boundary, which allows for a natural segregation of
the inner, boundary and outer regions of each void.

Voids are characterised by two defining features: they
consist of large, fairly underdense volumes, with the evacu-
ated matter found in a thin overdense region at the bound-
ary, and they have very complex, non-spherical, shapes. The
spherical averaging approach is inadequate for describing
voids due to this very combination of features, as we ex-
emplify for a simplified void model (Figs 1 and 2) and for
realistic voids (Figs 4 and 5). This is a consequence of the
fact that taking a spherical average over an intrinsically non-
spherical object leads to a complex juxtaposition of the in-
ner, border and outer regions of that object, with each re-
gion having very di↵erent density. By contrast, the boundary
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Summary

30

• Voids have diverse shape, highly non-spherical, so computing 
spherical averaged profiles leads to smoothing of their structure. 

• The boundary profile separates by construction the inside, boundary 
and outside of voids, leading to profiles in qualitatively agreement 
with analytical models. 

• The boundary density profile of voids is self-similar when rescaled by 
the thickness of the void boundary.

• The boundary profile enhances the potential of voids as a 
cosmological probe by increasing the weak lensing signal by a factor 
of two. 


