

The view from the boundary:

a new void analysis method

Marius Cautun

Yan-Chuan Cai and Carlos Frenk

1st Roman Symposium Warsaw 27 August 2015

The galaxy distribution

Void structure

Fillmore & Goldreich 1984; Sheth & van de Weygaert 2004

Void structure

Fillmore & Goldreich 1984; Sheth & van de Weygaert 2004

Hamaus+ 2014; Nadathur+ 2014; Ricciardelli+ 2014; Cai+ 2015

The shape of emptiness

Voids have a diversity of shapes, being distinctly non-spherical.

The boundary profile of voids

A simple void model

- Void shape taken from a cosmological N-body simulation.
- Density profile based on the expanding spherical underdensity.

The conventional approach: spherical averaging

A new method: boundary profile

Void detection

- Use the Millennium cosmological simulation (L = 500 Mpc/h).
- Populate the simulation with galaxies using semi-analitycal galaxy formation models (Guo+ 2011).
- Select the most massive galaxies to obtain a number density, n = 3.2 x 10⁻³ (Mpc/h)³, equivalent to the SDSS main sample (M_stellar > 4 x 10¹⁰ M_solar/h).
- Identify voids using the Watershed Void Finder (Platen+ 2007).

Watershed void finder

Watershed void finder

Void identification

Galaxy distribution

Void identification

Galaxy distribution Density field (DTFE; Schaap & van de Weygaert 2000)

Void identification

Galaxy distribution Density field (DTFE; Schaap & van de Weygaert 2000)

Voids (watershed basins; Platen+ 2007)

Results

- 1. Density profiles.
- 2. Velocity profiles.
- 3. Weak lensing from voids.

The density profile individual voids

The density profile stacked voids

Hamaus+ 2014; Nadathur+ 2014

The density profile stacked voids

Cautun+ 2013; Cautun+ 2014

The density profile stacked voids

Fit to the boundary profile

Marius Cautun

boundary distance D [Mnc h⁻¹]

The simplicity of voids: self-similar behaviour

Marius Cautun

The boundary profile of voids

Comparing to analytical models

Void weak lensing

- Void density profiles are sensitive to: modifications of gravity (e.g. f(R), Galileon, Nonlocal), neutrino mass (Massara+ 2015); ...
- Difference w.r.t. LCDM is small, voids are ~a few percent emptier in some modified theories of gravity.

Void weak lensing

Summary

- Voids have diverse shape, highly non-spherical, so computing spherical averaged profiles leads to smoothing of their structure.
- The boundary profile separates by construction the inside, boundary and outside of voids, leading to profiles in qualitatively agreement with analytical models.
- The boundary density profile of voids is self-similar when rescaled by the thickness of the void boundary.
- The boundary profile enhances the potential of voids as a cosmological probe by increasing the weak lensing signal by a factor of two.