The view from the boundary:

 a new void analysis methodMarius Cautun

Yan-Chuan Cai and Carlos Frenk

1st Roman Symposium
Warsaw
27 August 2015

The galaxy distribution

Void structure

Simple analytical model: expanding spherical underdensity

Fillmore \& Goldreich 1984; Sheth \& van de Weygaert 2004

Void structure

Simple analytical model: expanding spherical underdensity

Fillmore \& Goldreich 1984; Sheth \& van de Weygaert 2004

Simulations:
spherically averaged density

Hamaus+ 2014; Nadathur+ 2014;
Ricciardelli+ 2014; Cai+ 2015

The shape of emptiness

Voids have a diversity of shapes, being distinctly non-spherical.

The boundary profile of voids

A simple void model

- Void shape taken from a cosmological N -body simulation.
- Density profile based on the expanding spherical underdensity.

The conventional approach: spherical averaging

A new method: boundary profile

What about realistic voids?

Void detection

- Use the Millennium cosmological simulation ($L=500 \mathrm{Mpc} / \mathrm{h}$).
- Populate the simulation with galaxies using semi-analitycal galaxy formation models (Guo+ 2011).
- Select the most massive galaxies to obtain a number density, $\mathrm{n}=3.2 \times 10^{-3}(\mathrm{Mpc} / \mathrm{h})^{3}$, equivalent to the SDSS main sample (M_stellar > $4 \times 10^{10} \mathrm{M}$ _solar/h).
- Identify voids using the Watershed Void Finder (Platen+ 2007).

Watershed void finder

Watershed void finder

Void identification

Galaxy distribution

Void identification

Galaxy distribution

Density field (DTFE; Schaap \& van de Weygaert 2000)

Void identification

Galaxy distribution

Density field (DTFE; Schaap \& van de Weygaert 2000)

Voids (watershed basins;
Platen+ 2007)

Results

1. Density profiles.
2. Velocity profiles.
3. Weak lensing from voids.

The density profile individual voids

Spherical profile

Boundary profile

The density profile stacked voids

Boundary profile

Hamaus+ 2014; Nadathur+ 2014

The density profile stacked voids

Boundary profile

Cautun+ 2013; Cautun+ 2014

The density profile stacked voids

Boundary profile

Fit to the boundary profile

$$
\Delta_{\max } e^{-\frac{|\mathcal{D}|}{t_{\text {in }}}}
$$

Fit to the boundary profile

The simplicity of voids: self-similar behaviour

Comparing to analytical models

The velocity profile stacked voids

Spherical profile

Boundary profile

Expanding versus contracting voids

Stacked voids

Individual voids

Void weak lensing

- Void density profiles are sensitive to: modifications of gravity (e.g. f(R), Galileon, Nonlocal), neutrino mass (Massara+ 2015); ...
- Difference w.r.t. LCDM is small, voids are ~a few percent emptier in some modified theories of gravity.

$$
f(R)-\text { Cai }+2015
$$

Galileon - Barreira, MC+ 2015

Void weak lensing

Spherical profile

Boundary profile

Summary

- Voids have diverse shape, highly non-spherical, so computing spherical averaged profiles leads to smoothing of their structure.
- The boundary profile separates by construction the inside, boundary and outside of voids, leading to profiles in qualitatively agreement with analytical models.
- The boundary density profile of voids is self-similar when rescaled by the thickness of the void boundary.
- The boundary profile enhances the potential of voids as a cosmological probe by increasing the weak lensing signal by a factor of two.

