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Abstract
of the thesis entitled

Magnetic fields in isolated neutron stars:
from the interior to the exterior

in English

Neutron stars are natural laboratories that allow us to study many phenomena under ex-
treme conditions. These compact objects are characterized by strong magnetic fields with non-
trivial origins and evolution. It is important to understand the field properties when interpret-
ing observational data. We are able to probe parameters of electro-dynamical processes at scales
unavailable in terrestrial laboratories through observations of diverse types of neutron stars.
A long-standing challenge is to understand the properties of neutron stars’ internal magnetic
fields which are poorly constrained by observations at present. Assaying the stability of a given
magnetic field geometry is therefore an important step in determining whether the geometry
will be stable over multiple Alfven timescales, thus constituting a viable description of neutron
star interiors. The simple cases, such as the purely poloidal or purely toroidal fields, have so far
been meticulously analyzed through perturbation theory and, most recently, by means of non-
linear magnetohydrodynamic simulations. This thesis investigates the different configurations
of magnetic fields using both magnetohydrodynamic and general relativistic magnetohydrody-
namic simulations and studies the distribution of magnetic energy into poloidal and toroidal
components. Our results show that the final configuration, known as the "twisted-torus," has a
toroidal field that is 10-20 % of the total magnetic field energy, and is threaded by poloidal field-
lines extending into the outer atmosphere. However, our simulations do not consider the effect
of the crystalline solid crust that forms when the protoneutron star cools down. In such a sce-
nario, the crust evolves to Hall equilibrium states while the core is composed of superconduct-
ing protons, and magnetic equilibria can be determined from solutions of the Grad-Shafranov
equation involving two arbitrary functions of the poloidal flux. The equilibria found by using
the simple, but physically sound, choices of these functions with adjustable parameters present
only a small fraction of the magnetic energy stored in the toroidal component (5%). Identifying
these barotropic equilibria points the way to understanding their stability and studying their
properties. The evolution of the magnetic field plays a significant role in different emission pro-
cesses such as flares from magnetars, radio jets, and gravitational waves. In light of the fact that
we need extremely strong magnetic fields inside a neutron star to cause significant deformation
and produce gravitational waves, we suggest that a newly born magnetar can form columns of
matter at the magnetic poles from fallback accretion which may emit detectable gravitational
waves. Additionally, the study provides us with information about the survival time (∼ 50s)
before the NS collapses to a black hole through the fallback accretion channel.





Abstract in Polish

Gwiazdy neutronowe są naturalnymi laboratoriami, które pozwalają badać wiele zjawisk
w ekstremalnych warunkach. Te zwarte obiekty charakteryzują się silnymi polami magnety-
cznymi o nietrywialnym pochodzeniu i ewolucji. Zrozumienie własności pola magnetycznego
jest ważne przy interpretacji danych obserwacyjnych. Dzięki obserwacjom różnych typów
gwiazd neutronowych jesteśmy w stanie badać parametry procesów elektrodynamicznych w
skalach niedostępnych w laboratoriach naziemnych. Długoletnim wyzwaniem jest zrozumie-
nie własności wewnętrznych pól magnetycznych gwiazd neutronowych, które obecnie są słabo
ograniczone przez obserwacje. Ocena stabilności danej geometrii pola magnetycznego jest za-
tem ważnym krokiem w określeniu, czy geometria ta będzie stabilna w wielu skalach cza-
sowych Alfvena, stanowiąc tym samym realny opis wnętrza gwiazd neutronowych. Proste
przypadki, takie jak pola czysto poloidalne lub czysto toroidalne, były do tej pory drobiazgowo
analizowane za pomocą teorii perturbacji, a ostatnio za pomocą nieliniowych symulacji mag-
netohydrodynamicznych. W niniejszej pracy badamy różne konfiguracje pól magnetycznych,
stosując symulacje magnetohydrodynamiczne i ogólną relatywistyczną symulację magneto-
hydrodynamiczną, oraz analizujemy rozkład energii magnetycznej na składową poloidalną i
toroidalną. Nasze wyniki pokazują, że ostateczna konfiguracja, znana jako "skręcony torus",
ma pole toroidalne, które stanowi 10-20% całkowitej energii pola magnetycznego i jest poprzeci-
nane liniami pól poloidalnych rozciągających się do zewnętrznej atmosfery. Nasze symulacje
nie uwzględniają jednak wpływu krystalicznej skorupy stałej, która tworzy się podczas stygnię-
cia gwiazdy protoneutronowej. W takim scenariuszu skorupa ewoluuje do stanów równowagi
Halla, podczas gdy jądro składa się z nadprzewodzących protonów, a równowagi magnety-
czne można wyznaczyć z rozwiązań równania Grada-Shafranova obejmującego dwie dowolne
funkcje strumienia poloidalnego. Równowagi znalezione za pomocą prostych, ale fizycznie
uzasadnionych, wyborów tych funkcji z regulowanymi parametrami prezentują tylko niewielki
ułamek energii magnetycznej zmagazynowanej w składowej toroidalnej (5%). Identyfikacja
tych równań barotropowych wskazuje drogę do zrozumienia ich stabilności i badania ich włas-
ności. Ewolucja pola magnetycznego odgrywa istotną rolę w różnych procesach emisyjnych,
takich jak rozbłyski magnetarów, dżety radiowe i fale grawitacyjne. W świetle faktu, że do
wywołania znaczącej deformacji i wytworzenia fal grawitacyjnych we wnętrzu gwiazdy neu-
tronowej potrzebne są niezwykle silne pola magnetyczne, sugerujemy, że nowo narodzony
magnetar może tworzyć kolumny materii na biegunach magnetycznych w wyniku akrecji zwrot-
nej, które mogą emitować wykrywalne fale grawitacyjne. Dodatkowo, badania dostarczają nam
informacji o czasie przeżycia (50s) zanim NS zapadnie się do czarnej dziury przez awaryjny
kanał akrecyjny.
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1

Neutron stars: An Introduction

CHAPTER 1

"Not only is the Universe stranger than
we think, it is stranger than we can

think.”
-Werner Heisenberg.
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1.1 Historical background

Astronomers have always been very interested in the fate of stars since nuclear physics was
developed. When a massive star with a total mass greater than 8 M� but less than 25 M�
[Heg+03], where M� is the mass of the Sun, runs out of nuclear fuel, it dies in a type-II su-
pernova explosion, leaving behind a core where neutron degeneracy pressure balances gravity.
This object, first predicted theoretically by Landau in 1932 and later by Baade and Zwicky in
1934, was proposed to be very compact and gravitationally bound compared to other stars.
The loss of neutrinos during the supernova explosion process causes electrons and protons to
combine, creating a neutron-rich core and warming the stellar interior. Initially, the star’s core
temperature reaches 50 MeV, but after approximately 50 seconds, the temperature begins to de-
crease as the neutrinos escape. This leaves behind what is today known as a Neutron Star (NS).
In general, a massive star with mass in the range 25-100 M� would typically become a black
hole, however a NS may be created from such higher masses if the metallicity of the star ex-
ceeds the solar metallicity [ST86; HPY07]. It was not until Jocelyn Bell Burnell discovered radio
pulsars in 1969 that NSs were confirmed to exist despite being theoretically predicted 35 years
prior. By 1967, Pacini had already thought that the Crab Nebula was powered by a rotating
NS; however, the detection of radio pulses from CP 1919 revealed it to be driven by a strongly
magnetized NS, finally confirming its discovery.

1.2 Classification

A majority of NSs are observed as pulsars, which are objects rotating rapidly and emitting co-
herent radio waves. Pulsars have spin periods ranging from milliseconds to seconds and have
surface magnetic field strengths from Bs ∼ 108− 1012 G. If the spin axis is out of alignment with
the magnetic axis, charged particles are accelerated along the magnetic poles, causing pulses
of light that are swept around as the star rotates, just like the beams from a lighthouse. These
pulses are so precise, that pulsars can be comparable to atomic clocks. The magnetic field in
NSs can also amplify and make them become magnetic monsters, which are young and have
field strengths million times stronger than ordinary pulsars. These objects are called magne-
tars [DT92; TD93], where the magnetic field lines under the crust are so intense that even a
tiny movement releases bursts of electromagnetic radiation [TD95]. In addition to isolated NSs,
there are many that exist as binary systems as survivors of supernova explosions and those that
have been associated with dense stellar environments like globular clusters through the cap-
ture of a companion star. Some NSs are also not observed to pulse, for example, some are seen
only in thermal emission and modelling indicates they are NSs [Cac+08; PCC19], and some
Low Mass X-ray Binaries (LMXBs) have bursts that suggest a surface (and thus cannot be black
holes). The period of these burst oscillations gives the spin period of the NS [in’+02; Bha+05].
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Figure 1.1: Schematic diagram showing the turning points in the mass versus central density
diagram for equilibrium configurations of ideal gas equation of state. The stable branch for
white dwarfs and neutron stars are marked. Figure taken from openmetric.org.

1.3 Structure of neutron stars

The stellar structure equation for hydrostatic equilibrium describes how the gravitational pres-
sure on a system can be compared with the degeneracy pressure on a static cold Fermi gas.
Oppenheimer and Volkoff (OV) were the first to perform stellar structure calculations in Gen-
eral Relativity on NSs in 1939, using the assumption that matter was composed of neutron gas
at high density in hydrostatic equilibrium. Richard Tolman analysed the spherically symmetric
metric

ds2 = e2φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1.1)

where φ,Λ→ 0 for r → ∞. These unknown functions in the metric can be found by solving the
Einstein equations

Gαβ = 8πGTαβ (1.2)

Using the stress energy tensor for the perfect fluid,

Tαβ = (ρ + p)uαuβ + pgαβ (1.3)

https://openmetric.org/assets/slides/neutron-star-model/resource/OV-HW-cut.png
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the stellar structure equations in General Relativity (also called the Tolman Oppenheimer Volkoff
(TOV) equations) are given by

dP
dr

= −Gρ(r)m(r)
r2

[
1 + P(r)

ρ(r)c2

][
1 + 4πr3P(r)

m(r)c2

]
[
1− 2Gm(r)

rc2

] (1.4)

dm(r)
dr

= 4πρ(r)r2 (1.5)

where P, m and ρ are the pressure, mass and density respectively at a distance r from the center.
The integration is carried from the r = 0 to r = R with the boundary conditions p(R) = 0
and M(R) = M, where M is the total mass of the star. The TOV equations, given by equation
1.5, are analogues to the Lane-Emden equation which is simply the Newtonian version of the
hydrostatic equilibrium condition. Solving these equations with an ideal gas equation of state
(EOS) composed of free neutrons, resulted in equilibrium configurations shown in figure 1.1
where the model with maximum mass has the parameters Mmax = 0.7M�, R = 9.6 km, and a
central density ρc = 5× 1015 gm cm−3.

Based on the interactions between baryons, hyperons, and quarks, there have been realistic
calculations that account for numerous EOSs with different masses and radii. EOSs can also
be classified based on their compressibility into soft, moderate, and stiff EOSs, each having a
different maximum mass, such as ∼ 1.4M� for soft, and ∼ 2.5M� for stiff. Figure 1.2 shows
how different EOSs based on different interactions produce different maximum masses of the
NS.

The maximum mass of NSs have been calculated from observations. For example, the
Hulse-Taylor binary pulsar is a well-known system which gives a measurement of MNS =

1.44M�. Clearly, this exceeds the TOV limit of 0.7 M�(which considers the ideal gas of free
interacting neutrons) suggesting that strong interactions play a significant role in the internal
structure of NSs. Similarly, the observation of gravitational waves from the binary neutron star
merger GW170817 have put the maximum mass of NSs in the range 2.01 M� ≤ M ≤ 2.17 M�
[MM17; RMW18]. Furthermore, and most recently, millisecond pulsars have been studied using
Shapiro delay to set the TOV limit to approximately 2.14M� [Cro+20].

Let us now proceed to a more detailed discussion of the internal structure of NSs, which is
depicted in figure 1.3. Broadly, we can classify the different regions as following:

• Atmosphere: This thin layer (few millimeters thick) of low density plasma is mostly re-
sponsible for the electromagnetic spectrum we observe, and allows us to collect informa-
tion about chemical composition, surface temperature, surface gravity, and surface mag-
netic field.
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Figure 1.2: Relationships between mass and radius for spherically symmetric NSs covering the
full thermodynamic parameter range and including only nucleonic degrees of freedom given
in Table III in [Oer+17]. Two horizontal bars show two recent precise NS mass determinations
[Dem+10] (hatched blue) and [Ant+13] (yellow). Figure taken from [Oer+17].

• Outer Crust: This region has a thickness of few hundred metres with densities varying
from ρ ∼ 106 gm cm−3 to the neutron-drip density ρND = 4× 1011 gm cm−3. Matter is
composed of degenerate and ultrarelativistic electrons and ions which form a solid crystal.
The neutronization process make the nuclei neutron-rich with increasing density. The
neutrons start tto drip out of the nuclei to form a neutron gas at the neutron drip density
at the bottom of the outer crust.

• Inner Crust: This layer is about a km thick and its density varies from 4× 1011 gm cm−3

to 0.5ρ0 ∼ 1.4× 1014 gm cm−3, where ρ0 is the nuclear saturation density. The chemical
composition comprises atomic nuclei, electrons and superfluid neutrons.

• Outer core: This region extends up to 2 km with densities ranging from 0.5ρ0 ≤ ρ ≤ 2ρ0.
The matter is primarily composed of electrons, protons, neutrons, and possibly muons.
The neutrons and protons interact strongly and behave as a superfluid.

• Inner core: More than half of the star is contained within this region where densities are
well above ρ ≥ 2ρ0. Modeling the inner core is challenging as exotic states of matter
can exist whose interactions are unknown. Pions, kaons, hyperons as well as quark mat-
ter may exist along with new phases of matter favored by first and second-order phase
transitions. The EOS of the inner core remains mysterious.
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Figure 1.3: The structure of a neutron star showing the compositions at different layers and
variations in density as one moves from the outer crust to the inner core. Figure from [New13].

1.3.1 Superfluidity and superconductivity

Initially, a proto-neutron star (PNS) is extremely hot, with an internal temperature of the order
of 1012 K [HPY07]. About one minute later, the PNS becomes transparent to neutrinos being
produced in its interior which carry away energy, and thus rapidly cools down. As the star cools
below about a billion degrees, the outer layers of the star crystallize into a solid crust. The star’s
core is much cooler than its crust at this point due to the escaping neutrinos. It takes several
decades, but the interior of the star reaches an equilibrium temperature of about a hundred
million degrees (apart from a thin outer layer). After approximately a hundred thousand years,
the last cooling stage occurs, as heat from the interior is distributed to the surface, dissipating
as radiation. Metallic surfaces, which are made up mostly of iron, are generally surrounded
by a thin atmosphere. But below the surface, the matter has been compressed so much that
atomic nuclei, which form a regular Coulomb lattice, are fully ionized, and thus co-exist with
a quantum gas of electrons. Neutrons start to leak out of nuclei as they move deeper into the
star, creating an underground neutron ocean. Unlike the outer crust, whose composition is
almost completely determined by atomic masses, the inner crust, where neutrons are unbound,
can only be studied theoretically since there is no equivalent on Earth. NSs remain poorly
understood in terms of their composition and properties of the core.

Prior to the actual observations of pulsars, it was proposed in 1959 that NSs might contain a
neutron superfluid – an anomalous frictionless liquid. Strong short scale repulsive interactions
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between fermions provides the necessary pressure to balance the weak attraction. Superfluids
(electrically neutral) and superconductors (electrically charged) are expected to form in the in-
terior of a mature NS [Leg08]. At low enough temperatures, nucleons can form pairs of bosons.
These bosons can behave coherently on a large scale and the nucleon condensate can flow with-
out viscosity, just like superfluid helium-3. Partial wave analysis of nuclear interactions is a
useful tool for understanding patterns of pairing in NSs. Neutron-neutron and proton-proton
pairings are caused by S and P wave scattering, while 3D2 wave scattering can only exist be-
tween neutrons and protons. There are believed to be three types of superfluids and super-
conductors within a NS: (i) S wave superfluid permeating the inner region of the crust, (ii) a
homogeneous neutron superfluid in the outer core, and (iii) a P wave superfluid along with
proton (S wave) superconductor in the core [BPP69]. Like the emergence of these phenomena
in terrestrial experiments, neutron superfluidity and proton superconductivity can profoundly
alter its dynamics. As the standard reactions and scattering processes suppress the bulk and
shear viscosity, superfluid neutrons can flow more freely relative to the ‘normal’ component of
the star [HS18]. Such a phenomena can give rise to mutual friction and freeze the rotation of
the star giving rise to pulsar ‘glitches’ [HM15].

1.4 Magnetic fields in neutron stars

1.4.1 Magnetic field from observations

Magnetic fields in NSs are responsible for a plethora of activities, from flares on the surface to
gamma-ray bursts and fast radio bursts. Observation of the Zeeman splitting of spectral lines
or measurements of polarization can measure the magnetic fields of non degenerate stars, such
as the Sun, and some white dwarfs. In addition, Doppler imaging analysis can reveal cold
spots associated with the strongest magnetized regions of the surface by analyzing the time-
varying profiles of rotating stars. Such direct measurements are difficult to obtain for a NS
and one thus has to rely on more indirect measurements. In some cases, X-ray spectra reveal
cyclotron lines, from which one can estimate the magnetic field at their surfaces. In general,
NSs have a magnetic field that is primarily characterized by a loss of rotational energy due to
the electromagnetic torque which causes them to spin-down. This allows us to estimate the
large-scale dipolar magnetic field based on rotational properties. One can infer magnetic field
intensities from period and derivatives of period. If we can assume that the exterior magnetic
field, to its lowest order, to be approximately a dipole, we can write

B =
3ni(njmj)−mi

r3 (1.6)

where ni = xi/r and m is the dipole moment. The higher order multipoles fall of as 1/rl+2 and
hence we can intuitively conclude that far off from the stellar surface, the field is mostly dipolar.
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The dipole can be presented in terms of the surface poloidal field

m =
1
2

BsR3(e|| cos α + e⊥ sin α sin(ωt) + e⊥ sin α cos(ωt)) (1.7)

where e|| and e⊥ are the unit vectors parallel and perpendicular to the rotation axis, while α is
the angle between m and rotation axis. Bs represents the surface magnetic field strength. The
energy carried away by electromagnetic waves:

dE
dt

= − 2
3c3 |m̈| (1.8)

which gives

dE
dt

= − 1
6c3 B3

s R6 sin2 α ω4 (1.9)

and if one equals this to the decrease in rotational energy Iωω̇ where I is the moment of inertia
and ω is the angular frequency, we have

ω̇ = − 1
6c3

B2
s R6

I
sin2 αω3 (1.10)

There is no spin down when the magnetic axis and rotation axis are aligned. The above calcula-
tions are based on considering the dipole in vacuum, however, in reality the NS is surrounded
by plasma where charged particles are accelerated along the magnetic field lines and produce
the observed emission. In this case, the electromagnetic torque acting on the pulsar is given by
[Spi06]

τEM =
B2

s R6ω3

c3 (1 + sin2 α) (1.11)

By measuring period and period derivative and using the above expressions we can estimate
the field strength at the surface. For typical pulsar parameters, the magnetic field strength is
given by

Bs = 3× 1011

√
P
10

Ṗ
10−14 G (1.12)

1.4.2 The P− Ṗ diagram and characteristic age

A standard pulsar has a field of the order of Bs ∼ 1012 G, but accreting systems have weaker
inferred fields of the order of Bs ∼ 108 G , and magnetars have fields of the order of Bs ∼ 1015

G, which are necessary to generate their high energy emission, which is too energetic to be
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Figure 1.4: Pulsar spin period (P) versus time derivative of spin-period (Ṗ). Open squares are
pulsar values from the ATNF Pulsar Catalogue [Man+05], while solid squares denote magne-
tars. Accreting sources that have Ṗ < 0 are denoted by open circles while closed circles denote
Ṗ > 0. Figure taken from [Ho+14]

.

produced by rotation alone. Based on a constant magnetic field, we can integrate equation
1.10 to get an estimate of the age of the pulsar, the so-called characteristic age. Thus, rewriting
equation 1.10 in terms of the period, we have

Ṗ =
8π2R6B2 sin2 α

3c3 I
P−1 (1.13)

Assuming the star to be rapidly rotating at its birth, we can assume P(t = 0) � P(t). Integrat-
ing equation 1.13, characteristic age (τc) is given by

τc =
P

2Ṗ
(1.14)

This is only a rough estimate of the age. The magnetic field strength, age, spin, and spin-down
rate are well represented in the P − Ṗ diagram shown in figure 1.4. The young and strongly
magnetised NSs (and also magnetars) are located on the top right hand corner while old weakly
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magnetised stars are in the bottom left. It is generally believed that the star starts out highly
magnetised and spinning rapidly, and spins down due to electromagnetic emission, while the
field decays due to Hall dissipation in the crust, as we will discuss later, and then on a slower
timescale due to resistive effects in the core. Millisecond pulsars (located at the bottom left
corner in the P− Ṗ diagram) are thought to be old pulsars that are recycled from the graveyard
(where the field and rotation rate are too low for radio emission to occur) by accretion [Bv91].
Another important parameter is the braking index (n) defined as:

ν̇ ∝ νn = Cνn (1.15)

where C is a constant of proportionality and ν = ω/2π is the spin frequency. The braking index
can be obtained if the second derivative of the spin frequency is measured which eliminates the
constant C from equation 1.15. Thus,

n =
νν̇

ν̈
(1.16)

As we noted before, if the dipolar radiation is solely responsible for spindown (see equation
1.9), the spin frequency of the pulsar varies as ν̇ ∝ ν3 (see also equation 1.10). Reliably mea-
sured braking indices lie in the range 1.4 < n < 3 [Lyn+96; Lyn+15; Arc+16] and can be used to
investigate alternative spin-down mechanisms, e.g. winds (n = 1) or gravitational-wave emis-
sion (n = 5 for a quadrupolar ‘mountain’), and make more sophisticated estimates of pulsar
ages and initial spin periods.

1.4.3 Magnetic field geometry and NICER observations

For rotating NSs, observational and theoretical evidence supports the presence of higher-order
multipole moments at the stellar surface [Jon80; GMG03; Aru+18], though the multipole compo-
nent is expected to be much weaker than its dipole component higher up in the magnetosphere
(i.e. at larger radii). This is because the dipole falls off as 1/r3 while all higher multipoles of mo-
ment l ≥ 2 falls off as 1/r(l+2). Generalizations in the form of distorted or offset dipoles have
also been explored both for pair production [Aro98; HM01] and for modeling thermal pulsa-
tions from recycled pulsars [Bog13]. The pulsar magnetopshere contains regions with narrow
gaps where the plasma is not present. In these regions, the unscreened electric field accelerates
charged particles which then produce electron-positron pairs. These gaps are either present
above the polar caps or near the light cylinder close to the current sheets. Particles streaming
outward produce the observed radio, γ-ray, and non-thermal X-rays. As opposing charged par-
ticles are accelerated downward, they hit the NS polar caps and heat the surface. Radiation from
the heated spots causes X-ray pulsations as the star rotates. It is not only the temperature profile
across the hot regions that determines how the pulsations look (the pulse profile) but also the
properties of the NS atmosphere. A detailed model of X-ray spectral-timing data from NICER
was carried out by [Ril+19] for the millisecond pulsar PSR J0030+0451 based on pulse-profile
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measurements. A canonical global-scale centered dipolar magnetic field configuration cannot
explain the location, shape, and size of these hot regions. Using these results, [Bil+19] explored
previous attempts to constrain the magnetospheric configuration of PSR J0030+0451. There was
no direct observational evidence that PSR J0030+0451 has a centered dipole field, but the re-
sults required development of nondipolar (or offset-dipolar) magnetic field configurations for
rotation-driven pulsars and including them in existing models of pair cascade production, mag-
netospheric current distribution, and surface heating. Global non-dipolar (or offset-dipolar)
magnetic field configurations may have a profound impact on many aspects of pulsar research,
including pulsar braking, birth velocities, detectability, and interpretation of multiwavelength
magnetospheric emission. NICER was also successful in constraining the dense matter equa-
tion of state from mass-radius relation for PSR J0740+6620. By combining information from
multimessenger observations such as radio timing, GW events, and mass-radius estimate of
PSR J0030+0451 [Mil+19], the radius of a 1.4 M� NS was constrained to 95% credible ranges
12.33+0.76

−0.81 km (using Piecewise Polytropic (PP) EOS model) and 12.18+0.56
−0.79 km (speed of sound

EOS model) [Raa+21]. See [Mil+19] for similar conclusions. NICER is also expected to mea-
sure radius by doing precise pulse profile modelling (to measure GR corrections) in the coming
future.

1.4.4 Magnetic field from theory

The origin of magnetic field in NSs still remain a mystery. The presence of high magnetic field
strengths can be explained by the conservation of magnetic flux from the progenitor star. For
example, let us consider a star with typical magnetic field strength Bi = 102 G (solar value)
and radius Ri = 106 km, and it ends up being a NS with radius R f = 10 km. According to
conservation of magnetic flux, we have

BiR2
i = B f R2

f (1.17)

the final magnetic field of the NS can be estimated to be:

B f =
BiR2

i
R2

f
= 102

(
106

10

)2

G ∼ 1012 G (1.18)

We can therefore reach such high magnetic field strengths, but this calculation isn’t capable of
explaining much higher magnetic field strengths (e.g. Bs ∼ 1015 G as seen in magnetars). It is
generally thought that some kind of a dynamo operates in the PNS phase.

A NS’s magnetic configuration is theorized using magnetohydrodynamical equilibrium
calculations. However, these solutions are not unique and it is unclear whether they are stable,
and therefore the magnetic field configuration is an open question. The long-term magnetic
evolution is another important aspect. The magnetic field in the solid crust evolves as a result
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of Ohmic dissipation and Hall drift. During the first few days after birth, protons in the core of
NSs transition to a type II superconducting state, when a magnetic field is confined to flux tubes
and is no longer locked to the plasma. Understanding the dynamics of flux tubes, coupled to
the motion of superfluid neutron vortices, is an extremely challenging problem that makes the
magnetic field evolution in the core formally difficult to face [Gra+15; GAS11; GA11].

1.4.5 Magnetohydrodynamics (MHD)

To understand the magnetic field evolution in NSs, we must solve Maxwell’s equations in the
highly conducting stellar interior given by

Gauss’ Law ∇ · ~E =
ρ

ε0
(1.19a)

Gauss’ Law (~B Fields) ∇ · ~B = 0 (1.19b)

Faraday’s Law ∇× ~E = −∂~B
∂t

(1.19c)

Ampere’s Law ∇× ~B = µ0~J + µε
∂~E
∂t

(1.19d)

where~J is the current and the force acting on the particle is called the Lorentz force given by

~F = q~E +
~J × ~B

c
(1.20)

To describe the complete evolution, we must also look at the evolution of the fluid. Since there
is no external source of matter flow, the mass of the fluid remains constant within the volume
V of the star. Thus, conservation of mass gives

∂ρ

∂t
+∇ · (ρ~v) = 0 (1.21)

We focus here on inviscid flow since extending to a viscous fluid can be accomplished similarly
as in ordinary fluid mechanics. Next, we move on to obtain the equation of motion of the fluid
whose total linear momentum must be conserved. Considering the Lorentz force, pressure (p)
force, and the force of gravity, the conservation of momentum equation gives the time evolution
of the fluid’s velocity (also known as the Euler equation) as:

∂~v
∂t

+~v · ∇~v +
1

4πρ
~B× (∇× ~B) +

1
ρ
∇p = −∇Φg (1.22)
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where Φg is the gravitational potential. Let us now look into the evolution of the magnetic field.
We first consider the Ohm’s law

~J = σ
(
E +

~v× ~B
c
)

(1.23)

Neglecting the Electric field, we can use equation 1.23 in equation 1.20 which gives

~F = −
~B× (∇× ~B)

4π
(1.24)

From equation 1.23, the electric field can be written

~E =
~J
σ
− ~v

c
× ~B =

η

c
∇× ~B− ~v

c
× ~B (1.25)

Therefore, using equation 1.25 in Ampere’s law gives us the so called induction equation:

∂~B
∂t

= ∇×
(
~v× ~B

)
−∇×

(
η∇× ~B

)
(1.26)

And, lastly the pressure can be obtained using the sound speed cs as:

∂p
∂t

+~v · ∇p + ρc2
s∇~v = 0, (1.27)

Thus, the MHD equations, which are essentially a reduction of fluid mechanics equations with
Maxwell’s equations, are 1.21, 1.22, 1.26, 1.27. MHD is a strongly reduced theory as compared
to plasma physics where the plasma is electrically neutral. Another important thing to note
in MHD is that the electric field vanishes only in the frame of reference in which the fluid is
moving; it is therefore present in all other frames. If we boost to the frame moving with velocity
v we have

~E′ = ~E +
~v
c
× ~B (1.28)

From the conservation of magnetic flux,

∂Ψm

∂t
=
∫

S
~B · d~S = 0 (1.29)

∂Ψm

∂t
=
∫

S

∂~B
∂t

+
∮

C
~B ·~vd~l =

∮
C
(−c~E−~v× ~B)d~l =

∮
C
~E′d~l = 0 (1.30)

(1.31)

Given~J = σ~E′, we have ~E′ → 0 when the conductivity σ→ ∞.
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1.4.6 General Relativistic Magnetohydrodynamics (GRMHD)

There are several aspects of NS structure and evolution that General Relativity affects, includ-
ing radiation from the surface, magnetic field models, and evolution of compact binaries. It
is widely used for mass measurements of NS and to study properties of superdense matter.
Consequently, we must model our NS based on GRMHD simulations.

Many authors, for example [Kom05; KSK99; GMT03; Ant+06] have adopted a conservative
scheme to integrate the GRMHD equations. These equations are of the form:

∂tU(P) = −∂iF(P) + S(P) (1.32)

where U is a vector of conserved variables (such as energy, momentum, and particle num-
ber density), Fi are the fluxes, and S is a vector of source terms. P is a vector of "primitive"
variables such as rest-mass density, velocity and magnetic components, and internal energy
density.

In GR, the fluid is described by its four velocity uµ, rest-mass density ρ, internal energy
per unit volume ∈int, and pressure p. The normal observer’s four-velocity is given by nµ =

(−α, 0, 0, 0, ) in the coordinate basis with metric components gµν and independent variables
t, x1, x2, x3. α is known as the lapse function such that α2 = −1/gtt. The electromagnetic field
tensor Fµν has six components (three electric field and three magnetic field), however, the ideal
MHD condition eliminates 3 of them by:

uµFµν = 0 (1.33)

because the Lorentz force vanishes in the rest-frame of the fluid. The magnetic field four-vector
is more convenient to describe the field which is given by

Bµ = −nν
∗Fµν (1.34)

where ∗Fµν is the antisymmetric field tensor. The magnetic field variables are given by

Bi =
Bi

α
(1.35)
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The governing equations for the GRMHD are conservation of stress-energy (1.36), conservation
of particle number (1.37) , and the Maxwell equations ((1.38), given by:

∇µTµ
ν = 0 (1.36)

∇µ(ρuµ) = 0 (1.37)

∇ν
∗Fµν = 0 (1.38)

1.5 Magnetic equilibria

The fluid can be approximated as the sum of the non-magnetised background plus a pertur-
bation, i.e. density ρ ∼ ρ0 + δρ, and pressure P ∼ P0 + δP, wehere |δρ|/ρ0 ∼ |δP|/P0 ∼
B2/(8πP0) ≤ 10−6 [Rei14]. Chandrasekhar & Fermi [CF53] had showed that magnetized stars
are not spherically symmetric. The perturbed quantities satisfy the hydromagnetic equilibrium

∇δP + δρ∇Φg =
1
c
~J × ~B (1.39)

Assuming the star to be a perfectly conducting fluid in ideal MHD, the dynamical equilibrium
of the fluid can also be written in terms of the fluid pressure, mass density, magnetic field, and
currents. Thus, in addition to equation 1.39, we also have:

∇P + ρ∇Φg =
1
c
~J × ~B (1.40)

In axial symmetry, the magnetic field can be decomposed into poloidal and toroidal components
as

~B = Bp + Bt = ∇α(r, θ)×∇φ + β(r, θ)∇φ (1.41)

where α and β are arbitrary functions known as the poloidal and toroidal flux functions re-
spectively, and ∇φ = φ̂/r. Therefore, the perturbed quantities will only be a function of (r, θ),
implying that the azimuthal component in equation 1.39 must be zero. This gives us

∇α×∇β

4πr2 sin2 θ
= 0 (1.42)

This implies that the quantities ∇α and ∇β are parallel to each other [Cha56]. The azimuthal
component of the current ( c

4π∇× Bp) itself is given by

~Jφ = − c
4π

∆?α

r
(1.43)
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where

∆? =
∂2

∂r2 +
sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
(1.44)

is known as the Grad-Shafranov operator. The Lorentz force can be written in terms of the
poloidal and toroidal field as

~J × ~B
c

= − 1
r2 sin2 θ

[∆2α

4π
∇α + β∇β− ((∇β×∇α) · φ̂)φ̂

]
(1.45)

Axial symmetry implies that ∇β ×∇α = 0. Using this in equation 1.45a long with the static
Euler equation 1.22, we get [

∆?α

4π
∇α + β∇β

]
= −r2 sin2 θρ∇χ (1.46)

where ∇χ = ~J × ~B/cρ is an arbitrary function of α. Therefore, the equilibrium equation of the
magnetic field also known as the Grad-Shafranov equation is given by

∆?α = −4πβ
dβ

dα
− 4πr2 sin2 θρ

dχ

dα
(1.47)

Note that we can also derive the Grad-Shafranov using the unperturbed equation 1.40. Using
Ampere’s law, the current density can be written as:

4π

c
~J = ∇β×∇φ− ∆?α∇φ (1.48)

Calculating the Lorentz force term (~J × ~B) and approximating the fluid to be barotropic (such
that the Lorentz force can be expressed in terms of a gradient of a scalar potential), we can
similarly arrive at equation 1.47.

1.5.1 Dissipation in the crust

Modeling the magnetic field evolution in the crust had gained significant interest within the
NS community since the first estimate of its decay was performed by [BPP69]. However, a
complete theoretical model that would explain all the observations coherently does not exist. It
is generally agreed that the magnetic field in magnetars decays on timescales of 103 − 105 years
[WT06; HL06]. Such a decay can effectively heat an isolated NS [Pon+07], thus measuring the
surface temperatures can give us information about the magnetic field strength. Additionally,
evidence of braking indexes significantly larger than 3, which are inferred for an ensemble of
a dozen pulsars in an active age of a few 105 years, indicates that relatively young NSs may
experience periods of rapid decay [JG99; GR02].
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Conversely, population synthesis studies indicate that old pulsars show no significant mag-
netic field decay over their lifetimes, i.e. the decay period is longer than 10 Myr [Har+97]. By as-
suming that the large-scale dipolar field and spin down are maintained by two current systems,
these contradictory facts can be satisfactorily resolved. Long-lived currents are responsible for
sustaining the large-scale dipolar field and spin down of old pulsars. Fields anchored in the
crust decay between 105 and 107 years, depending on conductivity, thickness, and strength and
structure of the original field. According to estimates of how fast a core-anchored field would
dissipate in the crust, it would take over 100 Myr for a field to be expelled and dissipated
[KG01].

Aside from the Ohmic diffusion, which occurs rapidly in low-density crustal regions and
during the early hot phase of the life of a NS, another process that changes the crustal field
structure, both quantitatively and qualitatively, is the Hall drift. Numerous studies have been
conducted over the past two decades [Rei+07; WH09; PG10; KK12; Gou+13; GC14a; Mar+14;
GP19; GDI22] on the effects of Hall drift on the evolution of magnetic fields in isolated NSs.
As a result of the density profile, Hall currents are capable of forming current sheets, which
are places of very efficient dissipation. In the case of current sheets just below the surface, the
effect is dramatic, but even when the drift is directed towards the highly conductive inner crust,
the small scale of the locally intense field results in a significantly faster dissipation of magnetic
energy than the purely Ohmic diffusion estimate. Goldreich and Reisenegger [GR92] developed
the theory of the Hall cascade for NSs, according to which magnetic energy is transferred from
the largest to smallest scales until a critical scale length is reached below which Ohmic decay
takes place. However, there seem to exist equilibrium states called "Hall equilibria" which do
not modify the magnetic field configuration.

In the crystalline crust of NS, the full evolution of the magnetic field is given by the induc-
tion equation

∂~B
∂t

= −∇×
(

c
4πne

[∇× ~B]× ~B
)
−∇×

(
η∇× ~B

)
(1.49)

where the first term corresponds to the Hall effect and the second is the Ohmic dissipation term
on the right hand side. The quantities ne and η are the electron density and electrical resistivity
respectively. The relative importance of these two effects depend on the timescale at which
these processes operate:
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Figure 1.5: (top) Poloidal magnetic field lines in the crust at three different evolutionary stages
(t = 10, 50, and 500 kyr as marked in the title of the individual frames) with Hall drift. (bottom)
contours of constant toroidal mangetic field lines in the crust. Figure taken from [PG07]

tOhm ∼
4πσL2

c2 = 13.5 Myr
(

L
1km

)2(
σ

1024 s−1

)
(1.50)

tHall ∼
4πeL2ne

cB
= 1.6 Myr

(
L

1km

)2( ne

2.5× 1036cm−3

)(
1014 G

B

)
(1.51)

For B ≥ 1013 G, the Hall timescale is shorter and the evolution of the field is dominated by
the Hall effect while the Ohmic dissipation mostly occurs in current sheets. There have been
a number of studies exploring these effects in different contexts but we highlight some of the
major findings. First, the Ohmic dissipation can cause the magnetic field to decay by a factor
of 103 − 104 for NSs in binaries due to heating effects caused by accretion. The internal tem-
peratures also increase with accretion rate and its distribution may be non-uniform leading to
thermomagnetic effects [GU94]. In all cases, varying the accretion rate or crustal temperature
results in an initial rapid decay, followed by a slow decay which finally freezes, and explains
many observations [KB97; KB99]. The concept of Hall equilibrium was extended to a state called
the "Hall attractor" [GC14b] which consists of a dipole and an octupole component accompa-
nied by an energetically negligible quadrupole toroidal component in an initially dominated
dipolar field. This was also observed for long-term evolution of the 2 dimensional field which
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underwent damped oscillations at Ohmic timescales [Mar+14].

1.6 Emission signatures : connecting theory to observations

Astronomical measurements are not numerous and precise enough for direct observation of the
evolution of magnetic fields in NSs. Furthermore, the computed poloidal dipolar magnetic field
Bp depends on the same quantities as characteristic age. Nonetheless, observations of energy
release (bursts or constant activity), spin parameters, and properties of surface emission sup-
port the theory of field decay and its evolution. Furthermore, one can study different objects
and its associated phenomena such as magnetar bursts, Central Compact Objects, radio pulsars
with growing external field, High Mass X-ray binaries, millisecond radio pulsars, etc, for un-
derstanding the magnetic field dynamics [IPH21]. Our discussion will be focused on two main
characteristics of magnetic field effects in NSs:

1.6.1 Gravitational waves

Gravitational waves (GWs) are the disturbances in spacetime travelling at the speed of light
like a wave first predicted by Albert Einstein as part of his theory of General Relativity. Most
recently, the discovery of GWs from binary systems has revolutionized our understanding of
the universe since its announcement, for example, it has helped constrain the Hubble constant
[Abb+21a; Abb+17a], the population of binary black holes and NSs [Abb+21d], test of General
Relativity [Abb+21h], kilonova and short gamma-ray bursts [Abb+17b; CVF21], heavy metals,
etc. However, with the current sensitivity of the Advanced LIGO and Advanced Virgo, we have
not yet detected GWs from isolated NSs which are expected to emit long-lived monochromatic
continuous waves, but have put constraints on their deformation from upper limits on the GW
strain [Abb+21b; Abb+21c; Abb+21e; Abb+22; Abb+21g; Abb+21f], which would have been
detected.

ε ≈ 4.5× 10−7
(

Bp

1014G

)(
1− 0.389

Λ

)
(1.52)

A detailed discussion of the different ways a rotating NS can emit GWs is given in [Las15],
but the simplest way is to form a "mountain" sustained by shear stresses. As the star rotates, it
possesses a time-varying quadrupole which allows GWs to be emitted at twice the stellar fre-
quency. Let us therefore describe the kind of signal that a deformed NS would emit. Denoting
the principle moments of inertia by Ix, Iy, Iz along the axes x, y, z respectively, any asymmetric
mass distribution in the NS structure will imply Ix 6= Iy. The rotation matrix used in trans-
forming the moments of inertia from the lab frame to the rotating frame of the star is given
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Figure 1.6: GW strain for the population of pulsars: blue crosses have Λ = 1; green crosses
have Λ = 0.01; red circles assume NSs with colour-flavour-locked phase having Λ = 0.1. The
definition of Λ is given by equation 1.52 which represents the fraction of poloidal energy to the
total magnetic energy. The solid line represents the detector sensitivity for the Advanced LIGO
while the dashed line is for the Einstein Telescope. Figure taken from [Las15].

by

Rz =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 0

 (1.53)

In the inertial frame, we have Iinertial = RT
z IbodyRz. Thus,

Ixx = −Iyy =
1
2
(Ix − Iy) cos 2φIxy = Iyx =

1
2
(Ix − Iy) sin 2φ (1.54)

With the proper time derivates, we get the luminosity of the GWs as

dE
dt

=
G

5c5 〈
...
Ixx

2
+

...
Ixx

2
+

...
Ixx

2〉 = 32G
5c5 (Ix − Iy)

2ω6 (1.55)

For a triaxial ellipsoid, the deformation, in general, is quantified by the ellipticity parameter
defined as

ε =
|Ix − Iy|

Iz
(1.56)
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and the gravitational wave strain for typical NS parameters is given by [SB19]

h0 =
4π2G

c4

Iz f 2
GWε

d
= 4.2× 10−26

(
ε

10−6

)(
P

10ms

)2( d
1kpc

)−1

(1.57)

Deformations can also be sustained by elastic strains in the crust [Bil98; UCB00], and strong
magnetic fields in the core of the star [BG96]. In the latter case, the ellipticity scalse with the
square of its volume-averaged magnetic field [Has+08], implying the characteristic GW strain
also scales as h0 ∼ 〈B〉2. Therefore, we must not only have a thorough understanding of the
different configurations of magnetic field which can exist within a NS, but also focus on what
can be inferred about the magnetic field from GW observations. As we will see in chapters 1
and 2, a purely poloidal field is unstable (and for that matter a purely toridal field as well),
but the long term stability of the magnetic field is a challenging problem. The most accepted
model is that of the twisted-torus configuration in which the toroidal component threads the
closed field region of the poloidal field [BS06; CFG10; Akg+13]. These solutions can either lead
to an axisymmetric field [Bra07; Bra09] or a non-axisymmetric structure [Bra08; Las+11; Cio+11;
CR12]. There is uncertainty in GW predictions due to the possibility of different magnetic field
configurations. The relative strengths of poloidal and toroidal components strongly affect stel-
lar ellipticity, which is important for GW detection [Has+08; Cio+09; Mas+11]. The standard
models suggest (e.g. [Mas+11]):

where Λ is the ratio of the poloidal field strength to the total magnetic field strength. There-
fore, a detection is only possible for magnetar type field strengths. These objects also have spin
periods from P ∼ 1 − 10 s that would emit GWs at frequencies lower than the current sen-
sitivities of the Advanced LIGO and Advanced Virgo detectors (see figure 1.6) but could be
interesting for future observatories like the Einstein Telescope.

1.7 Outline of this thesis

The plan of the thesis is as following:

• Chapter 2: We performed MHD simulations of an isolated NS starting from two initial
magnetic conditions: one purely poloidal field, and the other a mixed poloidal-toroidal
field with a stronger toroidal component. The system was evolved for 40 ms to determine
what the poloidal and toroidal energies settled to. The instability and its relation to tur-
bulence, as well as the transfer of magnetic helicity at various length scales are discussed.
We also report the effect of resistivity on our simulations.
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• Chapter 3: In the continuation of simulations presented in chapter 1, we have performed
the longest GRMHD simulations for the isolated NS, starting with the same initial con-
ditions, but with an increased simulation box to have a maximum resolution of 5123 in
Cartesian coordinates. After evolving the system for 880 ms, we studied the long-term
behavior of poloidal and toroidal energies, dissipation of magnetic energy, and calculated
energy spectra.

• Chapter 4: In this chapter, we obtain equilibrium solutions to the magnetic field present
in a standard pulsar population with a superconducting core and crust in Hall equilib-
rium. Additionally, we investigate MHD equilibrium in the entire star, by solving the
Grad-Shafranov equation, for which a new numerical scheme based on the Gauss-Seidel
method is implemented with linearising the source term. We also calculated the deforma-
tion due to the toroidal field inside the star.

• Chapter 5: We show how a newly born millisecond magnetar born after core-collapse
supernova or a binary neutron star mereger, forms columns of matter from fallback ac-
cretion, enabling them to possess large ellipticities, and emit GWs. During this period,
we also study the evolution of the NS’s spin and calculate the maximum mass of the NS
before it collapses into a black hole.

• Chapter 6: Conclusions and future work related to the main subject matter of this thesis
are discussed.
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Magnetic field configurations of neu-
tron stars from MHD simulations

CHAPTER 2

"Truth is ever to be found in the
simplicity, and not in the multiplicity

and confusion of things”
-Issac Newton.
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ABSTRACT
We have studied numerically the evolution of magnetic fields in barotropic neutron stars, by
performing non-linear magnetohydrodynamical simulations with the code PLUTO. For both
initially predominantly poloidal and toroidal fields, with varying strengths, we find that the
field settles down to a mixed poloidal–toroidal configuration, where the toroidal component
contributes between 10 and 20 per cent of the total magnetic energy. This is, however, not a
strict equilibrium, as the instability leads to the development of turbulence, which, in turn,
gives rise to an inverse helicity cascade, which determines the final ‘twisted torus’ setup. The
final field configuration is thus dictated by the non-linear saturation of the instability, and
is not stationary. The average energy of the poloidal and toroidal components, however, is
approximately stable in our simulations, and a complex multipolar structure emerges at the
surface, while the magnetic field is dipolar at the exterior boundary, outside the star.

Key words: instabilities – MHD – turbulence – methods: numerical – stars: neutron.

1 IN T RO D U C T I O N

Neutron star(s) (NS(s)) are extremely dense compact objects bear-
ing the strongest magnetic fields known to date in the universe.
The surface field strength for ordinary NSs ranges from 1012 to
1013G while for magnetars, it goes well beyond 1015G. Despite such
estimates for the strength of the magnetic field, its structure is not
completely known to us. Polarimetric studies of radio emission from
pulsars have been used to probe the geometry of pulsar magneto-
spheres. Such observations favour a predominantly dipolar magnetic
field, although there is evidence for higher multipoles (Chung &
Melatos 2011a,b; de Lima et al. 2020). Recent observations in
X-rays by the NICER mission have confirmed that the field at
the surface is far from an aligned dipole, but rather an intricate
multipolar structure is present (Bilous et al. 2019).

The internal field topology is even more difficult to probe directly
with observations, but is thought to play a fundamental role in
determining the nature and strength of electromagnetic and gravita-
tional wave emission of the star (Thompson & Duncan 1996; Cutler
2002; Güver, Göğüş & Özel 2011). As the field of gravitational wave
astronomy advances, it may, in fact, be possible to use gravitational-
wave signatures to discriminate between different magnetic field
topologies (Lasky & Melatos 2013). It is thus of great importance
to obtain a theoretical understanding of the interior field and use
numerical simulations to explore its nature.

Several studies have been carried out to investigate the equi-
librium configuration of magnetic main-sequence stars and white

� E-mail: ankansur@camk.edu.pl

dwarfs, in which the Lorentz force is balanced by pressure and grav-
ity; e.g. for the axisymmetric case by Braithwaite & Spruit (2006),
Braithwaite & Nordlund (2006), Braithwaite (2007), Armaza,
Reisenegger & Valdivia (2015) and a similar non-axisymmetric
study by Braithwaite (2008). For the NS case, equilibrium solutions
in Newtonian gravity were obtained by Haskell et al. (2008),
Lander & Jones (2009), Lander, Jones & Passamonti (2010),
Lander & Jones (2011), Herbrik & Kokkotas (2017), Frederick,
Kuchera & Thompson (2020) and in general relativity by Kiuchi &
Yoshida (2008), Ciolfi, Ferrari & Gualtieri (2010), Ciolfi & Rezzolla
(2013), Pili, Bucciantini & Del Zanna (2014), Pili, Bucciantini &
Del Zanna (2017) and the role of stratification was investigated
by Glampedakis, Andersson & Lander (2012), Reisenegger (2009).
Finding equilibrium and stability conditions for the magnetic field
in stars has been an important long-standing question that dates back
to earlier studies by Chandrasekhar & Fermi (1953), Tayler (1957),
Tayler (1973), Wright (1973), Markey & Tayler (1973), Markey &
Tayler (1974), and Flowers & Ruderman (1977). A purely poloidal
field undergoes the so-called ‘Taylor instability’ and is thus unstable
(Ferraro 1954; Monaghan 1965; Bocquet et al. 1995). In NSs, this
instability has been studied numerically, in general, relativity by
Ciolfi et al. (2011), Lasky et al. (2011), and Ciolfi & Rezzolla
(2012), who confirm that an initially poloidal field is unstable on
the order of an Alfvén crossing time-scale and toroidal components
of the field are generated. The equilibrium configuration is often
approximated as a twisted-torus configuration where a toroidal
component stabilizes the poloidal field (Braithwaite & Nordlund
2006; Braithwaite 2007) or a tilted-torus configuration with the
magnetic axis tilted with respect to the rotation axis (Lasky &
Melatos 2013), as the inclination angle between the two grows

C© 2020 The Author(s)
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Magnetic fields in NSs from MHD simulations 1361

(Lander & Jones 2018, 2019). An initial purely toroidal field is also
unstable to the azimuthal wavenumber m = 1 mode of oscillation,
which is independent of the field strength but instead depends on
the geometry (Roxburgh 1966; Tayler 1973) and can lead to strong
poloidal components developing.

Several open questions remain, however, as to the exact config-
uration the field will settle down to. Specifically, while it is clear
that a mixed field is required for stability, the relative strength
of the components cannot be obtained directly from the study of
equilibrium configurations that generally allow a degree of freedom
in tuning this parameter (see Glampedakis & Lasky 2016 for an in
depth discussion of this issue). It is thus possible to obtain models
in which the toroidal field strength ranges from a few per cent
of (Lander & Jones 2009) to more than an order-of-magnitude
higher (Ciolfi & Rezzolla 2013) than the strength of the poloidal
component.

In fact, the stability of barotropic stars has been questioned by
Lander & Jones (2012) and Mitchell et al. (2015), who hypothesize
that all barotropic models are unstable, while Reisenegger (2009)
and Akgün et al. (2013) suggest that stratification plays an important
role in stabilizing the field, and non-barotropic models of magne-
tized stars are stable. Since most hydromagnetic instability studies
have focused on building equilibrium configurations starting with
a specific choice of geometry, fully non-linear time evolution for
NSs for a range of initial topologies and a barotropic EOS need to
be carried out, to determine not only whether the field is unstable,
but also, crucially, what the final state determined by the non-linear
saturation of the instability is. It is also important to understand
how magnetic helicity is generated and transferred in the star as the
instability proceeds. Both superfluid and standard MHD turbulence
are expected in NS interiors, and the evolution of the field, especially
soon after birth when the star is still differentially rotating, is likely
linked to the action of a dynamo in the interior (Thompson &
Duncan 1993).

It is crucial to obtain an understanding of these issues, as the
field configuration of an NS plays an important role in attempts to
determine the mass and radius of the star from X-ray observations
(Miller et al. 2019; Riley et al. 2019), and in determining the
gravitational wave emission properties of the system (Lasky 2015).

To address the problem in this paper, we perform non-linear
magnetohydrodynamical (MHD) simulations of magnetized NSs
to characterize the instability, the global evolution, and the final
configuration of the magnetic field. We neglect effects due to
superfluidity and superconductivity in the core and do not model
the crust of the star. These choice are partly due to numerical con-
venience, but also reflect the fact that we are modelling instabilities
on dynamical time-scales, which will determine the configuration
of the field shortly after the NS is born. After birth, the star cools
down and there is a window during the first few hours of life, where
differential rotation has likely been dissipated, but the crust has not
yet formed and matter is not yet superfluid, thus justifying an ideal
MHD description. Our simulation is relevant in such a scenario, as
one would expect this setup to be ‘frozen’ in (Ciolfi et al. 2010).
This field configuration to which the star settles can thus be used
as initial conditions for evolution on longer time-scales of 103–
105 yr, over which the Hall effect, ambipolar diffusion, and Ohmic
dissipation will affect the magnetic field (Goldreich & Reisenegger
1992; Pons & Geppert 2007). We work in Newtonian gravity as
general relativity generally does not affect the qualitative nature of
the magnetic instabilities (Siegel et al. 2013), and this allows us to
explore a larger portion of parameter space. We explore different
setups, both in resistive and ideal MHD, and different initial

conditions, which allow for fields with initially stronger poloidal
or toroidal components. The initial field generally goes unstable on
an Alfvén crossing time-scale and we follow the development of
the instability, which leads to the development of turbulence in the
system, which, in turn, seeds the growth of magnetic helicity.

Our results show that, in general, the system reaches turbulent
equilibrium, in which the average field strengths settle down to a
stable ratio. In all our final field configurations, including those
with initially stronger toroidal fields, the field is predominantly
poloidal, but a weaker toroidal component (� 20 per cent of the
total magnetic energy) is present.

This paper is arranged as follows: In Section 2, we discuss our
numerical setup; in Section 3, we discuss our results for the different
setups considered in our simulations; Section 4 discusses the effect
of resistivity; and Section 5 the onset of turbulence. The convergence
of our results is discussed in Section 6, and finally conclusions and
discussions are presented in Section 7.

2 PHYSICAL SYSTEM AND NUMERI CAL
SETUP

We use the publicly available code PLUTO1 by Mignone et al. (2007)
to solve the MHD equations (1–4):

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v + 1

4πρ
B × (∇ × B) + 1

ρ
∇p = −∇�, (2)

∂ B
∂t

+ B(∇ · v) − (B · ∇)v + (v · ∇)B = 0, (3)

∂p

∂t
+ v · ∇p + ρc2

s ∇v = 0, (4)

where cs is the sound speed. The above set of equations are closed
with a barotropic EOS given by p = p(ρ), which we take to be an n =
1 polytrope. Although the initial parameters are defined in terms of
primitive variables (p, ρ, v, B), computations are done using con-
servative variables (ρ, ρv, E, B), where E = ρε + ρv2/2 + B2/2.
The above set of equations are solved, except for equation (4),
where the pressure is calculated using the EOS and the density
(helping to maintain the barotropy of the system), in a spherical
coordinate system in three dimensions using a static grid, which
is divided into a number of points with Nr in the radial direction
r, Nθ in the polar direction θ , and Nφ in the azimuthal direction
φ. However, our r-grid is non-uniform having a resolution (	r ∼
0.19 km) inside the star as compared to the atmosphere (where 	r
∼ 0.25 km). Interpolations are done with a piece-wise parabolic
function, which is accurate to second order in space. A Runge
Kutta 3 time-stepping is used and we set the Courant–Friedrichs–
Lewy limit to 0.3. We use a Harten–Lax–van Lee Riemann solver
for computing the fluxes. The solenoidal constraint ∇ · B = 0 is
maintained using the hyperbolic divergence cleaning method. The
code does not solve the Poisson equation. We analytically solve for
the gravitational potential in different regions of the star and provide
it as an input. Our gravitational field does therefore not evolve with
time. The density distribution of the star is, however, only very
weakly affected by the magnetic field and this is generally a good
approximation (Haskell et al. 2008).

1http://plutocode.ph.unito.it/
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2.1 Initial conditions

We consider a non-rotating star that is modelled by solving the
Lane–Emden equation with n = 1 polytrope such that2 P = k�ρ

2,
where k� = 4.25 × 104 gm−1cm−5 s−2.3 We choose a background
star with a total mass of 1.4 M�, radius R� = 10 km, and central
density ρc = 2.17 × 1015 gm cm−3. The density of the star only has
radial dependence given by

ρ = ρc
sin y

y
, (5)

where y = πr
R�

. As in most numerical MHD studies, it is necessary to
replace the vacuum outside the stellar surface with an atmosphere of
low-density fluid, in order to avoid computational difficulties due to
diverging Alfvén velocities as the density falls to zero. Equation (5)
shows that ρ falls rapidly and vanishes while approaching the edge
of the star. Since the atmosphere has a non-zero density ρatm, this
would cause a sharp gradient across the boundary of the star. In
order to prevent such unrealistic jumps in density at the surface, we
cut the star at a radius of r = 0.975R� so that ρ(r < =R) > ρatm.
We set ρatm = 1012 gm cm−3 and explore two different setups, one
in which the atmosphere extends up to a distance of 1.2R� with no
resistivity while another which extends up to 2R� and includes a
resistive layer in the atmosphere of the star, which we will discuss
in detail in the following sections. We start our simulation with two
different initial conditions. The first is obtained by introducing a
purely poloidal field (Haskell et al. 2008),

Br = Bp cos θ

π(π2 − 6)
[y3 + 3(y2 − 2) sin y + 6y cos y], (6)

Bθ = Bp sin θ

2π(π2 − 6)
[−2y3 + 3(y2 − 2)(sin y − y cos y)], (7)

Bφ = 0.0, (8)

inside the star and

Br = BpR
3 cos θ

r3
, (9)

Bθ = BpR
3 sin θ

2r3
, (10)

Bφ = 0, (11)

outside the star, where Bp is the surface poloidal magnetic field
strength, which we set to be Bp = 1017 G. Such a strong mag-
netic field reduces the time-scales allowing us to explore greater
possibilities within a shorter run of the simulation. To accelerate
the development of the instability, we add a small perturbation to
the velocity of the fluid elements located at (60◦ ≤ θ ≤ 120◦) and
(7 ≤ r ≤ 9 km), given by

vθ =
√

15

8π
sin θ sin 2φ, (12)

vφ =
√

15

8π
sin θ sin 2φ cos θ. (13)

We confirm that this has no other effects apart from triggering the
instability, which still grows but takes longer to develop without the
perturbation. Additionally, we also test another initial condition,

2PLUTO does not have an inbuilt barotropic EOS. We have suitably modified
the ISOTHERMAL EOS such that the proportionality constant k� remains
fixed.
3All our work is carried out using CGS units.

with the same poloidal field, but a stronger toroidal component
(Bt = 2 × 1017) inside the star given by

Bφ = Bt
sin y sin φ

π
, (14)

and study its evolution with time.

2.2 Time-scales

The two important time-scales in our simulation are the sound
crossing time (τcs

) and the Alfvén time (τA). τA is defined by

τA = 2R�

√
4π〈ρ〉

〈B〉 , (15)

where 〈..〉 represent volume-averaged quantities. The field evolution
depends on the Alfvén time-scale while the hydrostatic equilibrium
depends on the shorter sound crossing time. We chose Bp such that
τcs

∼ 0.1τA. The Alfvén time is not a constant throughout the entire
run of the simulation, instead, it varies with the change in magnetic
field. Initially, the magnetic field rearranges and its density becomes
higher in the core of the star. Thus, τA changes in subsequent times
and does not remain constant. In our simulations with Bp = 1 × 1017

G, we obtain an average τA = 1.3 ms.

2.3 Boundary conditions

Our objective is to understand the interior field strength and
configuration of an NS if the exterior dipolar field has a given
strength, inferred from observations. With this physical picture in
mind, we set the exterior boundary condition of our simulation by
setting the magnetic field in the r and the θ directions according to
equations (9)–(11). At the outer ghost cells, we evaluate Br and Bθ

at r = r[END] + δr. Here, r[END] is the radial value corresponding
to the end of the atmosphere, and δr is the difference in radial grid
spacing. We use periodic boundaries for the magnetic field along
the φ direction. The velocities are all set to zero at the boundaries.

Note that to correspond to the physical prescription described
above, the exterior boundary should be far from the star, where
the dipolar component provides the dominant contribution to the
spin-down torque. Due to numerical limitations, we are far more
restricted and, in practice, have to place our exterior boundary close
to the star. As already mentioned, we have studied two setups, with
the exterior boundary at 1.2R� and another which extends up to
2R�. We find that our results do not depend significantly on the
location of the outer boundary. Extending the atmosphere farther
out, in regions where higher multipoles of the field fall off much
more rapidly than the dipolar component, will, thus not alter our
conclusions.

At the inner boundary in the radial direction, we set the density
of the star to follow the profile given by equation (5), while at the
outer boundary we set the density to be ρatm.

3 R ESULTS

We now move on to discuss the results of our simulations. In this
section, we will first present the results of our non-resistive setup,
and then discuss all the results corresponding to the resistive atmo-
sphere, in detail, in Section 4. Nevertheless the main conclusions
are not affected by the choice of setup. All setups, both resistive
and non-resistive, are initially unstable, independently of whether
we choose a purely poloidal field as an initial condition or a twisted
torus with a stronger toroidal component. In all cases, we find that

MNRAS 495, 1360–1371 (2020)
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(a) (b)

Figure 1. (a) A comparison of the poloidal (Epol) and toroidal (Etor) field energies normalized by the total magnetic field energy Em, tot at each time t for
our model with {Bp = 1017 G, Bt = 0 }. The atmosphere extends up to 12 km (represented by solid lines), whereas the dotted lines represent a model with
an extended atmosphere till 16 km. The inset in the figure shows a linear scale comparison between the two components. (b) Evolution of the field energies
starting with an initially stronger toroidal field with {Bp = 1017 G, Bt = 2 × 1017 G.} We find Etor ≤ 20 per cent Em,tot in both the cases.

turbulence develops and the field settles to a state which is not
strictly an equilibrium, but in which the non-linear saturation of the
instability determines a stable average of the field strengths, such
that the energy of the toroidal component is roughly 10−20 per cent
of the total magnetic energy.

3.1 Field configurations and strengths

Let us analyse in detail the evolution of the relative strengths of
the poloidal and toroidal field components for our non-resistive
setup. Fig. 1(a) shows the evolution of poloidal and the toroidal
magnetic field energies normalized by the total magnetic field
energy at each time for the entire run of a simulation in which
the initial condition was a purely poloidal field. The toroidal
component initially gains strength from the initial perturbation
we gave. After 3 ms, the poloidal field becomes unstable and
the toroidal component undergoes an exponential growth with its
strength becoming comparable to the poloidal component. This
period of exponential growth corresponds to 1 Alfvén crossing time
during which the toroidal component fully develops close to the
neutral line. After t = 5 ms, the field reaches pseudo-equilibrium
and the evolution becomes less dramatic. However, the toroidal part
remains weaker (≤ 20 per cent of the total magnetic energy) than its
poloidal counterpart. Even with a mixed-field initial condition with
a stronger toroidal component (Bt = 2 × 1017 G as compared to a
poloidal strength of Bp = 1017 G), we see that the final configuration
settles to a weaker toroidal field as compared to the poloidal field
(see Fig. 1b).

Fig. 2 shows snapshots of the formation of the toroidal component
in the meridional (x–z) plane and the equatorial (x–y) plane, for an
initially poloidal field. The colours show the strength of Bφ only.
The region inside the star, where the field lines close, moves in
and out during the initial stage when the fluid starts readjusting to
the changing magnetic field. The null line seems to move outwards
during the evolution. As pointed out by Glampedakis & Lasky
(2015), closed field lines in the core of the star cause it to be
magnetically decoupled with the rest of the star by developing a
velocity lag between these regions. During the initial stage, the

field can be treated as a linear perturbation on top of a stationary
background field. The non-linear terms start to dominate after the
onset of the ‘kink’-instability at t ∼ 3 ms. The dynamics thereafter
change rapidly, breaking the axisymmetry and the field inside the
star attends a complex geometry with the mixed-field configuration.
However, there is a caveat. The non-linear terms may have an
initially stronger role because of our strong field. The instability
is, however, inherently non-linear, and will, in general, grow until
these non-linear terms block it. The toroidal component creates
vortex-like structures (shown in the lower panel of Fig. 2) in order
to conserve the magnetic helicity (Ciolfi et al. 2011), which is
initially zero due to our choice of a purely poloidal field as initial
condition. These structures show higher order modes (see Fig. 2
at t = 3.3 ms) which are replaced by lower order modes at later
stages during the evolution. The presence of the kink-instability is
visible in our simulation in Fig. 3(a), where the absolute value of
the magnetic field strength is plotted on the equatorial plane of the
star. The deep blue line feature at r ∼ 8 km at t = 1.5 ms shows the
location of the neutral line. This gets distorted and small lumps are
seen at t = 3 ms, which evaporate thereafter. Similarly, we plot the
kinetic energy of the star on the equatorial plane (Fig. 3b) and note
the different modes of oscillations present in our simulation. Higher
order modes are visible at t = 2.5 ms, and start coupling with each
other at later stages as seen at t = 20 ms.

The magnetic helicity Hm measures the amount of ‘twist’ in the
magnetic field and is given by

Hm =
∫

V

A · B dV , (16)

where A is the magnetic vector potential. The helicity in equa-
tion (16) is a conserved quantity in ideal MHD, with a non-zero
value generally linked to non-ideal effects such as reconnections.
Fig. 4(a) shows the time evolution of the quantity Hm/H̄m, where
the magnetic helicity is normalized by H̄m = 0.5 × Em, tot × 0.8R�,
where Em,tot is the volume integrated total magnetic energy. We
remark that the choice of gauge for A is irrelevant in this case.
Initially, the helicity remains zero until there is axisymmetry in our
simulation. However, as the star tries to reach an equilibrium, the
helicity becomes non-zero.

MNRAS 495, 1360–1371 (2020)
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1364 A. Sur, B. Haskell and E. Kuhn

Figure 2. Snapshots of the star from meridional view (top panel) and equatorial view (bottom panel) showing the development of a toroidal field (colour scale
indicates strength of Bφ normalized by 2 × 1016 G). In the top row, the purple lines show equidensity contours ρ ∈ (1013, 5 × 1013, 1014) gm cm−3. The
streamlines shown are the poloidal field lines that thread through the main body of the star. In the bottom row, the streamlines show the toroidal field lines and
the violet contour shows the location of R�. Times of the snapshots are given as figure titles.

(a) (b)

Figure 3. Energy densities plotted in the equatorial plane of the star, i.e. at θ = 90◦ for different times t in our simulation. At t = 3 ms, we see that the neutral
line gets disrupted showing the formation of a strong toroidal component.

We will see in detail Section 5 that this is linked to the develop-
ment of turbulence, in which following the initial development of
kinetic helicity after the instability, an inverse cascade takes helicity
from the resistive small scales to larger scales. This is expected as
the system attempts to conserve helicity by transferring it from the
small-scale turbulent field to the larger scale field, thus moving it
further from the resistive scale (Biskamp 2003).

The atmosphere also plays a role in governing the internal
dynamics of the field. We explore its effect by running simulations
with different values of ρatm and find that an atmosphere with
higher density fluid (which allows the star to lose more magnetic
energy) causes a relatively weaker toroidal field as compared to
an atmosphere with lower density fluid. Extending the atmosphere

up to a larger distance also does not influence much the overall
growth of field-energies. This is shown as dotted lines in Fig. 1(a).
As the influence of higher order multipoles is stronger close to
the surface, the fact that the results are mostly unaffected by the
position of the boundary within a few stellar radii gives us a degree
of confidence that these are a good approximation to the physically
realistic situation, in which the dipolar field component is inferred
further out at the light cylinder.

Fig. 4(b) shows the variation of the volume-averaged mag-
netic energy density (εM = (B2

r + B2
θ + B2

φ)/8π) and the volume-
averaged kinetic energy density (εK = ρ(v2

r + v2
θ + v2

φ)/2) with
time. A peculiar feature of our evolutions is the initial rearrangement
of the poloidal field, due to our choice of initial condition in which
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Magnetic fields in NSs from MHD simulations 1365

(a) (b)

Figure 4. (a) Time evolution of the magnetic helicity for ideal-MHD setup (i.e. resistivity η0 = 0). (b) Average magnetic field energy density (εM) and the
average kinetic energy density (εK) normalized by 1032 erg cm-3 plotted as a function of time. After an initial transient, the onset of instability is seen at t =
3 ms (represented by the dotted line) when the there is a sharp rise in the kinetic energy of the system.

the field is stronger in the outer core. This leads to a rapid initial
readjustment which takes it to a more stable configuration in which
stronger near the centre of the star and weaker in the exterior
regions. As a consequence at t ∼ 1 ms, there is a small peak in
εK that the fluid gains in response to the initial readjustment of
the magnetic field. Furthermore, when we take a volume average
of the field, this rearrangement is visible as a sudden rise in εM,
as the field becomes stronger in the interior region over which
we integrate, as seen in the first few milliseconds (Fig. 4(b)).
Following this initial transient the field settles down, until it is
affected by the onset of the ‘kink’ instability at t = 3 ms (after
∼1Alfvén crossing time) when the magnetic energy falls and the
kinetic energy rises sharply. This is ascribed to the conversion of
magnetic energy to kinetic energy (see also Lasky, Zink & Kokkotas
2012). Finally, we note that the presence of the varicose mode, in
which the flux tube near the neutral line undergoes a change in
cross-sectional area, is difficult to observe in three-dimensional
(3D) visualization of our simulation (see Fig. 5) because our
Alfvén crossing time is small and the instability growth time is
thus too rapid. However, the kink instability is somewhat visible at
t = 3 ms.

3.2 Growth times

We Fourier-decompose Bφ and ρ into different modes m and
calculate the complex weighted averages, as prescribed in Zink
et al. (2007) and Lasky et al. (2011), given by

Cm(f ) =
∫ 2π

0
f (ω̄, φ, z = 0)eimφdφ, (17)

where ω̄ =
√

x2 + y2 = 0.8R� lies in the equatorial plane of the
star, and f ∈ (ρ, Bφ). Since equation (17) results in a complex
number, we take the modulus to obtain Cm(f). Fig. 6 shows the
modal structure of the instability. All the different modes m ∈ (1,
2, 3, 4) considered show the presence of the instability as each one
grows exponentially by three to four orders of magnitude in one
Alfvén crossing time before settling down to a pseudo-equilibrium
state. For Cm(ρ), visually, the lower order modes grow faster, i.e.
m = 1 mode grows faster than m = 2, and so on, whereas for Bφ ,

we see that the higher order modes grow faster, i.e. m = 3 mode
grows faster than m = 2, and so on.

Following Lasky et al. (2011), the instability growth time for a
particular m during the exponential phase is defined by

τg = 	t

	ln[Cm(Bφ)]
. (18)

Fig. 7 shows the growth times for the different modes with varying
surface magnetic field strength. In calculating equation (18), we do
not adopt a single point, rather we take different realizations during
the exponential phase and then calculate the mean and standard
deviation of growth times. We find that the τ g for the various modes
are not significantly different from each other unlike the prediction
by Tayler (1957) where higher order modes have a shorter growth
time. It should be noted that our field strength Bp corresponds to
a weaker 〈B〉, which is otherwise used in the literature to calculate
τA. From Fig. 7, we find that the growth time-scales approximately
with the chosen range of magnetic field, although the large error
bars do not allow to accurately test the scaling.

3.3 Power spectrum

We use the healpy modules to calculate the angular power
spectrum of Br. Any scalar function defined on a sphere can be
expanded into spherical harmonics. Given a map, the angular power
spectrum is calculated using

C� = 1

2� + 1

�∑

m=−�

〈|a�m|2〉, (19)

where

a�m =
∫

duB(u)Y �
lm(u). (20)

B(u) is a scalar field depending on the angular coordinates u and
Y �

lm is the complex conjugate of the spherical harmonics. Fig. 8(a)
shows that � = 1 contributes maximum to the total power in Br,
followed by � = 2 and 4, respectively. In Fig. 8(b), we decomposed
the magnetic field into vector spherical harmonics and calculated
the power according to equation (19) for multipoles � ∈ (0, 1, 2,
3). In this case, the a�m’s were calculated using the definition of
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1366 A. Sur, B. Haskell and E. Kuhn

Figure 5. Surface distribution of Br (top panel) and Bθ (middle panel) at various times t, given as figure titles. The colour scale (normalized by 1017 G) shows
the strength of the field. The bottom panel shows 3D visualization of the magnetic field configuration at times t = 0 , 3, 10, 20 ms (from the left- to right-hand
panel).

Figure 6. Fourier decomposition of ρ (left-hand panel) and Bφ (right-hand panel) into different azimuthal modes m ∈ (1, 2, 3, 4), as a function of time for
Bp = 1017 G. The inset shows that the lower order modes for ρ grow faster compared to the higher order modes, however, the reverse is observed for Bφ where
the higher order modes grow faster. An exponential growth is seen in both the quantities, which saturates after few Alfvén crossing times when the star attends
a pseudo-equilibrium state.

vector multipole moments (see for e.g. Barrera, Estevez & Giraldo
1985). Initially, the field is dipolar. However, the higher order
multipoles gain power with time and the field structure becomes
complex. This can be approximately seen in Fig. 5 where the

field configuration evolves, and the neutral line migrates. We note,
however, that the time-scale on which this tilt occurs is dictated
by numerical dissipation, and faster than would be expected in a
realistic NS.

MNRAS 495, 1360–1371 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/1/1360/5829868 by N
icolaus C

opernicus Astronom
ical C

enter user on 10 M
ay 2021



Magnetic fields in NSs from MHD simulations 1367

Figure 7. The left-hand panel shows the growth times for different modes with varying surface magnetic field strengths. The right-hand panel shows correlation
between the growth times and the Alfvén crossing time. Our results are consistent with the expected linear relation between two quantities, but given that our
error bars are large we do not present a fit to the data.

(a) (b)

Figure 8. (a) Angular power spectrum for the scalar field Br calculated at r = R� plotted as a function of multipoles. (b) Power spectrum calculated for the
magnetic field by decomposing it into vector spherical harmonics. The colours show different times in our simulation.

4 EFFECT OF RE S I S T IV IT Y

In the previous section, we have considered a non-resistive setup
in ideal-MHD, which reflects the expectation that the NS interior
is a highly conductive medium (at least for young NSs and on the
dynamical time-scales we are interested in, over which mechanisms
such as the Hall effect or Ohmic dissipation do not have time to act).
In practice, however, this approximation breaks down close to the
surface of the NS as the density decreases, and resistive effects play
an important role in the long-term evolution of the magnetic field
(for a recent review see Pons & Viganò 2019). As one moves further
towards the exterior, a low-density plasma is thought to surround
the NS, in which now the tenuous fluid is tied to the magnetic field
and the force-free approximation is generally used to understand
the dynamics of the magnetosphere and the emission properties of
the star (Goldreich & Julian 1969; Spitkovsky 2006; Philippov &
Spitkovsky 2018).

In practice, most numerical studies of fields in NS interiors
have approximated the exterior plasma in terms of an atmosphere
with a resistivity, mostly to prevent shocks at the stellar boundary,

which otherwise lead to numerical instabilities. Although our non-
resistive setup is stable for a dense enough atmosphere, we none
the less explore the effects of resistivity on the simulation, in order
to investigate if any substantial differences arise. We use a profile
given by η(r) = 0 if r < 0.9R�, otherwise, η(r) = η0 if r ≥ 0.9R�,
where η0 is a constant.

The diffusion time-scale, defined as τ d = R�
2/η, is larger than the

Alfvén crossing time (τd ≥ 10 τA). We choose a value of η0 such
that this condition is satisfied. This leads us to the following relation
η0 ≤ R�〈B〉/√4π〈ρ〉 = 1012 cm2 s−1. We set η0 = 108 cm2 s−1 in
our simulation. The above choice of the profile maintains the ideal-
MHD condition in the bulk of the star. We explore different values
of η0 ∈ {108, 1010, 1012}. Additionally, we extend our atmosphere
up to 20 km (=2R�). Fig. 9(a) shows the long-term evolution of the
poloidal and toroidal field energies (both normalized by the total
magnetic field energy at each time) for a model with η0 = 108 cm2

s−1. Here again, we find that EBφ
≤ 20 per cent of Em, tot. The value

of η0 mostly modifies the time-scales in our simulation as the onset
of instability changes as illustrated in Fig. 9(a).
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1368 A. Sur, B. Haskell and E. Kuhn

(a) (b)

Figure 9. (a) Poloidal and toroidal magnetic field energies as a function of time for three different values of η0. (b) Long-term evolution for the poloidal and
toroidal field energies, normalized by the total magnetic energy, for the resistive atmosphere setup. The inline plot shows that Etor ∼ 20 per cent Em,tot.

5 TU R BU L E N C E

The presence of turbulence, which drives the evolution and proper-
ties of the systems in the presence of an embedded magnetic field,
is very prominent in astrophysics, e.g. in accretion discs, interstellar
medium, stellar winds, etc. In fact, X-ray observations reveal that
the magnetic field of the sun is in a turbulent state (Lites et al.
2008). We expect NSs to be turbulent soon after their birth where
the heat and the escaping neutrinos provide the energy source. The
turbulence decays after a short time-scale (∼1 d) as this energy
source disappears, but is likely to play a role in the development
of the field on the short time-scales of hours we are examining,
before the crust solidifies. Furthermore, even as the star evolves,
difference in angular velocity between the superfluid and the rest of
the star is likely to lead to turbulence (Peralta et al. 2006; Andersson,
Sidery & Comer 2007). Our simulations show that initial magnetic
and kinetic energy drives the turbulence and the star reaches a
turbulent ‘equilibrium’, where average quantities can be studied,
but in which the field is far from a stationary dipole. The non-
linear saturation of the initial instabilities, lead, through the action
of a small-scale dynamo, to a turbulent mixed toroidal–poloidal
field configuration, in which the ratio, averaged over the volume, of
the energies in the two components reaches an equilibrium. When
the Hall effect starts to dominate, this will also contribute to the
development of turbulence (Wareing & Hollerbach 2009).

To quantify this statement, we start by studying the distribution
of kinetic energy over different length-scales. We plot the spectra
for the kinetic and magnetic energies, as a function of wavenumbers
(k) in Fig. 10(a). As expected, the system shows higher dissipation
of energy for smaller scale eddies through viscosity. Thus, the dy-
namics inside the star is turbulent. The classical Kolmogorov theory
(Kolmogorov 1941) predicts that the turbulent energy spectrum in
incompressible4 hydrodynamic turbulence follows E(k) ∝ k−5/3,

where k is the modulus of the wave vector
(
k =

√
k2

x + k2
y + k2

z

)
.

In order to calculate the energy spectrum, we convert each veloc-
ity component into Cartesian space and Fourier transform them

4Given the high speed of sound in NSs, we expect most eddies to be sub-
sonic, and the effects of compressibility to be negligible.

according to

u(k) =
•

R3

ˆu(x)eik.xd3x. (21)

In Fig. 10(b), we plot the Kolmogorov spectrum for kinetic
energy for our resistive setup. Our spectra are consistent with
a Kolmogorov like dependence, however, in MHD turbulence,
where the main interaction happens within wave packets moving
with Alfvén velocities, the scaling relation follows E(k) ∝ k−3/2

(Iroshnikov 1964; Kraichnan 1965). While previous numerical work
has revealed the presence of a Kolmogorov spectrum also in MHD
turbulence (Biskamp 2003), consistently with our interpretation,
it is not possible to exclude k = −3/2 and determine the exact
scaling relation with our limited resolution. Future high-resolution
studies are required to determine the exact nature of the turbulence
in the NS problem. We note that the magnetic Reynolds number in
MHD turbulence is Rm = Lv/η0 = 106, and since, Rm > >1, the
magnetic field lines are advected with the fluid flow and diffusion
is unimportant.

5.1 Cascade directions

As discussed before, the magnetic helicity (Hm) is an ideal MHD
invariant and as such its spectral density is conserved in non-linear
interactions. Fig. 11(a) shows the variation of Hm with time for
two different values of η0. However, as turbulence is excited by the
magnetic instabilities, Hm is created on the resistive scale on which
non-ideal effects (dictated in our case by numerical resistivity) act,
i.e. its value becomes non-zero, and it is scattered to different length-
scales. This transfer proceeds from larger to smaller wavenumbers
showing an inverse cascade (Frisch et al. 1975), as the system
attempts to conserve Hm by moving it to scales much larger than
the resistive scale. With increasing time, the peak of the magnetic
helicity spectrum shifts to smaller k showing the inverse cascade
phenomenon, as seen in Fig. 11(b).

This confirms the picture that turbulence plays a key role, by
allowing to generate helicity in the system at small scales, and
transfer it from the turbulent small scale structures to the larger
scale magnetic field, thus creating a twisted-torus structure.

We note that at the end of our simulations turbulence has not
decayed, but the average quantities, such as the average field
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Magnetic fields in NSs from MHD simulations 1369

(a) (b)

Figure 10. (a) Kinetic and magnetic energy spectra for our non-resistive setup. (b) A comparison of the kinetic energy spectrum between our resistive
and non-resistive setups. In both the plots, the black-dashed line shows −5/3 power law (Kolmogorov), while the green-dotted line shows −3/2 power law
(Iroshnikov–Kraichnan). We do not have a sufficiently high resolution to distinguish between the two spectra, but our results are consistent with a Kolmogorov
spectrum, as found by previous MHD simulations, as described in the text.

(a) (b)

Figure 11. (a) Magnetic helicity plotted as a function of time for two different values of η0 for a setup with τA ∼ 10 s. The helicity becomes nonzero as the
instability sets in after one Alfvén crossing time. (b) The magnetic helicity spectrum at different times showing the phenomenon of an inverse cascade from
the resistive small scales to larger scales.

strengths and magnetic energies have reached an equilibrium,
which is roughly constant over many Alfvén time-scales. Longer
simulations are needed to study the decay of turbulence, and
understand whether in this case additional instabilities will appear
also in our barotropic setup, as suggested by Mitchell et al. (2015).

6 C O N V E R G E N C E

In this section, we present our convergence tests focusing, in
particular, on the non-resistive setup. Fig. 12(a) shows the variation
in error of the total mass of the star with time and number of points
in our grid, respectively.

The mass of the star as a function of time was calculated assuming
spherical symmetry. However, the poloidal field makes the star
oblate and pushes material out which causes the loss of spherical
symmetry. This effect is not taken into account in our calculation, as
it is expected to deform the spherical profile of the star by less than
≈ 0.01 per cent for a field of B = 1016 G (Haskell et al. 2008). In

fact, we see that the highest resolution has the least error in the total
mass. We find that the error reduces with an increase in the number
of grid-points, and the mass determination appears to converge.

We also analyse the energy in the toroidal field, which is one of
our key observables. In this case point-wise, convergence is almost
certainly lost, as turbulence develops. If the code is converging, we
expect the difference in energies for our middle-lowest resolution
setup (defined as ‘top’) to be higher than the difference in energies
for the highest middle resolution (defined as ‘bottom’). This is
illustrated in Fig. 12(b) where B = Bφ . Although the plots are
oscillating, the expected trend is seen, and at later times, when
turbulence is fully developed, convergence is worse and at times
lost.

As turbulence affects the dynamics of the field, and affects the
convergence of our results, we use the spectrum of the turbulence
itself as a diagnostic for convergence. We have already analysed
the spectrum for our higher resolution simulations in the previous
sections, and found it to be consistent with a Kolmogorov spectrum.
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(a) (b)

Figure 12. (a) Error in the total mass of the star as a function of (left-hand panel) time, and (right-hand panel) resolution for our purely poloidal setup with
Bp = 1017 G. The curves are incomplete for higher resolution setups as the simulation hit the wall clock time. (b) Difference in B2

φ plotted as a function of
time. The red curve (top panel) shows the difference in energies between our setups with resolution 64 × 64 × 40 and 30 × 30 × 30. The blue curve (bottom
panel) shows the difference in energies between our setups with resolution 72 × 72 × 48 and 64 × 64 × 40.

(a) (b)

Figure 13. (a) Kolmogorov spectrum plotted for our non-resistive setup with varying resolution. According to Classical Kolmogorov theory, the spectrum
follows E(k) ∝ k−5/3 in the inertial range, and deviate for high and low values of k where energy is injected and dissipated. We multiply E(k) by k5/3 and
therefore expect to obtain a flat spectrum in the inertial range for the Kolmogorov case. This is seen in the region between k = (10−5.25, 10−4.9) for our
highest resolution simulation (the black dotted lines are for reference). (b) Kolmogorov spectrum plotted for different resolutions for resistive atmosphere
setup. Although the spectra are noisy, a Kolmogorov like dependence is visible in both the setups.

In Figs 13(a) and (b), we plot the kinetic energy spectrum for varying
resolutions as a sanity check of the convergence of the code. As can
be seen, the spectrum extends to smaller scales as expected, and is
consistent with the scaling of

E(k) ∝ k−5/3 (22)

over a larger portion of parameter space, indicating that our higher
resolution simulations are increasingly capturing the true dynamics
of the system.

7 C O N C L U S I O N S A N D D I S C U S S I O N S

In this paper, we have presented the results of 3D MHD simulations
of magnetic field configurations in NSs. We have considered both
ideal MHD and a setup with a resistive atmosphere, and assume the
field to be dipolar at the exterior boundary far from the star. We do
not consider the effect of the crust, or of superfluidity in the interior.
Our results are thus applicable to the first few hours of life of the
star, after differential rotation is dissipated. The field configurations
we obtain are then ’frozen in’ as the star cools, and may be sued

as initial conditions for longer term simulations, on time-scales of
103–105 yr, where the evolution of the field is driven by effects
such as the Hall effect in the crust, Ohmic decay, and ambipolar
diffusion.

We have studied the evolution of both initially purely poloidal and
mixed poloidal–toroidal fields with stronger toroidal components,
and find that in all cases the initial configuration is unstable, with the
instability developing on the order of an Alfvén crossing time-scale.
As the instability develops it gives rise to turbulence, and drives a
small scale dynamo, which transfers helicity to the large-scale field.
The field attends a complex geometry with the toroidal component
contributing Etor ≤ 20 per cent of Em, tot in all setups, and while
this is not a strict equilibrium, the ratio of the poloidal to toroidal
energies in the field is approximately stable. The turbulence is not
observed to decay during our simulations.

We find that stronger resistivity triggers the instability faster, but
does not impact its non-linear saturation, thus modifying only the
time-scales in our simulation. We also found that the extent of the
atmosphere does not play any role in the overall equilibrium of the
system, and the results do not change if we push the boundary of our
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Magnetic fields in NSs from MHD simulations 1371

simulation farther out, from 1.2 to 2 stellar radii. Our results show
that the field does not decay unlike the works of Braithwaite & Spruit
(2006) and Mitchell et al. (2015). Our choice of fixed boundary
conditions could play a major role here and thus future studies will
be aimed at understanding this scenario better.

Overall, we find that an NS with a given inferred dipolar field
strength far from the surface, is likely to harbour an interior toroidal
component with an average energy of roughly 25 per cent of the
poloidal component, but that stronger toroidal fields are unstable and
cannot be sustained. The overall geometry of the field is, however,
complex, with higher multipoles growing closer to the surface, and
moreover non-stationary over the lifetime of our simulations. We
find rather a turbulent quasi-equilibrium, in which only average
quantities are roughly constant. Further studies will focus on the
decay of the turbulence and on quantifying the impact of these
results on attempts to measure the mass and radius of an NS with
X-ray observations from NICER, for which the background field
configuration is an important ingredient (Bilous et al. 2019; Miller
et al. 2019; Riley et al. 2019).
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CHAPTER 3

"When you change the way you look at
things, the things you look at change.”

-Max Planck.
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A B S T R A C T 

Strong magnetic fields play an important role in powering the emission of neutron stars. Nevertheless, a full understanding 

of the interior configuration of the field remains elusive. In this work, we present general relativistic magnetohydrodynamics 
(MHD) simulations of the magnetic field evolution in neutron stars lasting ∼880 ms ( ∼6.5 Alfv ́en crossing periods) and up to 

resolutions of 0 . 1155 km using ATHENA ++ . We explore two different initial conditions, one with purely poloidal magnetic field 

and the other with a dominant toroidal component, and study the poloidal and toroidal field energies, the growth times of the 
v arious instability-dri ven oscillation modes, and turbulence. We find that the purely poloidal setup generates a toroidal field, 
which later decays exponentially reaching 1 per cent of the total magnetic energy, showing no evidence of reaching equilibrium. 
The initially stronger toroidal field setup, on the other hand, loses up to 20 per cent of toroidal energy and maintains this state 
till the end of our simulation. We also explore the hypothesis, drawn from previous MHD simulations, that turbulence plays an 

important role in the quasi-equilibrium state. An analysis of the spectra in our higher resolution setups reveals, however, that in 

most cases we are not observing turbulence at small scales, but rather a noisy velocity field inside the star. We also observe that 
the majority of the magnetic energy gets dissipated as heat increasing the internal energy of the star, while a small fraction gets 
radiated away as electromagnetic radiation. 

Key words: instabilities – magnetic fields – methods: numerical – stars: neutron. 

1  I N T RO D U C T I O N  

Harbouring the strongest magnetic fields in the universe with core 
densities exceeding that of nuclear matter, neutron stars (NSs) 
provide a laboratory for studying physics at extreme conditions, 
which are not reproducible with the current available technologies 
on Earth. The surface magnetic field ( B s ) of NSs is generally inferred 
from the dipole spin-down using radio astronomical data (Chung & 

Melatos 2011a , b ) and has allowed us to classify these systems into 
old recycled pulsars with B s ∼ 10 8 G, ordinary pulsars with B s ∼
10 12 G, and magnetars with B s ∼ 10 15 G. Alternatively, the geometry 
of the magnetic field and its strength had been derived from X-ray 
emitting hotspots in pulsar PSR-J001X (Bilous et al. 2019 ). This 
study (see also de Lima et al. 2020 ) suggests that the field is far from 

the conventional dipolar geometry, but rather fa v ours a multipolar 
magnetic field or an offset dipole. 

The magnetic field of pulsars plays an important role in ac- 
celerating charged particles in the magnetospheres, which emit 
electromagnetic radiation, and allows us to study its properties, 
for example, spin-down due to magnetic dipole radiation. The 
energy from differential rotation can be converted to a large-scale 

� E-mail: ankansur@camk.edu.pl 

magnetic field, which in turn can help in launching powerful jets 
from newly formed NSs (Moiseenko, Bisnovatyi-Kogan & Ardeljan 
2006 ; Shibata et al. 2006 ; Burrows et al. 2007 ; M ̈osta et al. 2014 ). It 
has been observed that this magnetic field remains stable on a longer 
time-scale comparable to the lifetime of NSs except that of magnetic 
flares emitted by magnetars, which operate on a very short time-scale. 
This provokes the quest to understand what leads to the magnetic 
field stability. Although there is evidence of an exponential decay of 
the field through Ohmic dissipation, the time-scale responsible for 
this mechanism (Ostriker & Gunn 1969 ) is greater than the Hubble 
time. In other words, there is no significant decay that changes the 
magnetic field ef fecti vely (Kraav, Gusakov & Kantor 2021 ). 

An arbitrary magnetic field is generally not in equilibrium when the 
Lorentz force and pressure forces do not balance one another. It had 
been long established that certain equilibrium configurations, like a 
purely poloidal or a purely toroidal field, are unstable and subjected 
to ‘kink’ instability acting within a few Alfv ́en time-scales (Tayler 
1957 , 1973 ; Markey & Tayler 1973 , 1974 ; Wright 1973 ; Flowers & 

Ruderman 1977 ). Analytical (Haskell et al. 2008 ; Ciolfi et al. 2009 ; 
Ciolfi, Ferrari & Gualtieri 2010 ; Gusakov, Kantor & Ofengeim 2017 ; 
Ofengeim & Gusakov 2018 ) and numerical simulations including 
Newtonian magnetohydrodynamics (MHD; Braithwaite & Nordlund 
2006 ; Braithwaite & Spruit 2006 ; Braithwaite 2007 ; Lander & Jones 
2009 , 2011 ; Lander, Jones & Passamonti 2010 ; Herbrik & Kokkotas 

© 2022 The Author(s) 
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2017 ; Frederick, Kuchera & Thompson 2020 ; Sur, Haskell & Kuhn 
2020 ) and general relativistic (GR) MHD (Kiuchi & Yoshida 2008 ; 
Ciolfi et al. 2011 ; Lasky et al. 2011 ; Ciolfi & Rezzolla 2013 ; 
Pili, Bucciantini & Del Zanna 2014 , 2017 ) have confirmed this 
explicitly where a stable stellar field needs both poloidal and 
toroidal components. The instability gives rise to various azimuthal 
oscillation modes responsible for driving gravitational radiation 
from the system. Estimating the relative strength of the poloidal 
and toroidal components is also important in virtue of studying 
continuous gravitational waves (GWs) emitted by NSs, caused by 
magnetic deformation (Bonazzola & Gourgoulhon 1996 ; Cutler 
2002 ; Frieben & Rezzolla 2012 ), as it depends sensitively on the 
amount of magnetic field energy stored in each of its components. 

The most fa v oured magnetic field geometry pertinent to NSs is that 
of a ‘twisted torus’ where the poloidal field lines thread the interior 
of the star and close inside. Outside the star, the field lines extend 
until infinity with the field being continuous at the stellar surface. 
This implies the absence of surface currents. The toroidal field is 
concentrated as a flux tube within this closed poloidal field line 
located at approximately 0.8 times the stellar radii. This geometry 
had been found by time-evolving random initial configurations from 

MHD simulations (Braithwaite & Nordlund 2006 ). 
Understanding equilibria requires us to solve the so-called Grad–

Shafranov equation, which yields various magnetic field configura- 
tions with varying poloidal and toroidal field energies (Lander & 

Jones 2009 ; Ciolfi & Rezzolla 2012 , 2013 ; Gourgouliatos et al. 
2013 ; Armaza, Reisenegger & Valdivia 2015 ; Sur & Haskell 2021 ). 
Ho we ver, these solutions do not tell us anything about the stability 
of the magnetic field with time. Studies with an axisymmetric 
field in the crust have been performed to show the presence of 
Hall equilibrium states (Hollerbach & R ̈udiger 2002 ; Cumming, 
Arras & Zweibel 2004 ; Gourgouliatos & Cumming 2014a , b ). The 
Hall effect leads to the formation of small-scale magnetic features, 
which dissipates to power the thermal radiation, e.g. in magnetars, 
when a toroidal magnetic field of strength 10 16 G is present inside the 
crust (Pons & Perna 2011 ; Geppert & Vigan ̀o 2014 ; Gourgouliatos, 
Wood & Hollerbach 2016 ). The Hall effect also leads to the growth of 
dipole moment of a quadrupolar toroidal component in the NS crust, 
which could explain the observed braking indices of young pulsars 
(Gourgouliatos & Cumming 2015 ). Further, long-term evolution of 
the magnetic field in the crust of NSs under the Hall effect and 
Ohmic dissipation has shown the presence of a ‘Hall attractor’ state, 
which for an initially dipole dominated field also has an octupolar 
component and an energetically negligible quadrupole toroidal field. 

Due to the lack of direct observational evidence of the internal 
magnetic field topology, our knowledge on the distribution of 
magnetic energy in the poloidal and toroidal components is limited 
to simulations. It had been shown that about 80 –90 per cent of the 
total magnetic energy is stored within the poloidal component from 

MHD simulations with either a purely initial poloidal field or from 

a mixed field with a stronger toroidal component (Sur et al. 2020 ). 
Ho we ver, equilibrium calculations by Ciolfi & Rezzolla ( 2013 ) have 
shown to produce a toroidal field energy 90 per cent of the total 
internal magnetic energy with a suitable choice of the azimuthal 
currents. Whether these models are realistic demands future studies 
not only to validate their stability, but also for a better understanding 
of emission properties from NSs. Another interesting finding by Sur 
et al. ( 2020 ) is that NSs experience turbulence triggered by the initial 
perturbations to the field. It had been shown that this turbulence gives 
rise to an inverse cascade in magnetic helicity ( H m 

), which determines 
the ‘twist’ of the magnetic field lines. Thus, energy is transferred from 

small resistive scales to large eddies. Further, the conservation of H m 

is broken as the field rearranges and attends stability. It was found 
that the energy spectra followed Kolmogorov’s law with a scaling 
−5/3, but the data were noisy owing to limited resolution using the 
spherical coordinate system. These simulations studied the first 40 ms 
of magnetic field evolution. We try to understand turbulence at late 
times t > 100 ms for which we need longer simulations with higher 
resolution. Moreo v er, the magnetic field geometry can be used as 
various background models in other studies like post-merger Binary 
Neutron Star (BNS) simulations in which the magnetic field is either 
responsible for a strong baryonic wind (Ciolfi & Kalinani 2020 ) or 
responsible for jet formation, powering kilonova transients and GW 

emission (Ciolfi 2020 ). 
In this study, we perform non-linear GRMHD simulations for a 

fiducial NS of mass 1 . 4 M � using the code ATHENA ++ as described 
in Section 2. The results of the simulations are presented in Section 3, 
which are some of the longest in terms of evolution time and hence 
give us further insights on what happens to the magnetic field energy 
and its structure at later times. We also investigate the relativistic 
effects of turbulence and energy cascades and seek answers to the 
question on whether the turbulent feature persists in NS simulations. 
Finally, the conclusions and discussions are presented in Section 4. 

2  M E T H O D  

To study the evolution of the magnetized star, we perform numerical 
simulations using the GRMHD code ATHENA ++ (Stone et al. 
2020 ). We evolve the GRMHD equations without resistivity on a 
fixed background metric (i.e. in the Cowling approximation) of a non- 
rotating star. ATHENA ++ uses a constrained transport algorithm 

to evolve the magnetic field, detailed in White, Stone & Gammie 
( 2016 ). Evolutions are performed using the local Lax–Friedrichs flux, 
with reconstruction performed in the primitive variables following 
an implementation of the piecewise parabolic method detailed in 
Felker & Stone ( 2018 ). During the simulation, primitive variables 
are reco v ered from the conserv ati ve v ariables by implementing the 
conserv ati ve to primiti ve inversion algorithm described in Noble et al. 
( 2006 ). 

Initial data for the geometry and matter are constructed by the 
numerical solution of the Tolmann–Oppenheimer–Volkoff equa- 
tions for a spherically symmetric fluid distribution for the interior 
of the star coupled with an equation of state (EOS) in the form p ( ρ) 
that connects the pressure to the rest-mass density. The exterior is set 
to the Schwarzschild metric. The fiducial NS has a mass of 1 . 4 M �
and a radius of R ∼ 10 km. The initial data EOS is set to 

p = Kρ� (1) 

with K = 100, � = 2; the �-law EOS, 

p = ( � − 1) ρε, (2) 

where ε is the specific internal energy, is used during the evolution. 
The initial poloidal magnetic field configuration is given by the 

vector potential 

A x = −yA ϕ (3) 

A y = xA ϕ (4) 

A z = 0 (5) 

A ϕ = A b max ( p − p thr , 0) (6) 

p thr = 0 . 04 p max (7) 
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following Liu et al. ( 2008 ), where p max is the maximum value of the 
pressure within the star. The parameter A b controls the magnitude 
of the magnetic field and is set to obtain a maximum value of 
3.54 × 10 16 G inside the star. The initial toroidal magnetic field 
is initialized directly on the magnetic field components to be 

B x = − ˆ y B tor max ( p − p thr , 0) , (8) 

B y = ˆ x B tor max ( p − p thr , 0) , (9) 

B z = 0 . (10) 

In the case of the toroidal simulations in this paper, B tor is set to give 
the same maximum field strength as in the poloidal case. In addition, 
a weak poloidal field is superimposed on top of this toroidal field, 
with parameter A b set 50 times smaller than in the purely poloidal 
case. Evolutions are performed in unigrid without symmetry, with an 
outer boundary set at 30 km. We use outflow boundary conditions, 
which do not affect the dynamics in the interior of the star; ho we ver, 
it affects the dynamics at the outer edge of our simulation box. We 
perform runs at four resolutions corresponding to 64 3 , 128 3 , 256 3 , 
and 512 3 grid points across the computational domain. These give 
grid spacings of 0 . 923 , 0.462, 0 . 231 , and 0.115 km, respectively. 
Our highest resolution run 512 3 has an evolution time of 89 ms, 
whereas the setup ps256 has an evolution time of 880 ms. In the 
exterior of the star, an atmosphere is set with rest-mass density ρatm 

= 

10 −10 max ( ρ). Any cells with density falling below a threshold value 
of ρ thr = 100 ρatm 

are identified as atmosphere and set to ρatm 

, with 
the fluid velocity set to 0 and the pressure fixed using the EOS. In 
the atmosphere, the magnetic field components remain unrestricted. 
We use the following nomenclature when referring to the different 
resolution setups. The initially purely poloidal magnetic field setup is 
denoted by pS??? , where ??? represents the number of grid points. 
Thus, the setup pS256 corresponds to a purely poloidal initial field 
run with a numerical box of 256 3 grid points. Similarly, the initially 
stronger toroidal field setup is denoted by tS??? , where again ??? 
represents the number of grid points. 

3  R ESULTS  

The evolution of the magnetic field occurs on a characteristic time- 
scale associated with the system, called the Alfv ́en crossing time, 
which is given by 

τA = 

2 R 

√ 

4 π〈 ρ〉 
〈 B〉 , (11) 

where 〈 . . . 〉 represents v olume-a v eraged quantities. F or 〈 B 〉 ∼
4.5 × 10 15 G, we obtain τA ∼ 12 ms. Theoretically, we should 
expect the field to rearrange itself at this time, as we shall see it 
indeed does in our simulations. As 〈 B 〉 evolves with time, the time- 
scale defined in equation (11) will vary. Because of this, we use the 
following definition of Alfv ́en crossing period: 

T A = 

∫ t 

0 

d t 

τA ( t) 
. (12) 

The abo v e definition means that we are rescaling our evolution time 
with the Alfv ́en crossing time. Hence, a value of T A = 1 means an 
e volution time equi v alent to 1 τA , T A = 2 is equi v alent to 2 τA , and 
so on. An evolution time of 880 ms corresponds to ∼ 6 . 5 T A for 
our setup pS256 ; ho we ver, T A changes for the different resolution 
setups depending on how much magnetic energy is lost and how the 
density changes with time. 

3.1 Magnetic field lines and energies 

We discuss the purely poloidal initial field first. The neutral line 
corresponds to the region where the magnetic field vanishes inside the 
star. Snapshots of the three-dimensional (3D) view of the magnetic 
field lines are shown in Fig. 1 at different times 2.0 (left-hand 
panel), 12 (middle panel), and 49 ms (right-hand panel), respectively. 
We also show 2D projections of the field lines on the x –y plane 
(equatorial view) and the x –z plane (meridional view) in Fig. 2 with 
the title representing different time stamps. The colour scale gives 
the strength of the toroidal component in Gauss. During the start of 
evolution, the field lines first change their cross-sectional area, which 
corresponds to the so-called varicose mode. This is followed by the 
transverse displacement of the fluid along the neutral line, which 
leads to the development of the ‘kink’ instability (Lander & Jones 
2011 ; Lasky et al. 2011 ; Lasky, Zink & Kokkotas 2012 ) as shown in 
Fig. 1 (bottom row, centre image). 

The saturation of this instability modifies the magnetic field as 
expected: The initial axisymmetry in the system is replaced by a non- 
axisymmetric structure. The toroidal field initially starts appearing 
on the boundary of the star along the x = 0 and y = 0 axes. 
This is an artefact of the Cartesian grid and the presence of sharp 
density gradients across the stellar surface at R = 10 km. Similar 
features have also been noted in past studies (Lasky et al. 2011 ) 
and depend strongly on the resolution of our setup, since these 
toroidal areas become considerably smaller with higher resolution. 
The toroidal field grows exponentially from the initial state until 
t ∼ 12 ms ( T A ∼ 1) appearing not only within the closed field regions 
inside the star, but also outside it, which might be caused by the 
aforementioned artefact. The toroidal field strength at this point is 
comparable to the poloidal field (see the middle panel of Fig. 2 ). 
From the equatorial view, we see that the field lines create vortex- 
like structures (see the right-hand panel) owing to the conservation 
of magnetic helicity. From t = 12 ms, the evolution proceeds with 
non-linear rearrangement of the field, where not only the closed field 
lines are inv olved, b ut also the whole star and the open field lines. 
The equatorial 3D view (right-hand panel) shows the already formed 
toroidal component. The evolution of the field occurs slowly in which 
the interior closed field lines mo v e outwards losing energy in the 
toroidal component. We shall see this in more detail when discussing 
the energies of the poloidal and toroidal components later in this 
section. The modifications of the field also expel matter from the 
star; ho we ver, the change in rest mass ( �M rest ≈ 10 −5 M �) is much 
slower as compared to the changes in magnetic field energy during 
the first Alfv ́en crossing time. The extent to which the field modifies 
obviously depends on the magnetic field strength with stronger fields 
having more violent dynamics and vice versa (Ciolfi & Rezzolla 
2012 ). From the end state of our simulation, we conclude that the 
geometry of the magnetic field is significantly different and has 
left no trace of its initial configuration. Although we do not have 
resistivity, there is numerical dissipation from our grid, and it is 
difficult to understand whether the post-instability configuration is 
stable. Ho we ver, the time-scale on which other quantities such as the 
rest mass of the star are changing is much longer than the instability 
of the magnetic field. We can conclude that this configuration is not 
a ‘strict’ equilibrium but rather a ‘quasi-stationary’ equilibrium. 

The magnetic flux decays in the interior as well as in the exterior 
of the star due to the rearrangement of the field, which is a physical 
effect and not a numerical artefact as also seen in Braithwaite & 

Spruit ( 2006 ). We recall that our setup includes an MHD fluid ball 
with an atmosphere with no solid crust being present. This has 
important consequences for the magnetic field evolution both inside 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/3/3983/6526334 by N
icolaus C

opernicus Astronom
ical C

enter user on 23 February 2022



3986 A. Sur et al. 

MNRAS 511, 3983–3993 (2022) 

Figure 1. 3D view of the magnetic field for ps256 at three different times, t = 2 ( T A ∼ 0.1), 12.7 ( T A ∼ 0.8), and 49 ms ( T A ∼ 2). The definition of T A is 
given by equation (12). The top row shows the meridional view, while the bottom row shows the equatorial view. 

Figure 2. 2D projection of the field lines for the setup pS256 on the x –z plane (top row) and the x –y plane (bottom row) at the three different times, t = 2 ( T A 
∼ 0.1), 12.7 ( T A ∼ 0.8), and 49 ms ( T A ∼ 2), as shown in Fig. 1 . The colour scale represents the strength of the toroidal field in Gauss. 
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Figure 3. Ratio of poloidal and toroidal energies to the total magnetic energy at each Alfv ́en time for purely poloidally dominated initial condition (left-hand 
panel) and toroidally dominated initial condition (right-hand panel). 

and outside the star. We also do not have resistive MHD effects such 
as magnetic reconnection. Including these effects, we would expect 
powerful outbursts from the atmospheric emission originating from 

sudden rapid rearrangement of the field. Thompson & Duncan ( 1995 ) 
proposed that a large-scale reconnection/interchange instability of 
the magnetic field caused the 1979 March 5 burst event and that 
cracking of the NS crust produced soft gamma repeaters. Magnetic 
field decay could also build stresses in the NS crust and cause it to 
break due to a strong toroidal field, resulting in crustquakes. Magnetar 
giant flares may likely be explained by such a phenomenon (Lander 
et al. 2015 ). 

Fig. 3 shows the time evolution of the poloidal ( E pol ) and toroidal 
energies ( E tor ) calculated o v er the volume of the star defined as 

E pol = 

∫ 

star 
( b 2 P u μu 

ν + 

b 2 P 

2 
g ν

μ ) δμ
t n νd 3 x 

√ −g , (13) 

E tor = 

∫ 

star 
( b 2 T u μu 

ν + 

b 2 T 

2 
g ν

μ ) δμ
t n νd 3 x 

√ −g , 

where b μP + b 
μ
T = b μ is magnetic field components projected into a 

space normal to the fluid four-velocity u μ, n μ is the normal observer’s 
four-velocity, g μν is the metric, and 

√ −g = α
√ 

γ is the determinant 
of the metric tensor. The magnitude of the toroidal field is given by 

b T = 

√ 

g xx 

(
x b y − y b x 

)
√ 

x 2 + y 2 
, (14) 

where x , y are the Cartesian axes. 
We compute various energy integrals whose definitions are given 

in Appendix A, while the definitions of the different physical vari- 
ables can be found in Noble et al. ( 2006 ). Initially, at t = 0, we have 
the entire magnetic energy stored within the poloidal component. For 
pS256 , we find that the toroidal energy rises at t = 60 ms ( ∼2 T A ) 
where E tor ∼ 0 . 2 E mag (left-hand panel of Fig. 3 ). Ho we ver, as the 
system loses magnetic energy, the toroidal component gets weaker, 
and at much later times t ∼ 880 ms ( ∼6.5 T A ), it approximately 
becomes 1 per cent of E mag . The e volution sho ws that the toroidal 
field attains a quasi-stable equilibrium with energies similar to the 
ones obtained from solving the Grad–Shafranov equation (see e.g. 
Lander & Jones 2009 ; Armaza et al. 2015 ; Sur & Haskell 2021 ), 
which gives equilibrium solutions but does not say anything about the 
stability of these equilibrium fields. The star continues to lose energy 
till the end of our simulation, but the ratio of poloidal and toroidal 

energies to the total magnetic energy is seen to settle at a quasi- 
equilibrium value for pS64 and pS256 but not in pS128 (left-hand 
panel of Fig. 3 ). In our setup, pS512 , we have a shorter evolution 
time, T A ∼ 2.5, and need a much longer evolution to understand 
if it reaches equilibrium. The toroidal field in this case grows up 
to 20 per cent of the total magnetic energy, which is achieved at 
2 T A . From this point, although we do not have results for further 
evolution, its strength seems to decrease and we may fail to achieve 
convergence as also seen in our different setups in the later stages of 
evolution. For tS128 (see the right-hand panel of Fig. 3 ), we initially 
have a larger toroidal component, which at first loses some energy 
and increases the strength of the poloidal component. Ho we ver, this 
soon becomes stronger with time and the poloidal component also 
stabilizes at E pol ≈ 0 . 2 E mag . Note that this is different than what was 
observed in Sur et al. ( 2020 ), where the toroidal energy decayed to 
get stabilized at 10 per cent of E mag . This may be caused due to the 
implementation of the boundary conditions of the magnetic field. 
In Sur et al. ( 2020 ), we used a periodic boundary in the azimuthal 
direction, while the radial and angular boundaries were fixed at their 
dipolar poloidal values. Since we have a free boundary in this setup, 
the toroidal field gets stabilized by a weaker poloidal component. 

Let us now discuss the dynamics at the initial stage of the 
evolution. The poloidal field energy remains unchanged up until 
12 ms ( ∼1 T A ). During this time, the toroidal field undergoes an 
exponential growth, and after ∼1 T A , the instability saturates and the 
field continues to evolve less dramatically. This behaviour depends 
on the initial strength of the magnetic field (Ciolfi & Rezzolla 2012 ) 
and the resolution of our numerical grid; ho we ver, it is evident 
that the poloidal ener gy under goes this sharp decrease when the 
instability saturates and the non-linear rearrangement of the field 
starts. The poloidal and toroidal energies (normalized by the initial 
magnetic energy at t = 0) shown in the left-hand panel of Fig. 4 
are in good agreement with Ciolfi & Rezzolla ( 2012 ) till the end 
of their simulation time t ∼ 60 ms. We have much longer runs in 
which we see that the component energies continue to decay, both 
for the poloidally dominated setup (left-hand panel in Fig. 4 ) and the 
toroidally dominated setup (see the middle panel of Fig. 4 ). The ratio 
of toroidal to poloidal energies (right-hand panel of Fig. 4 ) also shows 
that for pS128 and pS64 , the field oscillates and dissipates more 
energy when compared to pS256 , where the energy loss is more 
continuous. This ratio for the setup pS512 reaches 20 per cent at 
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Figure 4. Evolution of poloidal and toroidal energies normalized to the initial magnetic energy (in log scale) for the poloidally dominated initial condition 
(left-hand panel), toroidally dominated initial condition (middle panel), and ratio of toroidal to poloidal energies (right-hand panel) for the runs pS512 , pS256 , 
pS128 , and pS64 . 

Figure 5. Left-hand panel: difference in E ( t ) and E ( t = 0) normalized by E ( t = 0) for the total energy (black) and magnetic energy (red). Right-hand panel: 
difference in kinetic energy (blue), magnetic energy (red), total energy (black), and enthalpy (green) to its initial value for the different setups pS128 , pS256 , 
and pS512 with respect to T A . 

∼2 T A , while the setup pS256 reaches 10 per cent at ∼2.5 T A . Again, 
we lack convergence in our simulations; ho we ver, at later stages at 
6.5 T A , the toroidal field for pS256 settles at 1 per cent of the poloidal 
energy. 

To study the energetics, we decompose the total energy of the 
star into four different components following Noble et al. ( 2006 ): 
kinetic, magnetic, rest mass, and the enthalpy (see Appendix A of 
this paper for the mathematical expressions). In the left-hand panel 
of Fig. 5 , we show the change in magnetic and total energies to its 
initial value ( δE ) normalized by the initial value. We see that the total 
energy remains conserved; ho we ver, the magnetic energy decays. To 
understand the loss of magnetic energy, we plot δE for the individual 
energy components (except the rest mass as it remains conserved 
in our simulations) inside the star for the setups pS128 , pS256 , 
and pS512 , and look at their behaviour with T A . First, the change 
in kinetic energy from its initial value is negligibly small, which 
means that the fluid almost remains static and experiences only small 
variations in mo v ement due to the presence of the instability that we 
notice at ∼0.5 T A . Secondly, the magnetic energy decreases, and this 
loss is independent of the resolution of our simulations. More than 
90 per cent of the initial magnetic energy is lost, which either gets 
radiated away to infinity or gets dissipated as heat inside the star. We 
calculated the Poynting flux o v er the surface of the star and found 
that ∼6.84 × 10 44 erg of the total magnetic energy gets converted 

to radiation outside. Ho we ver, a major portion goes into heating the 
interior of the star as we can see from the rise in enthalpy till ∼2 T A . 
The enthalpy loss is dependent on the grid resolution and reduces by a 
factor of 2 when the resolution is increased by the same factor. Higher 
resolutions than those considered here would be needed to minimize 
numerical dissipation effects. These results strongly depend on the 
outflow boundary conditions used in our simulations; ho we ver, a 
realistic NS has a crystalline-solid crust, which would prevent any 
dissipation of magnetic energy outside the star and can significantly 
influence our simulation results. 

3.2 Growth 

Following Zink et al. ( 2007 ) and Lasky et al. ( 2012 ), we study the 
magnetic field dynamics in terms of the Fourier modes 

C m 

= 

∫ 2 π

0 
B φ( ̄ω , φ, z = 0)e i mφd φ, (15) 

where ω̄ = 

√ 

x 2 + y 2 = 0 . 8 R is a contour in the equatorial plane 
of the star. We compute C m for m ∈ [1, 2, 3, 4] and show them 

in Fig. 6 . 
The inset gives a closer look at the initial stage of the evolution. As 

a first observation, we can see that all the different modes are excited 
and each one grows exponentially . Secondly , this growth saturates 
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Figure 6. Left-hand panel: Fourier decomposition of B φ for the setup pS256 and complex weighted averages for the different modes m ∈ (1, 2, 3, 4) shown 
till 5 T A . The inset shows the first 1.2 T A of the evolution, where we can see that the m = 2 grows the fastest till 1 Alfv ́en crossing time. Right-hand panel: linear 
relationship between the Alfv ́en times calculated for the different magnetic field strengths in pS128 . 

after a few Alfv ́en periods from which the different modes evolve less 
dramatically . Thirdly , the loss of magnetic energy causes these modes 
to lose strength. And lastly, all the different modes grow closely (as 
seen from the inset of Fig. 6 , left-hand panel); ho we ver, the m = 2 
mode remains strongest followed by m = 1, 4, and 3, respectively. 
We calculate the growth times ( τ g ) for the various modes defined by 
the following: 

τg = 

�t 

� ln ( C m 

) 
. (16) 

The strength of the v olume-a veraged magnetic field is varied in 
our simulations using the setup pS128 since it is computationally 
less e xpensiv e to run each simulation than pS256 . By using the 
modes (1, 2, 3, 4), we calculated the growth times for each case. 
We plot the inverse of τ g as a function of B in Fig. 6 (right-hand 
panel). There are some errors introduced when computing τ g during 
the exponential phase as it is difficult to select an interval of time 
where this growth happens, and one should take different realizations 
and report the mean and standard deviation of these data. Since we 
are only qualitatively interested in the behaviour of τ g , we take the 
time interval between the minimum and maximum values of C m . It is 
difficult to establish a linear relationship between τ g and the inverse 
field strength predicted by perturbation theory, but we found one 
only for the mode m = 4 and presented the best-fitting dashed line 
in Fig. 6 (right-hand panel). The values of τ g for the field strengths 
{ 4.5, 3.6, 2.7, 1.8 } × 10 15 G are, respectively, the following: { 18.1, 
14.4, 17.9, 17.1 } ms for the mode m = 1; { 16.2, 16.7, 20.2, 15.7 } 
ms for the mode m = 2; { 18.7, 18.1, 15.4, 19.5 } ms for the mode 
m = 3; and { 14.2, 16.0, 17.0, 18.7 } ms for the mode m = 4. The 
growth time for the strongest magnetic field setup should be shortest 
for all modes considered, but this is observed only for m = 3 and 
4. A majority of these modes have abrupt erratic growth times, with 
the shortest mode being m = 3 for the field strength of 3.6 × 10 15 

G, while the longest mode was m = 2 for the field strength of 
2.7 × 10 15 G. 

3.3 Turbulence 

The magnetic field in young NSs experiences turbulence after their 
birth during a period when the neutrinos have not fully escaped and 

provide heat as energy 1 (Mabanta & Murphy 2018 ). In old NSs, 
curvature contributions to mutual friction also cause differences in 
angular velocity between the superfluid and the rest of the star, which 
can also cause superfluid turbulence in the core of the NS (Peralta 
et al. 2006 ; Andersson, Sidery & Comer 2007 ). It is expected that 
the magnetic field should break in smaller eddies and dissipate most 
of its energy as the star ages, but observations show that a certain 
fraction of the NS population has stronger fields. Longer time-scale 
( ∼1 Myr) simulations have shown that the magnetic field in the crust 
attends a state known as ‘Hall attractor’ after driven by the Hall effect 
(Gourgouliatos & Cumming 2014a ). Even though this equilibrium 

stage is achieved only at much later times, the magnetic field evolves 
more rapidly in the initial phase in the lives of NSs. As a result of 
the initial instability and reconnection, turbulence can be driven by 
the magnetic field in NSs. 

On simulating magnetic field evolution in NSs, it was observed that 
the system exhibited turbulence when the Kolmogorov spectra were 
calculated for both the kinetic and magnetic energies (Sur et al. 2020 ). 
This was speculated to be caused by the initial perturbation of the 
fluid velocity, which was used to trigger the instability quickly. How- 
ever, the signals obtained were noisy, owing to the limited resolution 
of the simulations, and this caused the spectra to be indistinguishable 
for the power-law scaling of −5/3 (predicted by the classical 
K olmogorov theory; K olmogorov 1941 ) from other MHD turbulence 
spectra (Boldyrev et al. 2011 ; Beresnyak 2019 ; Schekochihin 2020 ). 
The fact that the poloidal and toroidal energies in the simulations 
presented in Sur et al. ( 2020 ) did not settle to an equilibrium, but 
rather oscillated around a mean value, could possibly be the result of 
turbulence triggered by the instability of the initial purely poloidal 
field. To understand whether this turbulence is physical and not 
caused by numerical effects, it is required to analyse simulation 
data generated from higher resolution and longer MHD runs. 

In this work, we are in a better position to study the effect 
of turbulence given that our simulations have higher resolution 
compared to ones presented in Sur et al. ( 2020 ). We compute the 
power spectrum of the specific kinetic energy. The Fourier transform 

of the 3D velocity vector is given by 

u 

j ( k ) = 

∫ 

u 

j ( x )e −i πk ·x d 3 x (17) 

1 In pri v ate communication with Andreas Reisenegger. 
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Figure 7. Spectra of specific kinetic energy E ( k ) (equation 19) inside the star and multiplied by Kolmogorov scaling k 5/3 calculated for our different resolution 
setups (given as figure labels). The different plots represent different times in the evolution of our system (given by the title in each figure). 

and the specific kinetic energy is calculated as 

ε k ( k ) = 

1 

2 
u 

j ( k ) · u 

j † ( k ) , (18) 

where u j † is the complex conjugate of u j . It is then straightforward 
to calculate the velocity power spectral density as 

E( k) = 

1 

2 
� k < | k ′ | <k+ d k ε k ( k 

′ ) . (19) 

We use the numerical algorithm outlined in Navah, de la Llave Plata & 

Couaillier ( 2018 ). We select our computational domain such that 
it filters out regions only within the stellar surface with a radius 
of 0.95 R . For this, we use the density value ρ ≥ 10 14 g cm 

−3 to 
select the sphere and discard regions with ρ < 10 14 g cm 

−3 . As 
the strong magnetic field deforms the star, this selection criterion 
correctly accounts the effect of non-sphericity. Due to the sharp 
gradients in velocities present close to the surface, we apply an 
exponential decay window function and make the velocities go to 
zero when r approaches R . The window function is only applied in 
post-processing, i.e. while computing the turbulent spectra, and not 
during the evolution of the magnetic field in our simulations. This 
windowing is required to make the data segment periodic and prevent 
any jump discontinuities that may arise while computing the Fourier 
transform of our velocities. Without the window function, there arise 
superficial features in the spectra that are unphysical. Fig. 7 shows the 
specific kinetic energy spectra versus wavenumber ( k = | k | ) for the 
different resolution setups with varying times. The red, black, green, 
and blue lines correspond to the setups pS512 , pS256 , pS128 , and 
pS64 , respectively. Since the setup pS512 has an evolution time 
of 88 ms, we show its spectra until this point. For convenience, we 
plot the quantity k 5/3 E ( k ) to get a flat spectrum when it follows the 
Kolmogorov scaling. There are three distinct regions characteristic of 
such a spectrum: the energy-containing range (region I), the inertial 
subrange (region II), and the dissipative range (region III), as shown 
in the figures. At t = 29 and 39 ms, we see that the spectra in region 
II become flat, but the Kolmogorov scaling becomes weaker as seen 
from t = 68 ms. The e volution sho ws us that at largest scales, kinetic 
energy is gradually lost, while this is not so prominent for our lower 
resolution setup. The spectra at different times indicate that there is 
a lack of convergence, as we should expect that at large scales, the 
spectra should have similar energies regardless of the resolution. 

To understand whether this feature is physical, we performed a 
pure hydrodynamics (HD) simulation for pS128 without evolving 
the magnetic field. We calculated the spectra for the pure hydro 
run and compared with the MHD simulation in Fig. 8 . The spectra 
differed at large scales where MHD is seen to drive large-scale flows, 
while the dynamics for the hydro run at small scales comparatively 
remains the same at different times caused by atmospheric noise. 
This was also visible when we plotted the velocity field of our star 
and observed large spikes at the y = 0 axis on the equatorial plane. 
Thus, most likely at small scales, we are not observing turbulence, 
but rather a noisy velocity field in our simulations. 

4  C O N C L U S I O N S  A N D  DISCUSSIONS  

In this paper, we presented long-term GRMHD evolution in NSs 
by performing simulations using the code ATHENA + + . We studied 
the energy variations of the poloidal and toroidal magnetic fields, 
the kinetic energy, and the enthalpy with time for four different 
resolutions 64 3 , 128 3 , 256 3 , and 512 3 in a Cartesian grid. 

We explored two different initial conditions, one purely poloidal 
and one with dominant toroidal field. We find that in all the different 
resolution setups, a purely poloidal field is unstable and this gives rise 
to a toroidal component. The toroidal energy becomes comparable 
in strength to the poloidal energy during the initial stages of the 
ev olution, b ut at later times, it decreases significantly and becomes 
approximately 1 per cent of the total magnetic energy at t ∼ 880 ms 
corresponding to 6 . 5 Alfv ́en periods. Our setup pS 512 has an 
evolution time of 2.5 T A at which the toroidal field reaches 20 per cent 
of the poloidal energy and 10 per cent of the total magnetic energy 
once the simulation ends. Ho we ver, our longer simulations such as 
ps256 do not reach any equilibrium magnetic field configuration and 
lack convergence at later stages in the evolution. For the toroidally 
dominated setup, we found the ratios of poloidal and toroidal energies 
to the total magnetic energy to settle at an equilibrium value of 0.2 
and 0.8, respectively. 

On comparing the different initial conditions, we address two 
main issues. The first concerns the different behaviour of the toroidal 
versus poloidal dominated simulations. The stronger toroidal setup 
develops a sizeable poloidal component with 20 per cent of the total 
magnetic energy but does not become the dominant component at the 
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Figure 8. A comparison of the specific kinetic energy spectra for pS128 between the HD simulation and the MHD simulation. 

end of the simulation. On the other hand, the purely poloidal setup 
does not develop such a large toroidal component, which is likely 
due to the different boundary conditions implemented in this work 
when compared to Sur et al. ( 2020 ). The second issue concerns the 
final values of the different energy components. Our simulations are 
significantly longer than those in Sur et al. ( 2020 ). 

In Fig. 4 , it appears that the ratio between toroidal and poloidal 
energies, in the case of our higher resolution simulations, is gradually 
decreasing. Moreo v er, the higher resolution simulations seem to be 
losing more magnetic energy compared to the lower ones. This loss 
in magnetic energy from the star increases the internal energy, while 
around 10 44 erg of the magnetic energy is radiated to infinity in 
the form of electromagnetic radiation. Our models, ho we ver, do 
not have a solid crust or resistivity, two important factors that 
influence electromagnetic emission in realistic NSs. Some of the most 
luminous magnetar giant flares can be explained with the release of 
energy from crustal breaking (Lander et al. 2015 ). 

An important aspect we addressed in our simulations was to 
study the turbulence in NS MHD simulations. It was seen in Sur 
et al. ( 2020 ) that the magnetic field instability caused the system to 
experience turbulence, and this may have caused the poloidal and 
toroidal energies to reach only a quasi-equilibrium. Ho we ver, due to 
limited resolution, the spectra were noisy and difficult to establish 
a power-law scaling according to the Kolmogorov theory. In this 
work, we analysed data from higher resolution MHD runs and found 
that this turbulence is not physical but rather caused by noise in the 
velocity field inside the star. This was confirmed on comparing the 
spectra between HD and MHD runs. The main difference occurred 
at large scales where the MHD simulations demonstrated large-scale 
flows, while the small-scale dynamics remained the same between 
HD and MHD cases. 

Overall, we find consistent results with the previous GR works 
at early times (e.g. Ciolfi et al. 2011 ; Ciolfi & Rezzolla 2012 and 
references therein) while extending the simulations to 880 ms, which 
is much longer than previously obtained (e.g. 400 ms in Lasky 
et al. 2011 ). Our finest grid resolution is 0.1155 km, which is 
similar to Ciolfi & Rezzolla ( 2012 ) but also higher than Lasky 
et al. ( 2011 ) where a grid of ∼0.23 km was used. Ho we ver, higher 
resolution and longer simulations are still required to settle the issue 
of what happens to the late-time evolution of different energy com- 
ponents and the turbulence in studies of magnetic field simulations 
of NSs. 
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APPENDI X  A :  

Let us first note the following definitions, where the normal ob- 
serv er’s four-v elocity ( n μ) in the coordinate basis t , x 1 , x 2 , x 3 is given 
by 

n μ = ( −α, 0 , 0 , 0) , (A1) 

α2 = −1 /g t t = −g t t , (A2) 

γ = −n μu 

μ, (A3) 

where γ is the Lorentz boost and α is known as the lapse function. 
The projection tensors, which project into a space normal to the fluid 
four-velocity, are given by 

h μν = g μν + u μu ν, (A4) 

j μν = g μν + n μn ν . (A5) 

We work in isotropic coordinates such that g xx = g yy = g zz and g ij = 0 
for i �= j . The fluid is described by four-velocity u μ, rest-mass density 
ρ0 , and pressure p . The magnetic field four-vector is given by 

B 

μ ≡ −n νF 

μν (A6) 

such that b μ = h 

μ
ν B 

ν/γ . The stress–energy tensor can be decom- 
posed into a fluid part (subscript F) and a magnetic part (subscript 
B) as the following: 

T μν = T 
μν
F + T 

μν
B , (A7) 

where 

T 
μν
F = wu 

μu 

ν + pg μν, (A8) 

T 
μν
B = b 2 u 

μu 

ν + b 2 g μν − b μb ν, (A9) 

where w = p + ρ0 + ρ0 ε and ε = p /( � − 1) ρ0 is the specific internal 
energy density. We define the fluid and magnetic currents as 

J νF = −T 
μν
F ∂ t μ (A10) 

J νB = −T 
μν
B ∂ t μ (A11) 

such that the total energy current is J νE = J νF + J νB and the total 
energy is 

E = 

∫ 

( −J νE n ν) 
√ −g d 3 x . (A12) 

Using the relation g μνu μu ν = −1, we get u 

t = 

α
√ 

1 + g xx ( u 

1 ) 2 + g yy ( u 

2 ) 2 + g zz ( u 

3 ) 2 . The different energies 
can be computed as the following: 

E = 

∫ 

T ν
μ ∂ μt n νd 3 x 

√ −g , (A13) 
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M rest = −
∫ 

ρ0 u 

μn μd 3 x 
√ −g , (A14) 

E B = 

∫ 

( b 2 u μu 

ν + 

b 2 

2 
g ν

μ − b μb ν) ∂ μt n νd 3 x 
√ −g , (A15) 

E k = 

∫ 

( wu μu 

ν + pg ν
μ ) ∂ μt n νd 3 x 

√ −g − M rest − E H 

, (A16) 

E H 

= 

∫ 

( ρ0 εH 

+ p) γ d 3 x 
√ −g , (A17) 

where 
√ −g = g 3 / 2 xx , E is the total energy, E B , E k , and E H are the 

magnetic, kinetic, and enthalpy, respectively. 
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The impact of superconductivity and
Hall effect in models of magnetised
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CHAPTER 4

"Nature has a great simplicity and
therefore a great beauty”

-Richard Feynman
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Abstract
Equilibrium configurations of the internal magnetic field of a pulsar play a key role in modelling astrophysical phenomena from glitches
to gravitational wave emission. In this paper, we present a numerical scheme for solving the Grad–Shafranov equation and calculating
equilibrium configurations of pulsars, accounting for superconductivity in the core of the neutron star, and for the Hall effect in the crust
of the star. Our numerical code uses a finite difference method in which the source term appearing in the Grad–Shafranov equation, which
is used to model the magnetic equilibrium is non-linear. We obtain solutions by linearising the source and applying an under-relaxation
scheme at each step of computation to improve the solver’s convergence. We have developed our code in both C++ and Python, and
our numerical algorithm can further be adapted to solve any non-linear PDEs appearing in other areas of computational astrophysics. We
produce mixed toroidal–poloidal field configurations, and extend the portion of parameter space that can be investigated with respect
to previous studies. We find that in even in the more extreme cases, the magnetic energy in the toroidal component does not exceed
approximately 5% of the total. We also find that if the core of the star is superconducting, the toroidal component is entirely confined
to the crust of the star, which has important implications for pulsar glitch models which rely on the presence of a strong toroidal field region
in the core of the star, where superfluid vortices pin to superconducting fluxtubes.
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1. Introduction

The magnetic field in neutron stars (NSs) varies over a very wide
range, with strengths ranging from 108 G in old recycled pul-
sars all the way upto 1015 G in magnetars. These values of the
magnetic field are generally inferred from the observed spindown
rate of the star, assuming that it is due to magnetic dipole radi-
ation. This provides information on the exterior field far from
the star, however, details about the interior field configuration
remain unknown. Observationally, the inferred exterior magnetic
field of pulsars is found to be relatively stable on short timescales,
except for energetic outbursts and flares in magnetars (Rea &
Esposito 2011; Coti Zelati et al. 2018). Nevertheless, the differ-
ences in field strengths between different populations, suggest that
on long timescales, comparable to the lifetime of the star, the field
may evolve, and that different classes of neutron stars may differ
not only due to their age, but also to their magnetic field config-
uration at birth (Kaspi 2010). Any change in the exterior field is
expected to be driven by internal phenomena, such as the flow
of currents in the crust and superconductivity in the NS core.
The dynamical interplay between these two regions is thus cru-
cial to understand also magnetospheric phenomenology (Akgün
et al. 2017; Glampedakis et al. 2014; Gourgouliatos et al. 2016;
Gusakov et al. 2017a). Understanding the secular evolution of the
magnetic field is crucial to connect different evolutionary tracks
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and NS classes like millisecond pulsars, rotation-powered pulsars,
and magnetars. On dynamical timescales, however, it is of inter-
est to understand the physical conditions that allow to obtain
stable equilibria in NSs, in order to use such models as back-
grounds to model phenomena such as gravitational wave emission
due to oscillations or deformations of the crust (Ushomirsky
et al. 2000; Payne & Melatos 2006; Osborne & Jones 2020;
Singh et al. 2020).

A number of equilibrium models of magnetised stars have
been produced in recent years, and to study their stability and
evolution, magnetohydrodynamic (MHD) simulations have been
performed, all of which have shown to produce quasi-equilibrium
mixed poloidal–toroidal geometry starting from the earlier works
of Braithwaite & Spruit (2006); Braithwaite & Nordlund (2006);
Ciolfi et al. (2011) and more recently by Sur et al. (2020). Purely
poloidal or purely toroidal magnetic field initial conditions are
known to be unstable, and analytical and numerical studies have
shown to favour an axisymmteric twisted-torus field (Haskell
et al. 2008; Lander& Jones 2009; Lasky et al. 2011; Ciolfi &Rezzolla
2012) where the poloidal and the toroidal components stabilises
one other. These models, however, consider a ‘fluid’ star, which
makes them relevant only in the first instants of life of the star,
when the temperature is too high for the crust to have formed
yet. Furthermore in most cases, the equation of state is taken to be
barotropic, and the stability of barotropic equilibria has been ques-
tioned (Lander & Jones 2012; Mitchell et al. 2015). Rotation may
provide partial stabilisation and in particular the boundary condi-
tions play an important role in determining whether the poloidal
or the toroidal field is globally dominant (Lander & Jones 2012),

c© The Author(s), 2021. Published by CambridgeUniversity Press on behalf of the Astronomical Society of Australia.
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but stratification provided by charged particles of electrons and
protons carrying magnetic flux moving through a neutron fluid in
particular, may allow for additional degrees of freedom and allow
to stabilise the field (Castillo et al. 2017; Castillo et al. 2020). In fact,
barotropic axisymmetric equilibrium solutions are unstable under
non-axisymmetric perturbations owing to MHD instabilities and
stable stratification is likely to be required to prevent complete dis-
sipation of the field (Braithwaite 2009; Reisenegger 2009; Mitchell
et al. 2015). Nevertheless, while non-barotropicity may be crucial
to understand the stability of the models, the equilibria them-
selves will not differ significantly from those of bartoropic stars in
mature pulsars (Castillo et al. 2020), making barotropic equilibria
an important tool to use in calculations that require magnetised
background models of NSs.

It is well known that rotation (or more in general non-trivial
fluid velocity fields in the stellar interior) may have an impact
on the evolution of the magnetic field. First, instabilities due to
perturbations developed within the NS are stabilised by rotation.
Second, superfluids in deferentially-rotating NS cores experience
torque oscillations (Peralta et al. 2005; Melatos & Peralta 2007),
which are likely to explain glitches observed in standard pulsars.
Third, internal velocity fields and multifluid components could
give rise to additional modes of oscillations and alter the prop-
erties of modes of non-rotating stars (Akgün &Wasserman 2008).
Fourth, on studying magnetothermal evolution with macroscopic
flux tube drift velocity, it had been shown that magnetic field may
be weakly buried in the outermost layers of the core and not com-
pletely expelled, as previously thought, although this is sensitive to
the initial conditions (Elfritz et al. 2016). And lastly, the presence
of bulk motion in the crust was explored in Kojima et al. (2021)
who showed that the magnetic energy is converted into mechani-
cal work and parts of it are dissipated through bursts or flares. A
realistic model of NS should consider a solid crust and a fluid core,
which are in rotation (and possibly in differential rotation due to
hydromagnetic torques). However, in this work, we neglect the
effects of rotation as we are mainly interested in the magnetic field
configuration in mature pulsars, which are slowly rotating, and in
understanding the impact of suprconductivity in the core and of
the Hall effect in the crust. It is, nevertheless, important to keep
in mind that rotation may play an important role in the evolution
of younger, strongly magnetised, NSs, and should be considered to
obtain a full picture of the evolution of the field during the lifetime
of a NS.

The crust of a NS consists of ≈ 1% of the total mass, but plays
an important role for the dynamics and emission properties of the
star. The composition of these outer layers depends on the equa-
tion of state and the density varies from 106 gm cm−3 in the outer
crust to ∼1014 gm cm−3 at which point there is a transition to a
fluid outer core of neutrons, protons, electrons and muons, and
at higher densities still, in the inner core, one may have an inner
core of exotic particles like hyperons, superconducting quark mat-
ter and Boson condensates. When the temperature drops below
T ≈ 109 K, soon after birth, the crusts begins to solidify, and forms
conducting crystal lattice with free electrons soaked in superfluid
neutrons where the Lorentz force can be balanced by elastic forces.
During the lifetime of a NS, the evolution of the field in the crust
is mainly affected by two processes: (a) the Hall effect and (b)
Ohmic dissipation, owing to the currents carried by electrons in
the crust (Goldreich & Reisenegger 1992; Cumming et al. 2004;
Pons & Geppert 2007; Hollerbach & Rüdiger 2002). It is known
that Hall effect leads to turbulent cascades but whether it leads to

complete dissipation of the field or relaxes to a stable state is an
important question as stationary closed configuration is neutrally
stable Lyutikov (2013). Over the Hall timescale, (Gourgouliatos
& Cumming 2014) have shown that indeed the field evolves to a
state known as the ‘Hall attractor’ having a dipolar poloidal field
and a weak quadrupolar toroidal component. Depending on the
steepness of the electron density, this field may dissipate rapidly
(Gourgouliatos et al. 2013). As the field relaxes from an MHD
(fluid) to a Hall equilibrium, it may drive the expulsion of toroidal
loops powering flares from the NS crust (Thompson & Duncan
1995).

When the temperature drops below ≈109 K in the core, the
protons will be superconducting and the neutrons superfluid
(Haskell & Sedrakian 2018), which will have a significant effect
on the evolution of the field in the standard pulsar population
(Ofengeim & Gusakov 2018; Gusakov et al. 2017b; Gusakov et al.
2020). Superconductivity, in particular, affect the magnetic field,
as if it is of type II, as theoretical models suggest, the field will be
confined to flux tubes, which can also interact with superfluid neu-
tron vortices (see Haskell & Sedrakian 2018 for a review). In fact,
the possibility that neutron vortices may pin in strong toroidal
field regions in the superconducting core has been proposed as an
explanation for the observed high values for the activity param-
eter in glitching pulsars such as the Vela (Gügercinoğlu & Alpar
2014; Gügercinoğlu 2017; Gügercinoğlu & Alpar 2020). In the
core, Goldreich & Reisenegger (1992) was the first to propose that
ambipolar diffusion becomes important where the charged par-
ticles like electrons and protons move relative to the neutrons.
Glampedakis et al. (2011) showed that this ambipolar diffusion
in superconducting/superfluid NSs has negligible effect on the
magnetic field evolution. However, this can change if the core tem-
perature is of the order 108 − 109 K and the diffusion time scale is
comparable to age of the star Passamonti et al. (2017).

A realistic model for the magnetic field structure of a stan-
dard pulsar cannot be that of a magnetised fluid star, and thus
MHD equilibrium, but should include a superconducting core and
a crust. In this paper, we therefore construct equilibrium models
for magnetisedNS, including type-II superconductivity in the core
and the Hall effect in the crust, and compare our models to pure
MHD and Hall equilibria.

The equilibrium of the magnetic field is studied by solving the
so-called Grad–Shafranov (GS) equation (Shafranov 1966), whose
formalismwe discuss in the next section. This GS equation appears
widely in plasma physics and analytical solutions are often hard
to obtain. Nevertheless, when the source term has a simple form,
we can use Green’s functions to solve the GS equation. However,
except for a small number of simple forms for the source function,
numerical methods such as finite differences (Johnson et al. 1979),
spectral methods (Ling & Jardin 1985), spectral elements (Howell
& Sovinec 2014), and linear finite elements (Gruber et al. 1987)
should be used. In applications to NSs, numerical solvers such as
the HSCF method (Lander & Jones 2009), Gauss–Seidel method
(Gourgouliatos et al. 2013) or the generalised Newton’s method
(Armaza et al. 2015) have been used.

We propose a numerical technique based on finite differ-
ence iterative scheme for solving the GS equation. We focus in
the astrophysical relevance of the GS equation, in particular, to
obtain magnetic equilibrium configurations in neutron stars. Our
method is fast, written both in C++ and Python, and easier to
implement numerically. We have generated models in regimes
where numerical instabilities were faced by previous works. In
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order to do this, we have demonstrated how non-linear source
terms can be treated numerically for the first time. Our numerical
algorithm in general can be applied to any such non-linear PDEs of
the similar form, like the Poisson equation, appearing ubiquitously
in physics.

This article is arranged as following: in Section 2, we derive
the GS equation for Hall and MHD equilibrium, in Section 3, we
describe the numerical algorithm to solve the discretised GS equa-
tion, in Section 4 we show our results for the normal matter star
and the superconducting core, while conclusions and discussions
are finally presented in Section 5.

2. Mathematical formalism

In general, the magnetic field (�B) in spherical coordinates is
expressed in terms of two scalar functions, α(r, θ ) representing
the poloidal component, and β(r, θ ) representing the toroidal
component, as

�B= �∇α × �∇φ + β �∇φ, (1)

where �∇φ = φ̂/r sin θ . From Faraday’s law, we have

∂ �B
∂t

= −c �∇ × �E, (2)

where the electric field is �E= − 1
c �v× �B+ �j

σ
, �v is the velocity of

electrons which is related to the current density as �v= − �j
e n , n is

the electron density and σ is the electrical conductivity. Moreover,
Ampere’s law states that the current density is related to the mag-
netic field as �j= c

4π
�∇ × �B, and substituting these in equation (2)

yields the induction equation,

∂ �B
∂t

= − c
4πe

�∇ ×
( �∇ × �B

n
× �B

)
− c2

4π
�∇ ×

( �∇ × �B
σ

)
. (3)

The first term on the right-hand side of the above equation is
referred to as the Hall term while the second is the Ohmic dis-
sipation term. The ratio of timescales on which these two terms
operate is given by (Goldreich & Reisenegger 1992)

τOhm

τHall
= 4× 104

B14

T2
8

(
ρ

ρnuc

)2

, (4)

where B= B/1014 G and T8 = T/108K. Thus for a suitable choice
of the parameters density, magnetic field, and temperature, the
Hall effect is faster than the Ohmic term and we can obtain a fam-
ily of Hall equilibrium solutions. In particular we expect this to be
true in the cores of standard pulsars, with B≈ 1012 G and internal
temperatures of the order of T ≈ 107 K.

The evolution of the magnetic field purely due to Hall effect is
given by

∂ �B
∂t

= − c
4πe

�∇ ×
( �∇ × �B

n
× �B

)
. (5)

To obtain steady-state models, axisymmetric Hall equilibria solu-
tions are calculated by setting equation 5 to zero. Integrating this
equation gives

1
n
( �∇ × �B)× �B= �∇χHall, (6)

where χHall is an arbitrary function of the coordinates r and θ ,
which can be physically interpreted as the magnetic potential since

its gradient gives the magnetic force. Substituting equation 1 gives
the toroidal component as

�∇α × �∇ �β = 0, (7)

which shows β = β(α). Moreover, �∇α ‖ �∇χHall implies χHall =
χHall(α). This gives rise to the Grad–Shafranov (GS) equation for
a two-dimensional plasma, which is a second-order non-linear
partial differential equation (PDE) given by:

�
α = ∂2α

∂r2
+ (1−μ2)

r2
∂2α

∂μ2 = −χ ′(α)n(r)r2(1− μ2)−β ′β = −S ,
(8)

where �
 is the GS operator, μ = cos (θ ) and S is the source term.
The GS equation, however, does not only apply to Hall equilib-

ria. In a barotropic NS, i.e., where the pressure is a function of mass
density (ρ) alone, as P= P(ρ), a very similar form of equation 6 is
also obtained for MHD equilibria, for which one has:

1
4πρ

( �∇ × �B)× �B= ∇p
ρ

+ ∇φ, (9)

with φ the gravitational potential. For a barotropic equation of
state, equation (9) is clearly of the same form as the GS equation,
and can thus be written in the same form as (6)

1
ρ
( �∇ × �B)× �B= �∇χMHD, (10)

where, however, the specific terms have different interpreta-
tions with respect to Hall equilibria (Gourgouliatos et al. 2013).
Specifically in MHD, the mass density plays a similar role as the
electron density while χMHD as χHall. The poloidal field evolution
takes the same form as equation 8, and thus it is necessary to obtain
a numerical solution in either case of Hall or MHD equilibrium.
In this study, we neglect any relativistic terms and assume that the
conductivity is high enough that we can neglect the contributions
of the Ohmic dissipation term, which is a good approximation in
NS interiors. However, it should be noted that the Ohmic dis-
sipation term is likely to be present in the crust and the Hall
drift enhances it by forming small-scale eddies through which the
field dissipates magnetic energy (Goldreich & Reisenegger 1992).
Simulations have shown that the Hall drift term quickly satu-
rates and the evolution of the field occurs on a slower Ohmic
timescale (Pons & Geppert 2010; Kojima & Kisaka 2012; Viganò
et al. 2012). Even if the field evolves rapidly during the ini-
tial stages, it approaches one among the family of steady-state
Hall equilibrium solutions. Given that diffusivity only depends on
radius, the Ohmic term will not affect the angular structure of the
magnetic field. Gourgouliatos et al. (2013) showed that the elec-
tron fluid in the crust slows down rapidly compared to the Ohmic
dissipation rate for a field connecting an external dipole. Further,
the Hall term enhances the dissipation rate of higher order Ohmic
modes as compared to pure Ohmic decay. To fully investigate
the evolution of the field, one must solve the induction equation
given in (3) as carried out by Marchant et al. (2014) who showed
that starting from either purely poloidal equilibrium or an unsta-
ble equilibrium initial condition, the Ohmic dissipation evolved
the field towards an attractor state through adjacent stable config-
urations superimposed by damped oscillations. Considering the
effects of Ohmic term in our calculations is beyond the scope of
this work, and we assume that as the Ohmic decay occurs on a
much larger timescale as compared to the Hall timescale, our equi-
libria are an adequate approximation to the field configurations in
a middle-aged pulsar.
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3. Numerical method

In this section, we discuss our finite difference iterative scheme
for solving the GS equation in spherical coordinates. We consider
a two-dimensional grid on r − μ plane. There are Nr points in the
r direction running from r = rmin at i= 0 to r = rmax at i=Nr − 1.
The radial values have been normalised by the radius of the star
(R) so that r = 1 corresponds to the stellar surface. Similarly, in
the μ direction, we have Nμ points running from μ = −1 at j= 0
and μ = +1 at j=Nμ − 1. The source term (S) is given by

S =
{

χ ′(α)n(r)r2(1− μ2)+ β ′β if r < 1
0 if r ≥ 1

, (11)

where β is the toroidal component and the prime denotes deriva-
tive with respect to α. The functional form of β does not allow
toroidal currents outside the star and thus makes the toroidal field
to be located within the stellar interior. The electron density is
assumed to be isotropic within the star, implying n= n(r), and
is zero outside due to vacuum. This makes the source term also
zero outside the stellar surface. Moreover, this electron density
appearing in Hall equilibria states are related to MHD equilibria
by n= ρYe, where Ye is the electron number per unit mass which
varies from 1022 − 1028 gm−1 across the crust.

We apply second-order finite difference scheme for equation 8
on a two-dimensional grid of (r − μ)

αi+1,j + αi−1,j − 2αij

dr2
+ (1− μ2

j )
r2i

αi,j+1 + αi,j−1 − 2αij

dμ2 = −Sij = Qij,

(12)
where dr = (rmax − rmin)/(Nr − 1), dμ = 2/(Nμ − 1) and Q is the
negative value of the source function S . On rearranging the above
terms, we can get an expression for αij at the (k)th step in terms of
all its neighbouring points,

αk
ij =

(αk
i+1,j + αk

i−1,j)/dr2

ωij
+ (1− μ2

j )
r2i dμ2

αk
i,j+1 + αk

i,j−1

ωij
+ Sij

ωij
, (13)

where ωij = 2/dr2 + 2(1− u2j )/r2i /dμ2. We use updated values of
αij whenever they are available. The boundary conditions were set
to α(r,μ = −1)= 0, α(r,μ = 1)= 0, α(r = rmin,μ)= 0, and α(r =
rmax ,μ)= 0. Axisymmetry equilibrium requires the azimuthal
component of the magnetic field to vanish, which allows us to
consider a toroidal component of the form

β = s[α − α(r = 1,μ = 0)]p�(α − α(r = 1,μ = 0)), (14)

where s and p are free parameters (Lander & Jones 2009;
Gourgouliatos et al. 2013; Armaza et al. 2015; Fujisawa et al.
2012) and � is the heaviside function. This form ensures there
are no toroidal currents outside the star. The value of α(1, 0) is
self-consistently calculated at each iteration. This form of β also
makes the source term non-linear. Solving a PDE with non-linear
source terms is a challenging task and we follow the procedure of
Mazumdar (2015) to linearise the process. To do so, we expand the
source term, namely Q, in Taylor’s series

Qk
ij = Qk−1

ij + dQ
dα

∣∣∣∣
k−1

(αk
ij − αk−1

ij )+ ....= Qc + Qpα
k
ij, (15)

and neglect the contributions from higher order terms in α. We
define

Qc = Qk−1
ij − dQ

dα
∣∣k−1

αk−1
ij , (16)

Qp = dQ
dα

∣∣k−1, (17)

and bring Qpα
k
ij on the left-hand side of equation 13, modifying

the coefficient ωij and the source term such that

ωij = ωij −min(0,Qp), (18)

Qij = Qc +max(0,Qp)αk−1
ij . (19)

This step does not always guarantee convergence. To improve the
performance of our solver, we use an under-relaxation scheme
such that

αk
ij = ξαk

ij + (1− ξ )αk−1
ij , (20)

where the parameter ξ lies between 0 and 1. The exact value of
ξ depends on the problem and generally a smaller value like 0.1
would make the convergence slower but more accurate. We solve
equation 13 until a tolerance limit is reached,

αk
ij − αk−1

ij

αk−1
ij

≤ ε = 10−8, (21)

where the error at each step is computed as

ε =

√√√√√√
∑
i,j
(αk

ij − αk−1
ij )2

∑
i,j
(αk−1

ij )2
. (22)

We have developed Python codea, which is a widely used pro-
gramming language known for its easily available numerical and
scientific modules for computing. Instead of looping in the r − μ

plane and calculating each αij term one at a time, we use numpy
(Harris et al. 2020) vectorisation allowing for operations on the
entire array at once. This speeds up the code by a factor of 100 for
a grid of 50× 50 and the improvement is more significant for a
larger grid size, say 100× 100 or 200× 200. Additionally, we have
the same version in C++ which is faster than Python and can be
used for larger grid dimensions required to resolve strong toroidal
fields.

4. Results

Given an EOS for a NS, one can solve the Tolman–Oppenheimer–
Volkov (TOV) equations to obtain the mass (M), radius (R) and
density profile (ρ) of the NS. This information is used as the back-
ground model on which we solve the GS equation to obtain the
equilibrium magnetic field structure. In this paper, as we are solv-
ing Newtonian equations of motion, we use a set of EOSs that
are analytically tractable and allow to mimic the the structure of
fully relativistic solutions. In particular we produce models with
three EOS. First of all, we use two particular exact solutions of the
Einstein field equations which are of interest for a NS: the first
known as the ‘Schwarzschild’ solution gives ρ = ρc = const and
the other obtained by Tolman (1939) gives ρ(r)= ρc(1− r2/R2),
which is close to the density profile for the polytropic EOS P(ρ)∼
ρ2, and has been used previously in several studied of magnetised
neutron stars (Mastrano & Melatos 2012; Mastrano et al. 2013).
We verify this explicitly by also producing a third set of equi-
librium models for an n= 1 polytropic EOS which is obtained

aOur code is freely available for download at https://github.com/ankansur/GSsolver
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Figure 1. Flowchart of our numerical algorithm.

by solving the Lane–Emden equation giving ρ = ρc
sin(πr/R)

πr/R . This
allows us to maintain a physically plausible density profile, and
an analytically tractable model, where we can arbitrarily chooseM
and R to match the compactness predicted by microscopic EOSs,
without the technical difficulties associated with the use of a tabu-
lated EOS in our scheme. Unless otherwise stated, we consider as
our standard model a NS made of two different regions, a crust of
thickness 1 km and a core of thickness 9 km with the crust–core
interface having a density ρcc ∼ 1.9× 1014 gm cm-3 and ρc ≈ 1015
gm cm-3. All the radial values r appearing hereafter have been
normalised by the radius of the star R.

The age during which a realistic NS attendsHall/MHD equilib-
rium depends on its magnetic field strength (B). Typically, in a NS
with an age of 103−105 yrs having B≥ 1014 G, the Hall term domi-
nates over the Ohmic dissipation term. However, in a NS with and
Ohmic timescale of a billion years, the Hall term can still dominate
for weaker field strengths, for example, in pulsars with B∼ 1012 G,
as the internal temperature is lower and of the order 107−108 K.
Nore that although the Hall term is independent of the internal
temperature (Tin), the magnetic and thermal evolution of a NS are
coupled (Viganò et al. 2013), as the magnetic diffusivity (which
we neglect) is strongly dependent on the internal temperature. In
practice for the realistic systems we consider, we require Tin � 108
K, which also ensure the core temperature is well below the critical
temperature for proton superconductivity.

In this section, we discuss axisymmetric solutions for the three
different models: (a) Normal matter in the crust and the core—
this includes both the case of standard MHD equilibria, and Hall
equilibria, (b) Hall in the crust and MHD in the core, and the
more realistic case, and (c) Hall equilibrium in the crust and a
superconducting core.

4.1. Normal matter in crust and core

In this section, we consider a star composed of normally conduct-
ing matter in both the crust and the core. We show results for
the Hall equilibrium, however these results can be easily extrap-
olated to MHD equilibrium, by replacing ne with ρ = ρc(1− r2),
replacing χMHD = Ye χHall and changing the constants given as
λMHDρcR2 = B′

0.
In the following we choose χHall(α)= λHallα and set λHall =

10−35 G cm. This constant λHall sets the strength of the mag-
netic field (B0). As mentioned before, we present results for the
Hall equilibria models with two different electron density profiles,
one constant in space n1 = ne, and the other radially decreasing

profile n2(r)= ne(1− r2) inside the NS. We also show results for
the EOS with matter density following the n= 1 polytrope. We
solve equation 8 with the α and β normalised by B0/R2 and B0/R,
respectively. The normalisation constant ne of the electron den-
sity profile, with typical values 1036 − 1034 cm−3 across the crust,
appears as λHall ne R2 = B0. For a star with radius R= 10 km, we
get B0 ∼ 1013 G which corresponds to a surface field strength of
∼ 1011G. The results we obtain are scalable to any field strength B0
which doesn’t influence our magnetic field topology but results in
changing the quadrupolar deformation which we calculate later in
Section 4.4. The normalised GS equation for the Hall equilibria is
given by

�
α = −
(

λHall ne R2

B0

)
r2(1− μ2)n(r)− ββ ′. (23)

We consider now results for the whole star, i.e., rmin = 0, since it
provides simpler analytical expressions.To compare with previ-
ous studies we choose p= 1.1. A lower value of p, in principle,
develops stronger toroidal field. However p cannot be less than
0.5 as it makes the term β ′β infinite in certain regions inside the
star (Gourgouliatos et al. 2013). For n1 = 1, a purely poloidal field
(s= 0) has an analytical solution given by Gourgouliatos et al.
(2013)

α(r,μ)=
{

(1−μ2)
30 (5r2 − 3r4) if r < 1

(1−μ2)
15

1
r if r ≥ 1.

(24)

This is represented by the black line while the numerical calcu-
lations are shown by the green triangles in Figure 2. In Figure 3,
we compare the radial and angular variation of the poloidal field
for the two electron density profiles. We show results for differ-
ent values of s ∈ [0, 10, 20, 30, 40, 50, 60, 80, 90]. First, varying the
electron density yields a weaker poloidal field. Second, a higher
value of s makes the poloidal field stronger with its maximum
value lying at the equator as seen in sub-figures 3b, 3d and 3f. This
is in good agreementwith the results obtained by Gourgouliatos et
al. (2013). However, on increasing s> 80, we do not see a further
rise in the peak of poloidal field strength. Moreover, the results in
Figure 3d show qualitative convergence as we increase the value
of s, from which we conclude that models with s∼ 50 may be
used as a reasonable approximation for the field structure. The
geometry of the field lines for these different cases are shown in
Figures 4, 5, and 6, for s ∈ [0− 90], with the colourscale represent-
ing the strength of β which is directly proportional to the toroidal
field strength. The toroidal component is concentrated close to
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6 A. Sur and B. Haskell

Figure 2. Variation of α (contours of which give the poloidal field lines) at the equator
across the radial direction for the constant electron density profile. The black solid line
shows the analytical solution.

the stellar equator and lies along the neutral line where the inner-
most closed poloidal field line is located within the star. This is
however not surprising since we chose to have no currents out-
side the star. These figures also show that increasing s makes the
region containing the toroidal field smaller as predicted by pre-
vious studies (Lander & Jones 2009; Gourgouliatos et al. 2013;
Armaza et al. 2015). The toroidal region is also larger for the radi-
ally varying density profile n2 when compared with the constant
profile n1. We compare our results directly with Gourgouliatos
et al. (2013); Armaza et al. (2015) in table 1 where we show the
percentage of the toroidal magnetic energy (Etor) to the total mag-
netic energy (Emag ) with a fixed background density. The energies
are comparable which shows that our results are consistent.

On comparing Figure 3c and 3e, we see that the maximum
value of α across the equatorial region is lower for the density
profile ρ2(r)∝ sin(πr)

πr when compared to n2(r)∝ (1− r2). This cor-
responds to a weaker poloidal and toroidal component however
on comparing the fraction of toroidal energy with different values
of s as seen in Figure 7, we see that the energies are compara-
ble which assures our assumption that both these density profiles
resemble each other.

We remark again that as we have assumed that density to
be a function of radius only, the pressure and gravity forces are
also radial and hence cannot balance the angular component of
the magnetic force. In principle these forces will deform the star
and lead to an ellipticity, and one should also solve the evolu-
tion equation for the density (Lander & Jones 2009). However,
for the magnetic fields in regular pulsars, magnetic equilibrium
can be treated as a perturbation on the background (Akgün et al.
2013). Deformations of the density profile are of the higher order
in B2, and any back-reaction on the field is even smaller, O(B4),
and hence will only play a role for very strong magnetic fields in
magnetars.

We have explored a different twisted-torus geometry with a
continuous toroidal field β(α) = γ α(α/ᾱ − 1)�(α/ᾱ − 1) where
ᾱ is the value at the last closed field line and γ is a constant.
This entire framework was carried out in general relativity by
Ciolfi & Rezzolla (2013)(C&R) which we try to reproduce in the
Newtonian limit. Previously, we have seen that with increasing s,
the toroidal field becomes stronger and the closed field line region
shrinks. To produce a larger closed field line, C&R considered a

functional dependence of χ(α)= c0[(1− |α/ᾱ|)4�(1− |α/ᾱ|)−
k̄], with c0 and k̄ are constants. Furthermore the transformation
χ(α)= χ(α)+ χ̄(α) was applied, with χ̄ = X(α)β ′β , thus min-
imising the effect of toroidal fields on the poloidal field lines. With
γ = 1, c0 = 1, k̄= 0.03, and X(α)= 1 we solved the GS equation
and get Etor/Emag ∼ 0.05 instead of the very strong toroidal fields
Etor/Emag ∼ 0.6 obtained by C&R (Ciolfi & Rezzolla 2013).We do
not solve our equations in GR and cannot conclusively say what
could give rise to this discrepancy.

4.2. Hall equilibria in crust andMHD in core

As a first step towards more realistic models, we start by consid-
ering the case where we have a Hall equilibrium in the crust, and
anMHD equilibrium in the core of the star. We follow Fujisawa &
Kisaka (2014) who showed that the strength and structure of mag-
netic field in the core affects that in the crust, and the current sheet
at the crust–core interface affects the internal and external field.
Similarly, we look into a situation where we impose Hall equi-
librium in the crust and MHD equilibrium in the core. Outside
the star, we assume vacuum condition, in which case, we solve
�
α = 0 with the zero boundary conditions for α at a far away
radial point. One can also impose a dipolar field however the
results do not change significantly as seen by Gourgouliatos et al.
(2013).

In order to study this case we now have to, unlike in pre-
vious examples, explicitly differentiate between Hall and MHD
equilibria. The equations we solve are given by

�
α = −r2(1− μ2)n(r)χ ′
Hall − ββ ′ in crust, (25)

�
α = −r2(1− μ2)ρ(r)χ ′
MHD − ββ ′ in core. (26)

At the crust–core interface, the continuity of α is automatically
imposed. We also want the magnetic field in the core and the
Lorentz force in the crust to balance, which gives[

ρcore χ ′
MHD

]cc

=
[
ncrust χ ′

Hall

]cc

. (27)

We set the electron density in the crust to be a constant
ncrust = ne while the density in the core is assumed to follow
ρcore = ρc(1− r2).With the crust–core boundary at r = 0.9R, using
equation 27 we get the following relation:

χ ′
MHD = 5.1× 1021χ ′

Hall ∼ 5.1× 10−14 G cm−1. (28)

The magnetic field lines remains unchanged however the strength
of the parameter β is significantly higher as seen in Figure 8.

We plot the percentage fraction of toroidal energy for the
pure Hall+MHD in Figure 9 and compare this with the pure
Hall equilibrium NS. The difference between this setup com-
pared to purely MHD or Hall equilibria is that the toroidal
energy density is stronger up to s∼ 40, but starts decreasing
for higher values. Qualitatively, however, the results are similar
and the toroidal energy saturates at a few percent of the total
energy.

4.3. Hall equilibrium in crust and Superconducting core

As the NS cools down, neutrons and protons form pairs by reduc-
ing their energy owing to the long range attractive part of the
residual strong interactions. The thermal energy in this case is
much smaller than the pairing energy and the system is gaped,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/pasa.2021.39
Downloaded from https://www.cambridge.org/core. IP address: 172.254.64.51, on 06 Sep 2021 at 16:15:04, subject to the Cambridge Core terms of use, available at



Publications of the Astronomical Society of Australia 7

(a) (b)

(c) (d)

(e) (f)

Figure 3. Variation of α (whose contours give the poloidal field lines) at the equator across the radial direction for eight values of the parameter s shown for three different density
profiles in (a),(c), and (e). Variation of themaximum value of α across the angular direction with s. The density profiles are given as text in each figure.

which leads to reactions and viscosity being greatly suppressed.
As previously mentioned, the transition temperature below which
the system behaves as superfluid/superconductor is typically
Tc ∼ 109 −1010 K, and the star thus cools below this rapidly after
birth. In the interior of a mature neutron star the geometry of the
magnetic field depends on the type of superconductivity, which in
turn depends on the size of Cooper pairs and the penetration depth
of the magnetic field. This is measured with the Ginzburg–Landau
parameter κGL which for NS cores is greater than 1/

√
2making it a

type-II superconductor (for an in depth discussion, see the review
article by Haskell & Sedrakian (2018)).

In order to obtain a more realistic model of a pulsar, we thus
consider a core of type-II superconducting protons, and study
its effect on the magnetic field equilibria, following the setup of
Lander (2013, 2014). Therefore, our star is made up of normal

matter in Hall equilibrium in the crust and superconducting
matter in the core. The crust–core interface lies at r = 0.9 as
in previous cases. Our models, in this case, are valid for pul-
sars having a surface field strength of (1 −10)× 1011 G with
typical ages in the range of 104 −105 yrs and internal temper-
atures of 107 −109 K. The Lorentz force for this type-II super-
conducting protons in the core is given by (Easson & Pethick
1977; Mendell 1991; Akgün & Wasserman 2008; Glampedakis
et al. 2011)

�Fmag = − 1
4π

[
�B× ( �∇ × �Hcl)+ ρp �∇

(
B

∂Hc1

∂ρp

)]
, (29)

where �Hcl(ρp, ρn)=Hc1B̂ is the first critical field with B̂ is the unit
vector tangent to the magnetic field. The norm of this first critical
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8 A. Sur and B. Haskell

Figure 4. Contours of poloidal field for different values of s (given in the text box in each figure) using the constant electrondensity profile n1 = 1. The colourbar shows the strength
of β. The black dotted line represents the location of stellar radius. We have shown contours of α having values (0.1αs, 0.2αs, 0.3αs , 0.4αs, 0.5αs , 0.6αs , 0.7αs, 0.8αs , 0.9αs , 1αs).

field is given as

Hc1(ρn, ρp)= hc
ρp

ε


, (30)

where hc is an arbitrary constant (Glampedakis et al. 2011). We
assume that the density of protons ρp in the core follows the
same profile ≈ (1− r2) as that by electrons in the crust. The
entrainment parameter is given by ε
 = 1−εp−εn

1−εn
, where εp = 1−

m

p

mp
. Here m


p is the effective mass of the protons acquired as a
result of entrainment. Similarly, we can define εn. We refer the
reader to Palapanidis et al. (2015) where the effect of entrain-
ment is discussed extensively. In the following, we simply set
ε
 = 1, which implies that force on neutrons due to coupling is
zero which allows us to represent Hc1 =Hc1(ρp). The equivalent
Grad–Shafranov equation for type-II superconducting core is thus
given by

�
α = �∇� · �∇α

�
− r2(1− u2)ρp�

dy
dα

− �2fsc
dfsc
dα

, (31)

where we represent superconducting matter with the subscript sc
and the functions fsc and y(α) are defined as

y(α)= 4πχsc + B
hc
ε


, (32)

fsc(α)= β

B
Hc1, (33)

where B=
√�B · �B) is the magnitude of the magnetic field and� =

B
Hc1

. Equation 31 is valid in the NS core (r < 0.9R). For the crust,
we consider normal matter in Hall equilibrium while the exterior
remains the same as considered before. As previously remarked,
we consider mostly the more realistic case of Hall equilibria, but
our equations in general can be applied also to MHD equilibrium,
in which case the boundary conditions are modified. In particular
equation 40 becomes:

y(α)= hc
ε


Bcc(α)+ 4π
[

ρcrust
p

ρcore
p

]
cc
χMHD(α), (34)

4.3.1. Boundary conditions

We treat the boundary conditions as outlined in (Lander 2014).
At the surface of the NS, the density of protons vanishes. The
magnetic field in the core and the Lorentz force in the crust must
balance, which gives[

ρ core
p χ ′

sc

]cc

=
[
ncruste χ ′

Hall

]cc

. (35)

Since apriori, we do not know B explicitly as a function of α, we
use a polynomial approximation for B at the crust–core interface
as given in (Lander 2014)

Bcc(α)= c0 + c1α + c2α(α − αeq
cc ), (36)
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Figure 5. Contours of poloidal field lines (with similar strengths as above), for the electron density profile n2 = (1− r2). The colourbar, again, shows the strength of β and the red
dotted line represent r= R.

where c0 are constants and α
eq
cc is the equatorial value of α on the

crust–core boundary. We choose the constant such that

c0 = Bpole
cc , (37)

c1 = Beq
cc − c0
α
eq
cc

, (38)

c2 = Bmid
cc − c0 − c1αmid

cc

αmid
cc (αmid

cc − α
eq
cc )

, (39)

where αmid
cc is the value of α at θ = π/4 in the crust–core boundary.

This gives

y(α)= hc
ε


Bcc(α)+ 4π
[
ncruste
ρcore
p

]
cc
χHall(α). (40)

The next boundary condition that wemust satisfy is the continuity
of Bφ which is given by

fsc(α)= [Hc1]cc
β(α)
Bcc(α)

. (41)

4.3.2. Field lines

The poloidal field contours are shown in Figures 10a and 10b
with the colourscale again representing the strength of β . This

corresponds to a maximum toroidal field of magnitude 1010 G.
In the core, we see that the field lines are convex for the super-
conducting matter as opposed to the normal matter. The toroidal
field is also restricted to the crust and cannot penetrate deep
within the star. This can be understood by comparing the ratio
of averaged magnetic field strength to the magnitude of Hc1 at
the crust–core interface, i.e., 〈Bcc〉/Hcc

c1 < 1, which is typically the
case for pulsars. 〈Bcc〉/Hcc

c1 ≥ 1 makes the field lines kink inwards
and close inside the core (Lander 2014). This effect is indepen-
dent of the choice of our function χMHD(α). In this study, we
typically have Hc1 10–50 times stronger than the magnitude of
B at the crust–core interface, which increases the magnetic ten-
sion towards the z-axis. The toroidal flux is fully expelled to the
crust, as also seen by Lander (2014), while magnetothermal evolu-
tions by Elfritz et al. (2016) found on the contrary a toroidal field
in the core. We note however that this result depends strongly
on the intial conditions for the evolution in the core, and fur-
ther analysis of their compatibility with the equilibria found here
would be needed to obtain a full physical understanding of this
discrepancy.

4.4. Magnetic deformation

Finally, let us discuss the magnetic deformation of the star, which
plays an important role in estimating the strength of gravitational
radiation from NSs (Ushomirsky et al. 2000; Haskell et al. 2008;
Mastrano et al. 2013; Lasky 2015; Gao et al. 2017; Sieniawska &
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10 A. Sur and B. Haskell

Figure 6. Contours of poloidal field lines with different s values for the n= 1 polytropic density profile ρ = ρc
sin(πr/R)

πr/R . The colourbar, again, shows the strength of β and the red
dotted line represent r = R.

Table 1.The percentage of Etor/Emag for different parameter values of
s for n2(r)= (1− r2). A comparison is also shown with Armaza et al. (2015)
and Gourgouliatos et al. (2013).

s This work Armaza Gourgouliatos
0 0 0 0

5 0.12 0.14 0.15

10 0.65 0.57 0.60

20 2.2 2.2 2.3

25 3.1 3.1 3.2

30 3.3 3.7 3.9

Bejger 2019; Chandra et al. 2020). In our setup, as already dis-
cussed, this can be treated as a higher order effect in an expansion
in O(B2). The strategy is thus to compute the magnetic field on
a spherical background, as we have done in the previous section,
and then evaluate the deformations of the density profile at O(B4).
Following Haskell et al. (2008), the theta component of the Lorentz
force (Lθ ) term is given by

(δp+ ρδ�)
dY0

2
dθ

= r
[( �∇ × �B)× �B]θ

4π
= rLθ

4π
. (42)

where Y0
2 is the m= 0 spherical harmonic. We further impose

the Cowling approximation which gives δ� = 0 and on using
the EOSs considered in this work, we calculate the quadrupole

Figure 7. Percentage fraction of the toroidal magnetic energy (Etor) to the total mag-
netic energy Emag) for two different density profiles given in figure labels for the setup
given in Subsection 4.1.

moment, following Ushomirsky et al. (2000), as

Qlm =
∫ R

0
δρlm(r)rl+2dr, (43)

which on dividing by the zth component of the moment of iner-
tia (Izz), gives us the ellipticity parameter ∈ = Q20/Izz . Note that
our models are axisymmetric, and would not lead to gravitational
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Figure 8. Magnetic field lines and the strength of β for the Hall equilibrium in the crust andMHD equilibrium in core.

Figure 9. Percentage fraction of the toroidal magnetic energy (Etor) to the total mag-
netic energy Emag) for the pure Hall (setup in 4.1) and mixed Hall+MHD (setup in 4.2)
with varying s.

wave emission, even in the presence of a significant deformation.
However, if the magnetic axis is not aligned with the rotational
axis, the deformation will not be axisymmetic and there will be
components of the quadrupole also with m �= 0, leading to emis-
sion at both the rotational frequency and twice the rotational
frequency of the star (Bonazzola & Gourgoulhon 1996). In order
to obtain an estimate of the ellipticity, we thus make the standard
approximation that Q20 ≈Q01, neglecting geometric factor that
depend on the inclination angle.

We can now compare the quadrupoles obtained for our setups
with Hall equilibrium in the crust, but with MHD and super-
conducting cores. The results are very similar for the densities
ρ ∼ (1− r2) and ρ ∼ sin (π/r)/πr, and for s= 10, we obtain
for the MHD core ε ≈ 2× 10−12, corresponding to an average
poloidal field of Bp = 6× 1011 G (with a surface value of Bs =
2× 1011 G) and toroidal field of Bt = 5× 1010 G, which is in
line with theoretical expectations. For our setup with a super-
conducting core we obtain, taking Hc ∼ 10B0, values of ε ≈ 7×
10−11, for Bp = 4.3× 1011 G, Bt = 3× 1010 G, and a surface field
of Bs = 3× 1011 G.

This is significantly lower than the results obtained by Suvorov
et al. (2016) who found ∈∼ 10−6 from spot-like magnetic field
structures present in the crust due to Hall effect causing density
perturbations for field strengths higher than B≥ 1014 G. This dif-
ference is likely to be caused by the interplay between the overall
stronger poloidal field in the core of the star and the (locally)
strong toroidal field in the crust which compensate each other
in our model, while Suvorov et al. (2016) consider fields only
in the crust of the star, and non-barotropic equations of state.
Nevertheless, a full magnetothermal evolution of the couple crust–
core system would be needed to conclusively shed light on the
issue.

Note finally that in the MHD model, the toroidal field regions
of the star can present locally large deformations of density (up to
δρ/ρ ≈ 0.01), which could be important in older, accreting sys-
tems, as if they occur in the crust they could lead to deformed
capture layers in the presence of accretion (Singh et al. 2020).
However, in our more realistic models with a superconducting
core, these deformations are much smaller, and never larger than
δρ/ρ ≈ 10−6.

4.5. Code performance

We compare our two codes in Python and C++. In Figure 11a,
we show the number of iterations taken for each code to reach
an error (ε) for three different grid sizes for s= 5. In Figure 11b,
we plot error as a function of number of iterations for two differ-
ent cases, purely poloidal (s= 0) and a mixed poloidal–toroidal
(s= 5). The grid size chosen was 101× 101. Overall we infer
that the performance of C++ is better as it takes less num-
ber of iterations (and hence time) to reach our final tolerance.
However, for the purely poloidal case, we see that our Python
code, which uses <monospace>numpy</monospace> vectorisa-
tion, is faster when compared to C++. Further we calculated

the order of convergence oc= ln
(

f3−f2
f2−f1

)
/ ln (r), where f 3, f 2 and

f 1 are values at a fixed point in the grid with resolutions 128×
128, 64× 64 and 32× 32 respectively. Here r is the refinement
ratio chosen to be 2, and we find oc∼ 2, showing second-order
convergence (O(h2)).
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(a) (b)

Figure 10. Contours of poloidal field lines for two different values of s in the superconducting core Hall equilibrium crust. The location of the crust–core interface is represented
by the solid grey line at r = 0.9R, while the red dotted line shows the stellar surface. The colourscale represents the strength of the toroidal field β.

(a) (b)

Figure 11. (a) Number of iterations as a function of accuracy for three different grid sizes for the two versions of our code. (b) The number of iterations taken by our solvers to
reach a certain accuracywhen generating different field geometries, purely poloidal (s= 0) and themixed poloidal–toroidal(s = 5).

5. Conclusion and discussions

In this paper, we have developed a numerical scheme to rapidly
solve the GS equation to obtain axisymmetric magnetic field equi-
librium models for mature neutron stars. As a benchmark for our
code we first consider first the case of pure MHD equilibria and
pure Hall equilibria, then move on to models in which we solve
for Hall equilibrium in the crust andMHD equilibtium in the core.
Finally, we produce for the first time a model where we consider
a type-II superconducting core and Hall equilibrium in the crust,
thus producing a more realistic model for a mature pulsar.

We compared our numerical computations with analytical
solutions provided by Gourgouliatos et al. (2013) and with the
results obtained by Armaza et al. (2015) which shows excellent
agreement. Since our source terms have a high-degree of non-
linearity, we have implemented a new technique which allows us
to linearise our source. This, along with the under-relaxation to

update α had significantly improved our solver’s performance. We
were able to extend calculations for s> 65, i.e., regions where pre-
vious studies (Armaza et al. 2015; Gourgouliatos et al. 2013) had
failed, for the normally conducting fluid. We reach convergence
when s∼ 50 and the results do not change significantly beyond
this value of s. However, our code fails when we increase s beyond
90 for p= 1.1 because the toroidal field region became too small
to be resolved, causing numerical instabilities. We can do better
if p is increased to 2, but this does not produce any difference in
the toroidal component. In our calculations we implement both
simplified equations of state, such as a constant density profile,
in order to compare to previous results, but also more realis-
tic profiles. In particular we implement a parabolic equation of
state of the form ρ ∝ (1− r2/R2) and compare the results to those
obtained with an n= 1 polytrope, and find them to be in good
agreement.
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In this work, we have assumed the star to be always spher-
ical. There are a few limitations of this as our results do not
account for the back-reaction of the magnetic force on the fluid,
and so we cannot self-consistently calculate ellipticities for strong
magnetic fields, such as those of magnetars, where our perturba-
tive approach is no longer valid. To consistently account for the
effect of non-sphericity in the presence of strong fields or rota-
tion, it would be necessary to modify our method to calculate
simultaneously the density and field structure (Lander & Jones
2009). Nevertheless our method can be confidently applied to
the standard pulsar population, in which the magnetic fields are
weak enough to enable a perturbative treatment, and rotationally
induced deformations can safely be ignored.

We calculate magnetic equilibria solutions for the supercon-
ducting core NSs which differed from the normally conducting
matter by field strengths and geometry of the poloidal field lines.
The most notable change is that the toroidal field is expelled
from the core and restricted to the crust in the case of where
〈Bcc〉/Hcc

cl < 1, which is applicable for the standard pulsar popu-
lation. Increasing this ratio beyond 1 (as would be the case for
magnetars) caused numerical difficulties and we leave it as a scope
for improvement in the future. Furthermore for B>>Hc even
non-linear effects such as those considered bu Lander & Jones
(2009) can be important, and further development of our scheme
would thus be required to consistently describe magnetars.

To be precise, our Hall crust-superconducting core models are
valid for middle-aged pulsars with ages of around 105 years and
core temperature of T � 109 K. We consider surface values of the
magnetic field os order Bs ≤ 1012 G. This guarantees that we are
exploring a population which have a timescale for Hall evolu-
tion which is much shorter than the Ohmic dissipation timescale
and we can ignore the latter contributions when computing our
models.

Our results for superconducting cores and Hall equilibrium in
the crust are, therefore, a realistic model for mature pulsars, and
are particularly interesting for glitching pulsars. It has, in fact, been
suggested that a strong toroidal field region in the core could lead
to vortex/flux tube pinning, thus providing a large reservoir of
angular momentum to power large glitches such as those observed
in the Vela pulsar (Gügercinoğlu 2017; Gügercinoğlu & Alpar
2020), and possibly resolving the tension between the observed
activity of the Vela (i.e., the amount of spin-down reversed by
glitches during the observing period) and the angular momen-
tum that theoretical models predict to be stored in the crust
(Andersson et al. 2012; Chamel 2013). Ourmodel, however, shows
that no toroidal field area is present in the core to allow for such
pinning, as it is expelled to the ‘normal’ matter crust. The models
we produce can, however, be used as a background for more real-
istic vortex pinning calculations (Sourie & Chamel 2020a; Sourie
& Chamel 2020b), in order to fully investigate the effect of pinning
in the core on pulsar glitch phenomenology. Note, however, that
for very strong surface magnetic fields (e.g., Bs > 1015 G) like those
seen in magnetars, the ratio 〈Bcc〉/Hcc

c1 is greater than unity and the
toroidal flux is non-zero inside the core of the star (Lander 2014)

All our computations produced a toroidal field which is less
than 5% of the total magnetic energy, and both the structure and
strength of the field appear to rapidly converge to a qualitatively
stable regime as we increase the degree of non-linearity by increas-
ing the parameter s. This is in line also with the results obtained
from numerical MHD evolution by Sur et al. (2020). We have
also shown that we can have a stronger toroidal field for a model

with Hall equilibrium in crust and MHD equilibrium in the core
of the star, and also tried to implement the formalism presented
in Ciolfi & Rezzolla (2013) to generate extremely strong toroidal
fields.We do not obtain results with toroidal energies significantly
larger than � 5% of the total magnetic energy of the star, although
we do not work in GR and do not consider strong magnetic fields
in our setup. This has strong implications as the gravitational wave
emission, as the size of a ‘mountain’, i.e., of the quadrupolar defor-
mation that couples to the gravitational field, strongly depends on
the internal magnetic energy of a NS (Haskell et al. 2008).

We study such ‘mountains’ on the star by calculating the den-
sity and pressure perturbation induced at higher order by the field
configurations we generate. This allows us to estimate the ellip-
ticity, which in our case is ∈≈ 7× 10−11 in the superconducting
case, for a surface field value of Bs ≈ 3× 1011 G, which is in line
with theoretical expectations and confirms that if such deforma-
tions persist also in older pulsars, for which the crustal fieldmay be
buried leading to a lower inferred external dipole, this may explain
the observed cutoff observed in the P− Ṗ diagram for millisecond
pulsars by Woan et al. (2018).

We have written two versions of our code, one in C++ and
the other in Python. To improve our Python code’s performance,
we vectorised our arrays to perform operations instead of using
loops. The number of grid points play a major role in resolv-
ing the toroidal component. We needed finer mesh to obtain the
strong toroidal fields wherein our C++ code was efficient. Using
our Python code, we could solve the GS equation with param-
eters (s= 0, p= 1.1) for 101× 101 grid to reach an accuracy of
ε ∼ 10−8 in less than 10 seconds. With the non-linear source, the
Python solver took longer time and hence we used our C++
solver.

To summarise, we generated realistic magnetic equilibrium
models in NSs with superconductiong cores, which could serve
as initial conditions for long-term evolution of the magnetic
field. This will bestow our understanding of the global magnetic
field structure and its stability over the lifetime of a NS or any
barotropic star.
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Gravitational waves from mountains
in newly born millisecond magnetars

CHAPTER 5

"The true sign of intelligence is not
knowledge but imagination.”

-Albert Einstein
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ABSTRACT
In this paper, we study the spin-evolution and gravitational-wave luminosity of a newly born millisecond magnetar, formed either
after the collapse of a massive star or after the merger of two neutron stars. In both cases, we consider the effect of fallback
accretion; and consider the evolution of the system due to the different torques acting on the star, namely the spin-up torque due
to accretion and spin-down torques due to magnetic dipole radiation, neutrino emission, and gravitational-wave emission linked
to the formation of a ‘mountain’ on the accretion poles. Initially, the spin period is mostly affected by the dipole radiation, but at
later times, accretion spin the star up rapidly. We find that a magnetar formed after the collapse of a massive star can accrete up
to 1 M�, and survive on the order of 50 s before collapsing to a black hole. The gravitational-wave strain, for an object located at
1 Mpc, is hc ∼ 10−23 at kHz frequencies, making this a potential target for next-generation ground-based detectors. A magnetar
formed after a binary neutron star merger, on the other hand, accretes at the most 0.2 M� and emits gravitational waves with a
lower maximum strain of the order of hc ∼ 10−24, but also survives for much longer times, and may possibly be associated with
the X-ray plateau observed in the light curve of a number of short gamma-ray burst.

Key words: gravitational waves – methods: analytical – methods: numerical – stars: magnetars – stars: neutron.

1 IN T RO D U C T I O N

Millisecond magnetars are suggested to be rapidly rotating neu-
tron stars (NSs) with strong magnetic field strengths B ≥ 1015 G
(Duncan & Thompson 1992; Thompson & Duncan 1993; Dai &
Lu 1998). What leads to the formation of such magnetars is an open
astrophysical question, but several channels have been proposed such
as the mergers of binary NSs (BNSs; Giacomazzo & Perna 2013) or
binary white dwarfs (Tauris et al. 2013; Schwab, Quataert & Bildsten
2015), core-collapse supernova associated with long gamma-ray
bursts (LGRBs; Usov 1992; Wheeler et al. 2000; Bucciantini et al.
2008, 2009), and accretion-induced collapse of white dwarfs (WDs;
Tauris et al. 2013). Although not yet ‘seen’ directly, there are
hints from the X-ray plateau of gamma-ray bursts (GRBs) that the
central engine could likely be a rapidly rotating magnetar (Rowlinson
et al. 2010, 2013; Lasky et al. 2014, 2017; Sarin, Lasky & Ashton
2019). Moreover, millisecond magnetars could explain the possible
physics behind the observed plateaux in X-ray light curves of short
gamma-ray bursts (SGRBs; Strang & Melatos 2019). In all cases, the
magnetar is born in an environment rich in matter, which facilitates
accretion on to the star influencing its overall evolution. Such an
object has a high rotational energy, which allows for the magnetar
to be ‘supramassive’, i.e. to support a higher maximum mass than
a non-rotating star. As the star spins down due to gravitational
wave (GW) and electromagnetic torques, this reduces centrifugal
support and, unless the total mass of the system is low enough for
the NS to be stable, eventually leads to collapse to a black hole
(BH), as is generally expected for most binary NS merger remnants
(Ravi & Lasky 2014). However, in a matter-rich environment,

� E-mail: ankansur@camk.edu.pl

fallback accretion can play a leading role in the evolution of the
system, as it provides a spin-up torque which increases centrifugal
support, but ultimately, pushes the star closer to collapse to a BH
by increasing its mass. This is particularly true if the magnetar is
formed by the collapse of a massive star, in which case, a massive
disc of up to ≈1 M� may be formed, leading to a hyperaccretion
disc and powering part the emission observed in LGRBs (Mészáros
2006). A similar situation may occur after a binary merger, but the
expelled mass that is subsequently re-accreted is expected to be lower
and not exceed ≈0.2 M� (Bernuzzi 2020). In all cases, however, a
transient source of GWs is expected; and it is essential to understand
the early evolution of the system, and the impact of accretion, to
determine the astrophysical relevance of these scenarios as targets
for current and future GW detectors (Murase & Bartos 2019). There
have also been strong evidence based on the distribution of collapse
times of millisecond magnetars that they spin-down through GWs
among other things (Sarin, Lasky & Ashton 2020).

After the first detection of GWs (Abbott et al. 2016), the increasing
rate of observing events – compact binary coalescence including
binary BHs, BHNS, or BNSs – by Advanced LIGO (aLIGO) and
Advanced Virgo have opened new ways to look into the universe
(Abbott et al. 2019a, 2020c,b). GWs from isolated systems such as
pulsars, newly born magnetars or core-collapsed supernova still re-
main unobserved (Abbott et al. 2010, 2019d,b,e,f, 2020a) demanding
better theoretical models and improved sensitivity of the detectors.
The distinctive signature of the GW strain and the rate of such events
carry invaluable information about the properties of NSs such as its
mass and radius (Abbott et al. 2018).

A number of mechanisms have been proposed by which an isolated
NS can emit GWs (Lasky 2015; Haskell et al. 2015a). First, all modes
of oscillation can couple to the gravitational field, leading to GW
emission. Following the birth of the star, the f-mode is the prime
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Figure 1. Pictorial description of the millisecond magnetar. There are two
coordinate systems, one having the rotation axis (�) and another having the
magnetic moment ( �μ) axis. These axes are inclined at an angle α(t). The blue
dots show matter falling on the two polar caps and forming two accreting
columns. As the star rotates, it radiates energy in dipolar radiation and GWs.
The red dotted lines represent the escaping neutrinos which carry away heat
and angular momentum in the form of a wind.

candidate to be excited and emit observable GWs (Ciolfi et al. 2011),
however, the r-mode oscillations in the NS core may be unstable if the
star is born rapidly rotating, and contribute to its GW emission (Owen
et al. 1998; Andersson & Kokkotas 2001; Bondarescu, Teukolsky &
Wasserman 2007; Haskell, Andersson & Passamonti 2009; Alford &
Schwenzer 2014; Haskell 2015).

Secondly, a strong toroidal magnetic field could deform the shape
of the star to a prolate-spheroid (Cutler 2002) leading to unstable
free precession and becoming an orthogonal rotator. Dall’Osso,
Stella & Palomba (2018) have shown that such an object with
a spin period � 2 ms and an optimal ellipticity ε ∼ (1 − 5) ×
10−3 are potential candidates for aLIGO and future GW detectors.
Additionally, in accreting NSs, the flow of matter on to the surface
could lead to crustal asymmetries (Ushomirsky, Cutler & Bildsten
2000) and create so-called ‘mountains’ when matter gets submerged
deep within the crust (Haskell et al. 2015b; Gittins, Andersson &
Jones 2020; Singh et al. 2020). The flow of matter also compresses
the magnetic field both globally and locally which gives rise to
a sizable mountain (Payne & Melatos 2004; Melatos & Payne
2005).

In this paper, we consider a newly born magnetar (Fig. 1) rotating
with millisecond period, formed in an environment where the matter
around it could not reach its escape velocity and thus falls back. When
the corotation radius exceeds the magnetospheric Alfvén radius,
matter flows along the magnetic field lines and gives up angular
momentum to the star. As the flow continues, two accreting columns
are formed at the poles. In these regions, the freely falling material
and the outflow reaches hydrostatic equilibrium (Basko & Sunyaev
1976) and neutrinos carry away heat and part of the gravitational
binding energy. In these conditions, the accretion rate (Ṁ) in high,
leading to super-Eddington accretion and significant accumulation
of matter at the base of the columns, allowing the star to possess
a time-varying quadrupole and emit GWs (Piro & Thrane 2012;
Zhong, Dai & Li 2019). In this paper, we study the spin evolution of
the star, due to the different torques acting upon it, and calculate the
characteristic GW strain.

We improve upon the static model proposed in Zhong et al. (2019)
by considering time-varying quantities such as the accretion rate, spin
period, magnetic field, and mass and radius, obtained from relativistic
rotating stellar models, thus, making the model truly dynamical. We
also consider an additional torque due to the neutrino-driven wind
of charged particles and show that it doesn’t significantly spin-down
the star. To further simplify our model, we do not consider additional
GW torques beyond those due to our ‘mountain’ (e.g. due to unstable
modes or hydromagnetic instabilities as in Melatos & Priymak 2014)
nor do we consider viscosity in the stellar interior, as we shall see
that this would impact the evolution of the system on time-scales
much longer than those of interest for our model. With all these
considerations, we show that accretion causes the star to spin faster
radiating energy in GWs detectable by future observatories.

This article is arranged as follows: we discuss the process of
accretion leading to the formation of the massive NS and the
mechanism by which it emits GW in Sections 2 and 3, respectively. In
Section 4, we show our results for the spin evolution and GW strain
for different initial conditions, while summary and conclusions are
presented in Section 5.

2 AC C R E T I O N

Two important radii that govern the flow of matter around a rotating
NS are the magnetospheric Alfvén radius (rm) and the corotation
radius (rc) defined as

rm =
(

B4R12

GMṀ2

)1/7

, rc =
(

GM

�2

)1/3

, (1)

where R, M, and � are the radius, total mass, and angular frequency
of the magnetar. When rm > rc, matter spins at super-Keplerian speed
and co-rotates with the star. When rm < rc, the flow of matter gets
channeled by the magnetic field lines and accreted on to the two polar
caps of the NS, before spreading on the surface. We consider an early-
type mass accretion rate Ṁ = 10−3ηt1/2 M�s−1 which is obtained
from fits following numerical simulations of supernova fallback
accretion (MacFadyen, Woosley & Heger 2001; Zhang & Dai 2008).
Here, η is a constant that depends on the supernova explosion process.
Although the uncertainties remain large and the exact scaling may
be different than t1/2, given the fact that the star accretes at a rate of
0.001 − 0.01 M�s−1, this will not change significantly the survival
time of the NS before collapsing to a BH. The total baryonic mass
of the star as function of time (measured in seconds) is

Mb(t) = M0 + ∫ t

0 Ṁdt (2)

= M0 + ∫ t

0 η10−3t1/2dt (3)

= M0 + 2
3 η10−3t3/2, (4)

where M0 is its initial mass. In practice, to study the accretion torques,
we will need the gravitational mass, which we denote with M. To
obtain this, we calculate, for each time-step, a relativistic rotating
model for the star, using the code RNS (Stergioulas & Friedman
1995), and extract the gravitational mass, and moment of inertia
of the star, as we shall describe in the following. As the magnetar
gains mass (when rm < rc), its radius changes depending on the
equation of state (EOS) of the NS. This requires detailed modelling
of the accreted crust (Haensel, Potekhin & Yakovlev 2007; Haensel &
Zdunik 2008; Gusakov & Chugunov 2020). Since we are interested
in the approximate behaviour of how the radius changes with mass,

MNRAS 502, 4680–4688 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/4/4680/6128657 by N
icolaus C

opernicus Astronom
ical C

entre of PAS user on 03 February 2022



4682 A. Sur and B. Haskell

Figure 2. Mass-radius relation for our magnetar model using the two
different EOS given in Table 1, i.e. blue solid line gives Mmax = 2.57 M�
while the red solid line gives Mmax = 2.0 M�. These refer to the non-rotating
models and are obtained by solving the TOV equation. For a star rotating
at Keplerian frequency, the gravitational mass and the equatorial radius are
obtained with the RNS code, and plotted for the two different EOSs: higher
maximum mass (blue dotted line) and the lower maximum mass (red dotted
line).

Table 1. Summary of the parameters considered for the two different EOSs
for a non-rotating NS.

Equation of state γ 1 γ 2 ρc(gm cm−3) Mnon−rot
max (M�)

EOS1 1.663 3.4 4.5 × 1014 2.57
EOS2 1.663 2.65 4.5 × 1014 2.0

we adopt a simple EOS of the form

P (ρ) =
{

kργ1 if ρ < ρc

k′ργ2 if ρ ≥ ρc
, (5)

where γ 1 = 1.663 considering non-relativistic neutrons in the outer
layers (leaving the inner layers unaffected), γ 2 = 3.4, and ρc =
4.5 × 1014 gm cm−3. We fixed k = 32/3π4/3h2/5m8/3

n , where mn is
the mass of a neutron while the constant k

′
was calculated imposing

continuity of pressure at the critical density ρc. This particular EOS
was adopted since it models the physics of the outer layers of the
star, which are affected by the accretion and determine the change
in radius, but allows us to obtain a 1.4 M� star with radius R =
12 km for the non-rotating model, is consistent with more realistic
estimates obtained from micro-physically motivated equations of
state (Haensel et al. 2007). The mass radius relation for this EoS, both
in the case of a non-rotating star, obtained by solving the Tolman–
Oppenheimer–Volkoff (TOV) equation, and for a model rotating at
the Keplarian breakup frequency (obtained using RNS) are shown
in Fig. 2. The maximum mass obtained for the non-rotating case is
2.57 M�, interestingly close to the recent observation by LIGO of
a possibly heavy NS (Abbott et al. 2020c). We assume that the star
collapses to a BH when this mass limit is exceeded. Additionally, as
can be seen in Fig. 2, we explored an EOS by using the same γ 1 and
ρc but changing γ 2 = 2.65, yielding a maximum mass Mmax = 2 M�,
which is consistent with the maximum observed mass of an NS to
date (Demorest et al. 2010; Cromartie et al. 2020). Table 1 shows
the summary of the parameters and the maximum non-rotating mass
for both the EOS considered in our analysis. The accretion column

forms when rm < rc, implying a critical accretion rate

Ṁ > Ṁcric = 1.8 × 10−2M
−5/3
1.4 B2

15R
6
12P

−7/3
1 M�s−1, (6)

showing a strong scaling with the radius and spin period of the star.

3 G R AV I TAT I O NA L WAV E S

Let us consider the magnetar to be a rigid-body rotating with an
angular velocity � about the z-axis (see Fig. 1). The magnetic axis
points along z

′
axis, inclined at an angle α(t) with respect to the

rotation axis.
We can express the moment of inertia of a spherical star, as I =

ĨMR2, where the behaviour of Ĩ depends on the EOS, but at least
in slow rotation is generally a function of compactness (Lattimer &
Schutz 2005; Breu & Rezzolla 2016).

As our star is not spherical, but deformed by the presence of
the accretion mound, let us denote the moment of inertia along the
coordinate axes (x

′
, y

′
, z

′
) as I1, I2, and I3. The system will not be

exactly biaxial as the rotational bulge is associated with the x, y, z
coordinate system, whereas the accretion mountain is associated with
the x’, y’, z’ coordinate system. Given the many other approximations
of our analysis, we will however ignore this small effect and take I1

∼ I2. The GWs emitted by such an object have an amplitude

h0 = 4G

c2

(I1 − I3)�2 sin2 α

d
, (7)

where d is the distance to the source. If we imagine the accreted
matter to be two cylindrical bodies with radius r at the poles, the
moment of inertia along the x

′
, z

′
axes follows as

I1 = ĨMR2 + 2MaccR
2, (8)

I3 = ĨMR2 + 2 × 1
2 Maccr

2, (9)

where Macc is the mass accreted at each pole. The difference in
moment of inertia along the two directions can be approximated as

I1 − I3 = 2MaccR
2 − 2 × 1

2 Maccr
2 (10)

≈ 2MaccR
2, R 
 r. (11)

Thus, the GW amplitude becomes

h0 = 8G

c2

MaccR
2�2 sin2 α

d
(12)

and the characteristics GW strain is approximately given by (Corsi &
Mészáros 2009)

hc = f h0

√
dtsur

df
≈ h0

√
f tsur, (13)

where tsur is the survival time-scale for the magnetar before its
collapse, f = �/π is the dominant frequency at which GWs are
emitted for α = 90◦. The body does not emit any GWs when α either
becomes 0 or π radians. The GW luminosity in such a process goes
as

LGW = − 2
5

G

c5 (I1 − I3)2�6 sin2 α(16 sin2 α + cos2 α) (14)

= − 8
5

G

c5 M2
accR

4�6 sin2 α(16 sin2 α + cos2 α). (15)

4 SPI N A ND I NCLINATI ON

The spin evolution is affected by the torques acting due to accretion,
the emission of GWs, the escaping neutrinos, and the dipolar
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magnetic field radiation. The rate at which angular momentum is
lost due to the GWs is

NGW = LGW

�
. (16)

For the torque due to the external dipolar magnetic field, we
use the expression deduced by Spitkovsky (2006) from numerical
simulations of the magnetosphere in plasma

Ndip = B2R6�3

c3
(1 + sin2 α). (17)

The accretion torque acting on the magnetar is given by

Nacc = n(ω)(GMrm)1/2Ṁ, (18)

where we adopt n(ω) = (1 − ω) as considered by Piro & Ott (2011),
Zhong et al. (2019). This torque can either be positive or negative
depending on the fastness parameter ω = (rm/rc)3/2. The star enters
the so-called ‘propeller phase’ for n(ω) < 0 where it experiences a
negative torque and spins down by expelling matter from the super-
Keplerian magnetosphere. In fact, Ekși, Hernquist & Narayan (2005)
showed that in most cases of fallback accretion, the disc will pass
through this propeller phase and such systems could appear as Ultra-
Luminous X-ray Sources when the disc is fed by supercritical mass
accretion rates (Erkut, Ekși & Alpar 2019). For a detailed discussion,
see Zhang & Dai (2008), Piro & Ott (2011), and Dai & Liu (2012).

The neutrino-driven wind is expected to interact with the strong
magnetic field of the star, leading to co-rotation of charged particles
in the magnetosphere and a loss of angular momentum (Thompson,
Chang & Quataert 2004). This emission, in fact, follows the open
magnetic field lines and is thus not isotropic. The luminosity and
the energy of neutrinos in this process are given by (Lander & Jones
2020)

Lν(t)

1052 erg s−1
= 0.7 exp

(
− t

1.5s

)
+ 0.3

(
1 − t

50s

)4

, (19)

Eν(t)

10 MeV
= 0.3 exp

(
− t

4s

)
+

(
1 − t

60s

)
. (20)

These fits have been obtained from the simulations by Pons et al.
(1999), Metzger et al. (2011), and are valid upto 40 s. Although
these expressions are valid for slow-rotation, Lander & Jones (2020)
makes improvements by considering centrifugal enhancement for
which we use the limiting values. Based on our reference model,
with the uncertainties, we may expect different behaviour due to
also different temperatures in the cases of core-collapsed supernovae
and BNS post-mergers. But given that we confirm this torque is
generally negligible for our problem, we do not investigate the effect
of temperature further. The mass-loss rate due to the neutrinos is
given by

Ṁν = 6.8 × 10−5 M�s−1

(
Lν

1052 erg s−1

)5/3( Eν

10 MeV

)10/3

. (21)

The rate of change of electromagnetic energy carried away by the
neutrinos is given by (Lander & Jones 2020)

ĖEM =
{

c2Ṁνσ
2/3
0 if σ0 < 1

2
3 c2Ṁνσ0 if σ0 ≥ 1

, (22)

where σ 0 is called the wind magnetization parameter (Metzger et al.
2011) given by

σ0 = B2R4�2

Ṁνc3
, (23)

that accounts for asymptotic partition between the kinetic and mag-
netic energy in the wind. Further, σ 0 ≤ 1 implies a non-relativistic

wind as compared to σ 0 > 1 for a relativistic wind (Metzger et al.
2011). Neglecting the small change in moment of inertia of the star
due to neutrino mass-loss, the spin evolution purely due to the loss
of neutrinos is given by

d�

dt
= − ĖEM

I�
= − Lν

I�
. (24)

Thus, the exact scaling with which � varies with time is proportional
to �1/3 for σ 0 < 1 while � for σ 0 > 1. As in past studies, which
have suggested that neutrinos are inefficient in spinning down a
protoneutron star (Baumgarte & Shapiro 1998), we find that magnetic
dipole radiation is a dominant effect as found by Lasky et al. (2017)
leading to a braking index of n = 3 obtained from fits of X-ray
plateaux in SGRBs, although it’s precise observational determination
remains challenging (Melatos 1997; Archibald et al. 2016).

The net rate of change of angular momentum due to the different
torques acting on our star is

d

dt
(I3�) = −NGW − Ndip − Nν + Nacc = Nnet, (25)

I3 ≈ ĨMR2 (neglecting the contribution from the cylindrical column
of matter). We drop the notation I3 and simply represent it as I. This
gives us an evolution equation for the spin

d�
dt

= (−NGW − Ndip − Nν + Nacc)/I − �
I

dI
dt

(26)

and

1

I

dI

dt
= Ṁ

M
+ 2

Ṙ

R
+

˙̃I

Ĩ
, (27)

where Ṁ = Ṁacc − Ṁν and the dot represents derivative with respect
to time. The mass-loss due to neutrinos allows us to calculate the
evolution of inclination angle (for a more sophisticated treatment
including the effect of internal dissipation due to viscosity, see
Lander & Jones 2020) as follows

dα

dt
= ĖEM sin α cos α

I�2
. (28)

Viscosity plays an important role in affecting the inclination angle of
NSs (Jones 1976; Dall’Osso & Perna 2017). The compelling effects
due to viscous dissipation and external torques tend to make the
magnetic axis orthogonal to the rotational axis soon after birth which
gradually starts aligning over hundreds of years (Lander & Jones
2020). Since we are interested in shorter time-scales during which
the star survives, we ignore the evolution of α(t) due to bulk viscosity
and dissipation from the internal fluid motions.

5 R ESULTS

5.1 Core-collapsed supernovae (CCSNe)

We present our results after the birth of the magnetar with EOS1.
The value of η plays an important role in the lifetime before the
magnetar collapses to a BH. Simulation shows that typical values of
η lie between 0.1−10 (Piro & Ott 2011). A lower η implies a more
powerful supernova explosion and varying this for the magnetar, we
expect a change in tsur, the rate at which it gains mass and the duration
of the GW signal. However, this should not affect the overall shape
of the waveform.

We chose η = 10 making the magnetar (with M0 = 1.4 M� and
P0 = 1.1 ms) to survive a total of tsur ∼ 49 s. The choice of these
parameters has several implications, first being the time at which
accretion columns are formed as one requires Ṁ > Ṁcric (Zhong
et al. 2019). This condition is achieved at a threshold time tth ∼ 2.0 s.
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Second, n(ω) < 0 for t < tth and the star experiences a negative torque.
Third, there are no GWs emitted during this phase. The spin evolution
is only affected by the dipolar radiation, angular momentum loss due
to neutrinos and the co-rotating matter. After t > tth, two accretion
columns are formed, the star experiences a positive torque and the
GWs carry away angular momentum. Since it is easier for us to work
in normalized units, we express different quantities of the star such
as mass, radius, magnetic field, and the mass accretion rate as

R15 = R

15 km
, M1.4 = M

1.4M�
, B15 = B

1015G
, Ṁ−2 = Ṁ

10−2M�s−1
.

(29)

We further work with spin period (P = 2π /�) which is normalized
as P1 = P/1 ms. To calculate the amount of column mass that is
accreted on to the poles, we use the relation obtained by Zhong et al.
(2019)

Macc = 1.7 × 10−7M�M
−25/56
1.4 Ṁ

3/28
2 B

−5/7
15 R

125/56
15 . (30)

This estimate is model dependent, however different estimates, e.g.
considering magnetically confined matter (Brown & Bildsten 1998;
Singh et al. 2020), produce similar estimates for the mass. The
scalings with the different parameters (i.e. M1.4, Ṁ−2, B15, etc.)
will be different and may affect our model. However, the strongest
driver of the evolution is the scaling of the GW torque with spin
period, which will remain unaffected, as will the electromagnetic
torques. We, thus, do not expect these uncertainties to affect our
qualitative conclusions. We assume that the accretion column reduces
the magnetic dipole moment as |μ| = |μi|(1 − Macc/Mc), with
Mc = 1.2 × 10−6 M� s−1 (Payne & Melatos 2004). This makes
the magnetic field strength to vary as

B15 = B15,i

R3
15,i

R3
15

(
1 − Macc

Mc

)
, (31)

where i denote the initial value of each quantity. The accreted material
drags the magnetic field lines by flux freezing as it moves from the
polar caps towards the equator. A detailed calculation of the magnetic
field structure and density of the mountain requires us to solve the
Grad–Shafranov equation for magnetic equilibria, which is beyond
the scope of this paper, but is outlined in the work by Melatos &
Priymak (2014). The field burial further facilitates the formation
of BHs by shutting the propeller effect and allowing fallback
accretion. The evolution of inclination angle can be calculated using
equation (22). Fig. 3 shows that for any random initial choice of
α, the magnetic axis always becomes perpendicular to the rotation
axis in about 10 ms. The kinks present at early times are an artefact
of grid resoluton. We choose the initial value of α = 5.◦7 and our
evolution at later stages is independent of this choice. By the time
GWs are emitted, α becomes 90◦ and emission reaches its peak
value. However, it is expected that in the first day of the magnetar, the
inclination angle decreases rapidly making the rotation and magnetic
axis aligned to each other (Şașmaz Muș et al. 2019; Çıkıntoğlu,
Şașmaz Muș & Ekși 2020). Using the definitions in equation (29),
we find expression for the GW luminosity

Lgw = 1.1 × 1042erg s−1M
−25/28
1.4 Ṁ

3/14
2 B

−10/7
15 R

237/28
15 P −6

1 , (32)

which changes with time as the magnetar’s spin evolves due to the
various processes. We calculate the evolution of the system accretes
and calculate sequences of fixed baryon mass models with RNS, to
obtain at each time-step the gravitational mass, radius and moment
of inertia of the star. We investigate a range of models with initial
spin period above the Keplerian breakup period corresponding to the
initial mass, which we calculate with the RNS code, and take as our

Figure 3. Evolution of the inclination angle α(t) for the magnetar formed
after CCSNe for initial values α0 ∈ (2.◦8, 5.◦7, 7.◦0, 8.◦6). The black solid line
denotes α = 90◦. Given any initial choice, α → 90◦ in t ≤ 10 ms.

Figure 4. The location of magnetospheric radius (rm), corotation radius (rc),
and the radius of the star (R) as a function of time for the magnetar formed
after CCSNe with initial mass M0 = 1.4 M� and P0 = 1.1 ms. When rm

becomes less than R, we set rm = R in our simulation.

reference model a magnetar with initial spin period P0 = 1.1 ms, as
in Ott et al. (2006).

Fig. 5 shows the evolution of spin due to the various torques.
We see that the magnetic dipole radiation carry away most of the
angular momentum as compared to the neutrino wind and GWs,
which results in an initial increase in the spin period. After t > tth,
the torque on the star due to accretion is positive and dominates over
other processes. At this stage, the condition rc > rm also remains
true. However, when rm becomes less than the radius of the star,
we set rm = R. The evolution of these various radii is shown in
Fig. 4, while in Fig. 5, we plot the contributions of the different
torques to the spin evolution of the star. Similar results are also
presented in Melatos & Priymak (2014) where the evolution of
angular frequency versus time is calculated for accretion mountain
with and without GWs due to hydromagnetic instabilities. In Fig. 6,
we show the GW luminosity and the characteristic strain for two
different choices P0. There is an initial decrease in both quantities,
which then gradually start increasing with time. Moreover, a higher
initial spin simply makes the star to emit GWs at a lower luminosity
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Figure 5. The spin evolution of the magnetar formed after CCSNe due to
the various individual torques and the overall behaviour represented by solid
red line. The period initially increases and then starts decreasing with time
as accretion wins over the combined effects of neutrino luminosity, dipolar
radiation, and the GW luminosity. At the end, the star collapses to a BH.

Figure 6. The GW luminsoity (top panel) and characteristic GW strain
(bottom panel) as a function of time for two different initial spin periods
of the magnetar formed from CCSNe. The red line shows the time at which
the magnetar collapses to a BH and the GW signal truncates.

before the collapse. Note that this behaviour is obtained considering
that the spin period and frequency are time-dependent unlike the
results given in Zhong et al. (2019) which shows a rise in hc and
Lgw till 4.3 s and a fall afterwards with time. We stress that our
model includes a fully relativistic rotating stellar model and full
time evolution of the system’s parameters. Our model is, thus, more
realistic and accurately represents the GW signal expected from this
source, shown by the black line at around ∼103 Hz in Fig. 7. On

Figure 7. Design sensitivities for the second and third generation GW
detectors to the characteristic strain. The purple, green, blue, and the red
lines represent the Einstein Telescope, Cosmic Explorer, advanced LIGO, and
advanced Virgo, respectively. The black line represent our GW signal from the
magnetar before its collapse to a BH. Also shown are populations of pulsars
(pink) and core-collapse supernovae (orange) with their spin frequencies.

Figure 8. Characteristic GW strain for the two different equation of states
(EOSs) in the case of CCSNe magnetar. Qualitatively, the behaviour is same
apart from the total duration of the signal and its peak value.

performing the same analysis for a NS with Mmax = 2 M�, we find
a survival time of 35 s and no qualitative change in our results, see
for example the behaviour of the GW strain in Fig. 8. Furthermore,
we have varied the initial mass of the NS from 1.25 − 1.8 M�. From
Fig. 9, we can see that lowering the mass produces a higher peak of
hc and a longer signal.

5.2 Remnant of BNS mergers

We have assumed so far that following the collapse of the progenitor,
there is enough mass available for accretion which increases the total
mass until the magnetar collapses to a BH. Let us now look into a
scenario in which the magnetar is created in a binary NS merger,
and the mass available for accretion, e.g. remnant mass ejected
in the merger, is only 0.2 M� (Radice et al. 2018; Bernuzzi 2020;
Bernuzzi et al. 2020; Radice, Bernuzzi & Perego 2020). Although
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Figure 9. Characteristic strain for different remnant masses of the magnetar
(formed from CCSNe), M0 = (1.25, 1, 4, 1.6, 1.8) M�. A lower mass pro-
genitor emits GW strain at a higher strength before its collapse and has longer
duration signal.

Figure 10. Spin evolution of the magnetar formed after the merger of a BNS
(for a model with η = 10) when the total mass available for accretion is
0.2 M�. The different lines represent the spin due to the various individual
torques while the red solid line shows the overall effect on the spin. The
accretion torque stops at 14 s when the star starts to spin-down due to angular
momentum carried away by the neutrino-wind, magnetic dipole radiation,
and emission of GWs.

our mass accretion rate Ṁ = 10−3ηt1/2 M�s−1 refers to supernova
disc accretion, none the less, we assume this form for BNS mergers,
despite tidal tails formed in a post-merger remnant will accrete back
on to the star at a different rate than that through relatively long-term
disc accretion. Since in this case, the mass available for accretion is
lower compared to the the supernovae disc-accretion, the evolution
is different because the accretion stops soon after the entire mass
is accreted and the magnetar spins down. The rate of accretion, in
principle, is also not known ,1 which allows us to make a study by
varying the parameter η to explore a range of values in Ṁ (Ruiz &
Shapiro 2017). The spin evolution for η = 10 is shown in Fig. 10.

1In private communication with Dr. Tim Dietrich.

Initially, the star loses angular momentum through the neutrino wind
and magnetic dipolar radiation until 7 s after which the accretion
torque makes it spin faster. In about 14 s, the total mass in the disc gets
accreted and the torque due to accretion becomes zero. At this point,
there is no positive torque on the magnetar and the star continues to
spin-down. The GW torque is weak compared to the other torques
and hence, does not influence the overall spin-period, nevertheless,
the emission is expected to continue, as the mountain is likely to be
stable on the dynamical time-scales we are studying here, although it
is likely to be disrupted on longer time-scales as the buried magnetic
field re-emerges (Vigelius & Melatos 2009a,b). We show results
upto 50 s, although the star survives for longer period of time. The
evolution of the spin and GW signal are also shown in Figs 11(a)
and (b), respectively for η = 10 (dashed line) and compared with
two other values, η = 5 (dash–dotted line) and η = 1 (solid line). We
conclude that the spin is mostly dominated by the dipole radiation
and the duration of accretion is prolonged on lowering η as expected,
while GW strain decreases when lowering η. The shape of the signal
can be understood by how the star spins, as an increase in the spin
period (decrease in frequency) causes the GW strain to decrease and
vice-versa. This signal also remains weaker when compared to the
previous case of core-collapsed supernova in which the magnetar
spins-up due to accretion.

Although we have assumed an upper limit of the mass available
for accretion by a remnant of BNS merger, it is possible that the mass
available is few orders of magnitude lower (i.e. 0.001 − 0.01 M�).
In this case, assuming the same Ṁ , the magnetar would survive
longer until its spin frequency decreases significantly due to dipole
radiation and it cannot hold upto its own mass before collapsing
to a BH.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have studied the evolution and GW emission of
a newly born millisecond magnetar having a high-accretion rate of
O(10−2)M�s−1 due to fall back accretion. We assume that accreted
matter is confined at the poles and creates a ‘mountain’ that leads to a
time varying quadrupole and GW emission (Zhong et al. 2019). If the
magnetar is formed due to the collapse of a massive star, depending
on its initial mass and rotation rate, survives for a time-scale of
order t ≈ 50 s before collapsing to a BH. If, on the other hand, it is
formed after the merger of a binary NS system, the magnetar will
survive much longer (although as it spins down, it can eventually
collapse to a BH; Ravi & Lasky 2014), but its GW emission will be
weaker.

The magnetar experiences different torques shortly after birth.
In particular, we include for the first time the angular momentum
carried away by magnetic dipole radiation and find it to be the main
spin-down mechanism at early times, while neutrino-wind and GWs
do not affect the spin period significantly, in comparison. We also
include the effect of magnetic field burial and of the evolution of the
inclination angle between the field and rotation axis. We find also that
the magnetic moment axis becomes orthogonal to the rotation axis
immediately after the star is born. Generally, a long-lived surviving
magnetar is expected to have a very small inclination angle (Lander &
Jones 2020). Note however that this can be due to secular evolution of
the inclination angle on much longer time-scales and the millisecond
magnetars that we examine in this paper are unlikely to be the
progenitors of the galactic magnetars, as in most cases our systems
collapse to a BH. Finally, we use precises relativistic and rapidly
rotating models of the magnetar, obtained with the numerical code
RNS (Stergioulas & Friedman 1995) to calculate the evolution of the
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Figure 11. (a) Spin evolution and (b) GW strains for three different values of η for our fiducial magnetar model, formed as a remnant of BNS merger, when the
total mass available for accretion is 0.2 M�. The initial spin-period is P0 = 1.1 ms. We show results upto 50 s when the magnetar survives and not yet collapsed
to a BH.

gravitational mass, radius and moment of inertia of the star as it
accretes matter from the surrounding disc.

Overall, we find that if the magnetar is formed after the collapse
of a massive star, there is enough mass in the torus that the accretion
torque dominates, spinning up the star. As matter is accreted, the GW
strain increases with time (mainly due to the increasing frequency of
the star), until the star exceeds the maximum mass for its EoS and
collapses to a BH. We expect a ‘burst’ signal with an estimated GW
strain hc ∼ 10−24−10−23 for objects at a distance of 1 Mpc, making
them potential targets for the third-generation detectors such as the
Einstein Telescope and the Cosmic Explorer, although they may be
detected by Advanced LIGO and Virgo at design sensitivity should
they occur at a distance of a few hundred kpc (Abbott et al. 2019c).
Sensitivity curves to the characteristic strain for these detectors are
shown in Fig. 7. We have further investigated the scenario in which
the magnetar is formed as the remnant of a BNS merger. In this
case, the mass available for accretion is likely to not exceed 0.2 M�
(Bernuzzi 2020). We have shown that, in this case, the combined
effects of different processes slows down the spin period also causing
the GW strain to decrease with time. In this case, the star does not
collapse immediately and is likely to survive for 102−103 s before
it collapses to a BH, if its initial mass exceeds the maximum mass
for a non-rotating star (Ravi & Lasky 2014), leading to a signal that
may be visible after the merger by next-generation detectors (Abbott
et al. 2017). Sarin et al. (2018) also derived waveform model for
millisecond magnetars and showed that the X-ray afterglow can be
used to improve search sensitivity by up to 50 per cent and derived
horizon distances. The birth-rate of millisecond magnetars associated
with superluminous supernovae is 40 Gpc−3yr−1 while those with
LGRBs is 140 Gpc−3yr−1 (Nicholl et al. 2017). BNS merger rates lie
between 110 − 3840 Gpc−3yr−1 (Abbott et al. 2019a). An estimate
that 10 per cent of BNS mergers give birth to millisecond magnetars
and the given uncertainties in the formation channels, an average
rate of 10 − 100 Gpc−3yr−1 was reported by Nicholl et al. (2017).
Considering a volume of 1Mpc−3, the event rate for this type of
GW radiation is less compared to binary NS or binary BH mergers.
Finally, we reiterate that the results presented in this paper are model-
dependent and carry with them many uncertainties. More work is,
thus, needed to explore the different model assumptions that drive the
evolution of the system and produce more robust numerical results.
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Conclusions and Future directions

CHAPTER 6

"However difficult life may seem, there
is always something you can do, and

succeed at. It matter that you don’t just
give up”

-Stephen Hawking
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Magnetic fields in isolated NSs are responsible for an array of activity from flares on the
surface to gamma-ray bursts and fast radio bursts. This thesis examines several magnetic field
configurations in isolated NSs and their impact on their evolution.

Chapter 2 investigated the strength of the toroidal field within the star using nonlinear
MHD simulations. Two different initial conditions were explored: first, a purely poloidal field;
and second, a mixed poloidal-toroidal field with a stronger toroidal component initially. Our
fiducial NS was modeled with a barotropic equation of state where P ∝ ρ2. We observed that
a purely poloidal initial field is unstable and our final magnetic field, after 40 ms of evolution,
emerged in pseudo-equilibrium forming a ‘twisted torus’ geometry with the toroidal compo-
nent having a small fraction of the total magnetic energy. The stronger toroidal field setup after
40 ms settled to a configuration contributing 10-20% to the total magnetic energy. These config-
urations, however, were not in strict-equilibrium, since the instability caused turbulence, which
led to the development of an inverse cascade of magnetic helicity. Therefore, the final field
configuration was determined by the non-linear saturation of the instability, rather than being
stationary. The average energy of the poloidal and toroidal components remained relatively
stable in our simulations, and a complex multipolar structure emerged at the NS surface, while
the magnetic field at the outer boundary is dipolar.

To better understand the field geometry at late times, long-term GRMHD simulations were
performed in chapter 3 using the code Athena++ evolving the magnetic field up to 880 ms
with increased computational resolution. Two main issues were addressed in this study when
comparing different initial conditions in chapter 2. First, the toroidal vs poloidal dominated
simulations behaved differently. The stronger toroidal setup developed a significant poloidal
component with 20% energy, but this poloidal field did not become the dominant component at
the end of the simulation. On the other hand, the purely poloidal setup did not develop such a
large toroidal component. No evidence of equilibrium was found in the final field configuration
and the toroidal field was reduced to 1 % of the total magnetic energy. This is likely due to the
outflow boundary conditions implemented in this work when compared to a fixed boundary
in chapter 2. In the interior of the star, more than 90% of the magnetic energy was converted
to heat. Our models consisted of a fluid star without the presence of solid crystalline crust.
Even though some magnetic flux escapes as Poything flux and is radiated away, a more realistic
model is needed to better understand electromagnetic emission from NSs. The growth times of
various azimuthal oscillation modes were also calculated. They have important implications for
astroseismology and the study of GW radiation from isolated NSs. Additionally, based on our
MHD simulations in chapter 2, the hypothesis that turbulence plays a significant role in quasi
equilibrium was explored. An analysis of the spectra in our higher resolution setups revealed
that in most cases we do not see turbulence at small scales, but rather a noisy velocity field
inside the star. However, this needs to be studied in greater detail to fully understand whether
turbulence plays an important role in the evolution of magnetic field to its quasi-stationary
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state.

Our results on the magnetic field are only applicable to a period just after the birth of NSs.
In the initial collapse of a massive star, the core is opaque to neutrinos and is not in chemical
equilibrium. As the star cools, however, all the neutrinos escape and the star essentially loses all
its entropy and reaches equilibrium. It will be interesting to perform simulations at times when
the crust has formed and include the effects of stratification, and find out how it influences
the evolution of the toroidal field which otherwise has the effect of floating within the star
because of buoyancy. This would require an understanding of when, after the birth of the PNS,
stratification becomes relevant. It is also important to observe the effects of rotation on the
magnetic field which may affect the growth of internal modes and the toroidal field. Further,
an investigation of whether dynamos operate following the birth of PNSs will be intriguing.

While the aforementioned results come from time-evolving systems, equilibrium solutions
from the Grad-Shafranov equation were obtained for a normal matter crust in Hall/MHD equi-
librium and a superconducting core NS. A new algorithm was presented in in chapter 4 to solve
the nonlinear Grad-Shafranov equation based on the Gauss-Siedel method and linearizing the
source term which improved stability and convergence of our solutions. Our results indicated
that the toroidal field is confined in the crust, accounting for 5% of the total magnetic energy.
These models are applicable for the standard pulsar population in which we can use them as
a background for more realistic vortex pinning calculations and understand pulsar glitch phe-
nomenona. Magnetic deformations in the NS crust were also measured by calculating the ellip-
ticity, which turned out to be 10−11 for an average B field strength of 1012 G. A higher ellipticity
corresponds to a stronger GW amplitude emitted by a rotating NS. Thus, we conclude that an
axisymmetric magnetic field in equilibrium does not deform the NS sufficiently for the current
generation of detectors to observe GWs from pulsars.

Lastly, chapter 5 presented a scenario in which a newly born millisecond magnetar forms
accretion columns at its magnetic poles. This allows the magnetar to possess a large quadrupole
moment and emit GWs. We examined the spin evolution of the magnetar under the influence of
accretion torque, dipole radiation, neutrino wind, and GWs. In the early stages, the spin period
is mostly affected by dipole radiation, but later on, accretion causes the star to spin up rapidly.
A magnetar formed after the collapse of a massive star can accrete up to 1 M� before collapsing
to a black hole on the order of 50 s. For an object at 1 Mpc, the GW strain is hc ∼ 10−23 at
kHz frequencies, which makes it a good candidate for next-generation ground-based detectors.
On the other hand, a magnetar formed by a binary neutron star merger accretes at most 0.2
M� and emits GWs with a strain of hc ∼ 10−24. Such a magnetar may survive for much longer
times, and may possibly be associated with the X-ray plateau that has been observed in the light
curves of short gamma-ray bursts.

Calculating braking indices (n) of radio pulsars is an important tool to conclude whether
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the external field is growing (n < 3) or decaying (n > 3). There are few sources observed, for e.g.
PSR 1734-3333 and PSR B0540-69 with n ∼ 0.9 which would likely move up the P− Ṗ diagram
and end up in the magnetar regime. On a timescale of 103 ∼ 104 years, fallback accretion is
capable of burying NS magnetic fields which then starts diffusing out. Due to this process, the
star’s external magnetic field can increase and it may start to operate as a radio-pulsar. Due the
typical behavior of these sources, it will be interesting to study how the external magnetic field
grows and whether fall-back accretion plays a role.

Studying the evolution of the magnetic field requires precise measurements of the current
field structure and value. By modeling pulse profiles of magnetars and millisecond pulsars, in-
formation about the field topology can be obtained; in rare cases, phase-resolved spectroscopy
can provide this information. [CM11a; CM11b] used Stokes tomography to constrain the mag-
netic field of ordinary pulsars that subsequently turned out to be dipolar. A useful tool for
probing the structure of NS magnetospheres are polarisation measurements. In this regard, the
rotating vector model (RVM) [RC69] plays a pivotal role in pulsar theory. It gives the position
angle (PA) of the electric field as a function of the pulse phase (φ) and shows that the plane
of linear polarization sweeps a characteristic S-shaped swing over a single pulse period. This
is a characteristic of dipolar magnetic field in the external magnetosphere of ordinary pulsars.
Although the RVM model successfully explains pulse profiles of many pulsars qualitatively
(e.g. [MTH75]), observations of millisecond pulsars show flat, distorted, or even random PA
profiles hinting towards non-dipolar configurations [Gen+18]. Thus, accurately modeling the
radio polarisation with a multipolar magnetic field, e.g. for the pulsar PSR J0031, can constrain
its magnetic field geometry.

Along with Yajie Yuan and Alexander Philippov, I have obtained preliminary results on
reproducing the polarisation of the millisecond pulsar PSR J0030 with a multipolar force-free
magnetospheric solution. It allowed us to constrain the height from which the radio emission
is produced. This work is still under progress and is not part of this thesis.
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import numpy as np
import pylab
from scipy . i n t e g r a t e import odeint
from m a t p l o t l i b import pyplot as p l t
from scipy . cons tants import pi , G, c , hbar , m_n

# def ine various cons tants
Msun = 1.98892 e30 # s o l a r mass
gamma = 1 .663# power law index 1#1 .663
#gamma = np . l i n s p a c e ( 1 . 5 , 1 . 6 8 , 1 0 )
K = ( 3 . 0 * pi * * 2 ) * * ( 2 . 0 / 3 . 0 ) * hbar * * 2 / ( 5 . 0 *m_n * * ( 8 . 0 / 3 . 0 ) ) # constant K in eos
gamma1 = [ 3 . 4 ] #power law index 2 # 3 . 4
#gamma1 = [ 2 . 6 5 ] #power law index 2 # 3 . 4
#gamma1 = np . l i n s p a c e ( 2 . , 3 . , 5 )
rho1 = 4 . 5 e17 # c r i t i c a l dens i ty # 4 . 5 e17
#rho1 = np . l i n s p a c e (1 e17 , 1 e18 , 1 0 )
Rmax = 20000
n = 10000

# get pressure from densi ty using EOS
def eos ( rho , rho1 , gamma, gamma1 ) :

p1 = K* rho1 * *gamma
K1 = p1/rho1 * *gamma1
i f rho < rho1 : re turn K* rho * *gamma
e l s e : re turn K1* rho * *gamma1

# get dens i ty from pressure i n v e r t i n g EOS
def inveos ( p , rho1 , gamma, gamma1 ) :

p1 = K* rho1 * *gamma
K1 = p1/rho1 * *gamma1
i f p < p1 : re turn ( p/K) * * ( 1 . 0 /gamma)
e l s e : re turn ( p/K1 ) * * ( 1 . / gamma1)

def tov_p ( p ,m, r , rho ) :
dpdr = −G* ( rho + p/c * * 2 ) * (m + 4 . 0 * pi * r * * 3 * p/c * * 2 )
dpdr = dpdr/( r * ( r − 2 . 0 *G*m/c * * 2 ) )
re turn dpdr

def tov_m ( r , rho ) :
dmdr = 4 . 0 * pi * r * * 2 * rho
return dmdr

# solve the TOV equation using Euler forward method
def tovso lve_eul1 ( rho_c , r , m, p , rho1 , gamma, gamma1 ) :

i = 0
m[ 0 ] = 4 . 0 * pi * r [ 0 ] * * 3 * rho_c /3.
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p [ 0 ] = eos ( rho_c , rho1 , gamma, gamma1)
while p [ i ] > 0 . 0 and i < len ( r ) −1 :

dr = r [ i +1]− r [ i ]
rho = inveos ( p [ i ] , rho1 , gamma, gamma1)
dpdr = −G* ( rho + p [ i ]/ c * * 2 ) * (m[ i ] + 4 . 0 * pi * r [ i ] * * 3 * p [ i ]/ c * * 2 )
dpdr = dpdr/( r [ i ] * ( r [ i ] − 2 . 0 *G*m[ i ]/ c * * 2 ) )
dmdr = 4 . 0 * pi * r [ i ] * * 2 * rho
p [ i +1] = p [ i ] + dr * dpdr
m[ i +1] = m[ i ] + dr *dmdr
i = i +1

return m, p , r

# solve the TOV equation Runge−Kutta 2 method
def tovsolve_rk2 ( rho_c , r , m, p , rho1 , gamma, gamma1 ) :

i = 0
m[ 0 ] = 4 . 0 * pi * r [ 0 ] * * 3 * rho_c /3.
p [ 0 ] = eos ( rho_c , rho1 , gamma, gamma1)
rho_r = [ ]
while p [ i ] > 0 . 0 and i < len ( r ) −1 :

dr = r [ i +1]− r [ i ]
rho = inveos ( p [ i ] , rho1 , gamma, gamma1)
rho_r . append ( rho )
dpdr = tov_p ( p [ i ] ,m[ i ] , r [ i ] , rho )
dmdr = tov_m ( r [ i ] , rho )
p_b = p [ i ] + dr * dpdr
m_b = m[ i ] + dr *dmdr
p [ i +1] = p [ i ] + dr * ( dpdr + tov_p ( p_b , m[ i ] , r [ i +1] , rho ) ) / 2 .
m[ i +1] = m[ i ] + dr * ( dmdr + tov_m ( r [ i +1] , rho ) ) / 2 .
i = i +1

return m, p , r , np . array ( rho_r )

# funct ion to p l o t the MASS_RADIUS Curve
def p l o t s ( rho1 , gamma, gamma1 ) :

I _ r = [ ]
rhoc = pylab . logspace ( 1 7 . 0 , 2 0 . , 1 0 0 0 ) # logspace range of c e n t r a l d e n s i t i e s
f o r j in range ( len (gamma1 ) ) :

M, R = [ ] , [ ]
f o r i in range ( len ( rhoc ) ) :

r = np . l i n s p a c e ( 1 0 . 0 , Rmax, n )
m = np . zeros ( n )
p = np . zeros ( n )
mass , press , rad , den = tovsolve_rk2 ( rhoc [ i ] , r , m, p , rho1 , gamma, gamma1[ j ] )
#mass , press , rad = tovsolve_eul1 ( rhoc [ i ] , r , m, p , rho1 , gamma, gamma1[ j ] )
indx = np . where ( press >0)
mass = mass [ indx ]
rad = rad [ indx ]
den = den [ indx ]
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M. append ( mass [ −1]/Msun)
R . append ( rad [ − 1 ] / 1 0 0 0 . )
# i f i >30:
I _ r . append ( np . trapz ( rad * * 4 * den , x=rad ) * 8 * np . pi /3.0/mass [ −1]/ rad [ − 1 ] * * 2 )

p l t . p l o t (R , M, l a b e l ="$\Gamma_0=$"+ s t r ( round (gamma, 2 ) ) + \
" , $\Gamma_1=$"+ s t r ( round (gamma1[ j ] , 2 ) ) )

np . s a v e t x t ( ’ Mass_test . t x t ’ ,M)
np . s a v e t x t ( ’ Rad_test . t x t ’ , R)
#np . s a v e t x t ( ’ t x t ’ )
p l t . x l a b e l ( ’ Radius R(km) ’ , s i z e =15)
p l t . y l a b e l ( r ’ Mass M( $\rm M_\odot$ ) ’ , s i z e =15)
p l t . axhl ine ( 1 . 4 , c = ’ black ’ , l i n e s t y l e = ’ − − ’)
p l t . legend ( l o c = ’ best ’ )
p l t . gr id ( )
p l t . show ( )
re turn np . array ( I _ r )

I r = p l o t s ( rho1 , gamma, gamma1)
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