
MNRAS 441, 1662–1668 (2014) doi:10.1093/mnras/stu535

A new mechanism for saturating unstable r modes in neutron stars
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ABSTRACT
We consider a new mechanism for damping the oscillations of a mature neutron star. The new
dissipation channel arises if superfluid vortices are forced to cut through superconducting flux
tubes. This mechanism is interesting because the oscillation modes need to exceed a critical
amplitude in order for it to operate. Once it acts, the effect is very strong (and non-linear)
leading to efficient damping. The upshot of this is that modes are unlikely to ever evolve far
beyond the critical amplitude. We consider the effect of this new dissipation channel on the
r modes, which may be driven unstable by the emission of gravitational waves. Our estimates
show that the flux tube cutting leads to a saturation threshold for the instability that can be
smaller than that of other proposed mechanisms. This suggests that the idea may be of direct
astrophysical relevance.
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1 C O N T E X T

Neutron stars represent a hands-off laboratory for physics under
extreme conditions, and may ultimately provide a complement to
information gleaned from particle colliders like the Large Hadron
Collider. While such terrestrial experiments probe hot plasmas at
relatively low densities, the core of a neutron star requires an un-
derstanding of the cold dense part of the quantum chromodynamics
phase diagram (Alford et al. 2008). To gain access to this infor-
mation, we need to accurately model how a realistic neutron star
interior connects to its exterior and affects observable features.

A commonly considered example involves the cooling of the
star. Which processes lead to the star cooling down and how does
heat flow from the interior to the surface? By matching models
of possible scenarios to X-ray data for isolated neutron stars, we
may be able to constrain the theory. An excellent recent example of
this is provided by the observed real-time cooling of the remnant
in Cassiopeia A, which has provided the first true constraint on
the superfluid transition temperature for the star’s core (Page et al.
2011; Shternin et al. 2011).

Another aspect of the problem relates to the dynamics of the
star’s complex core. A neutron star undergoes a number of changes
as it evolves and provided that these are dramatic enough, various
stellar oscillation modes may be excited. These could, in turn, affect
the emission pattern of the star (either in X-ray or radio) provided
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that the interior fluid motion has a significant effect on the star’s
magnetosphere. This has led to the development of neutron star
asteroseismology, where the aim is to use future observations to
probe the star’s interior in the same way that helioseismologists
have successfully constrained the interior physics on the Sun.

A breakthrough in this area came with the observations of quasi-
periodic oscillations in the X-ray tails of large magnetar flares
(Strohmayer & Watts 2005). Early, relatively naive, models sug-
gested that the observed oscillations could be identified with various
elastic oscillation modes of the star’s crust (Piro 2005; Samuelsson
& Andersson 2007). More recent work has attempted, not yet com-
pletely successfully, to account for the anticipated strong magnetic
field effects (Colaiuda & Kokkotas 2012; Gabler et al. 2013). This
is a very difficult problem, but there has been clear progress in the
last few years.

Since neutron stars are distant, one would expect their oscilla-
tions to be excited to detectable amplitudes only under exceptional
circumstances. Such events would be rare, like the magnetar flares.
However, there is an exception to this rule. Modes of oscillation may
become unstable at various instances during the star’s life. Provided
an unstable mode is allowed to grow large enough, such instabili-
ties may lead to a detectable signal and may also have an indirect
effect on the star’s evolution (say of the spin). A number of possible
instabilities have been discussed in the literature. As far as ma-
ture neutron stars are concerned, the most promising ideas involve
the Coriolis-driven r modes, which somewhat counter-intuitively
may become unstable due to the gravitational waves they emit
(Andersson 1998; Friedman & Morsink 1998). This has stimulated
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a large body of work on the nature of the r modes, the gravitational
wave signal they would be associated with and the physics that may
affect the growth of the instability. A number of possible damp-
ing and saturation mechanisms have been suggested over the last
15 years or so (Bildsten & Ushomirsky 2000; Rezzolla, Lamb &
Shapiro 2000; Arras et al. 2003; Glampedakis & Andersson 2006;
Nayyar & Owen 2006; Bondarescu, Teukolsky & Wasserman 2007,
2009; Haskell, Andersson & Passamonti 2009; Andersson, Haskell
& Comer 2010; Haskell & Andersson 2010; Alford, Mahmoodifar
& Schwenzer 2012; Gusakov, Chugunov & Kantor 2014). Nev-
ertheless, the conclusions from state-of-the-art modelling remain
relatively unaffected. The r-mode instability is likely to set a spin-
threshold for neutron stars. This is an important observation since
the fastest observed radio pulsars and accreting neutron stars spin
well below the theoretical break-up limit (Chakrabarty et al. 2003;
Patruno 2010). A mechanism is required to explain this, and the
r-mode instability appears to fit the bill. Furthermore, a recent anal-
ysis of the problem has shown that the theoretical predictions for
the r-mode instability window for a ‘minimal’ neutron star model,
which does not include superfluity or the appearance of exotic par-
ticles (such as hyperons or deconfined quarks) in the core, is not
consistent with current X-ray observations of low-mass X-ray bina-
ries (LMXBs; Ho, Andersson & Haskell 2011; Haskell, Degenaar
& Ho 2012). There is, therefore, a clear need to include additional
effects in our modelling, such as superfluity and superconductivity
in the core of the star.

This paper introduces a new mechanism to the r-mode scenario.
The argument involves the star’s core and builds on the fact that
there is likely to be a region where superfluid neutron vortices co-
exist with superconducting protons. As has been argued in different
contexts, such a region may have decisive impact on the star’s
dynamics. Due to the interaction between superfluid vortices and
magnetic flux tubes, any changes in the star’s vorticity (the bulk
rotation or the fluid motion associated with an oscillation mode)
may be coupled to the magnetic field. This suggests two scenarios.
In the first, the vortices become pinned to the, more plentiful, flux
tubes. In the second scenario, the vortices can cut through the flux
tubes, but at a cost. This latter process is expected to be highly
dissipative. It is this possibility that we explore in this paper.

2 BRIEF SUMMARY

The fact that superfluid dynamics is damped by a mutual friction
arising from the interaction between quantized vortices and other
components in the mixture (typically, phonons in laboratory studies
of He4 and electrons in a neutron star core) is well established.
The main idea dates back to work by Hall and Vinen (Hall & Vinen
1956). They introduced a linear friction between superfluid (helium)
vortices and the ‘normal’ component (represented by phonons).
Balancing this force by the Magnus force that would drive the
vortices to move along with the superfluid condensate in the absence
of friction, they deduced the functional form for the force, Fmf in the
following, that couples the two ‘fluid’ components in the system:
the superfluid condensate and the normal component.

In the standard picture, the vortex friction, f D, is taken to be
linear in the relative velocity u between the vortices and the normal
fluid:

f D = ρnκRu, (1)

where ρn and κ are, respectively, the density of the superfluid and the
quantum of circulation associated with each vortex. The dimension-
less friction coefficient, R, is assumed to be velocity independent.

The force balance that controls the motion of individual vortices
leads to a linear algebraic relation u = u(w), where w is the rela-
tive velocity between the condensate and the normal fluid. Inverting
this relation, one finds that the relative fluid flow is damped accord-
ing to

∂tw + {· · ·} = − 1

xpρn
Fmf, (2)

where Fmf is obtained from f D by using the inferred u(w) relation
and combining the effect for an array of vortices. The brackets
in equation (2) represent fluid terms that are not relevant to this
discussion and xp = ρp/ρ is the normal fluid fraction (ρ = ρp + ρn

is the total density).
In the case of superfluid neutron star dynamics, one can show that

a similar relation applies provided that ρn and ρp are taken to be
the neutron and proton densities. Hence, a relation like equation (2)
will affect the relative motion associated with any global oscillation
mode. This means that we can extract a characteristic mutual friction
dissipation time-scale in terms of the mode energy Emode (obtained
as a volume integral of the inviscid velocity field) and the rate of
work Ėmf done by Fmf. Provided the damping rate is slow compared
to the dynamics of the mode, the time-scale is well approximated
by

τmf = 2Emode

|Ėmf |
. (3)

This time-scale can be very short if the mode under consideration
has a significant counter-moving component. Detailed work has
shown that this is the case for the fundamental f mode, and as
a result the gravitational-wave-driven instability of this mode is
severely suppressed in a superfluid star (Lindblom & Mendell 1995;
Andersson, Glampedakis & Haskell 2009). The conclusion for the
Coriolis-restored r mode is different. The r modes are affected by
mutual friction to a much lesser extent, essentially because they
are mainly horizontal (Lee & Yoshida 2003; Haskell, Andersson &
Passamonti 2009; Passamonti, Haskell & Andersson 2009).

The mechanism we consider in this paper is subtly different from
the Hall–Vinen model in that the friction force turns out to be non-
linear in the relative flow u. This means that the inferred mode
damping, still expressed in terms of an R coefficient, will be veloc-
ity dependent. Whenever this is the case, the problem has interesting
new aspects. Most importantly, the equation for the relative motion
(equation 2) becomes non-linear, which means that the mutual fric-
tion may be able to prevent a given oscillation mode from growing
beyond some threshold amplitude. That is, in addition to damp-
ing the mode, the mutual friction may lead to the saturation of an
instability.

In the following section, we outline the derivation of the new
friction force. The steps involved essentially repeat the analysis of
Link (2003). Having done this, we will discuss the implications
for the r-mode instability. Readers that are mainly interested in the
astrophysical results (or may already be familiar with the flux tube
cutting mechanism) can proceed straight to Section 4.

3 T H E N E W FR I C T I O N M E C H A N I S M

3.1 Vortex–flux tube pinning

The interaction between superfluid neutron vortices and supercon-
ducting proton flux tubes in the outer core of a neutron star is thought
to be key to the evolution of the system, possibly linking changes in
spin to the evolution of the magnetic field. An important ingredient
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in this problem is the energy cost associated with superfluid vor-
tices, which are expected to be magnetized due to the entrainment
effect (Alpar, Langer & Sauls 1988), cutting through superconduct-
ing flux tubes. As a rough estimate, one may consider the energy
associated with superposition of a neutron vortex and a proton flux
tube. This leads to what we will refer to as the pinning energy, fpin,
acting on each moving vortex. Ignoring geometrical factors related
to direction dependence, the force per intersection is of the order of
(Ruderman, Zhu & Chen 1998)

Fint ≈ Eint

�∗
= �2

∗BnBp, (4)

where the London penetration length �∗ (which is of the order
of few tens of fm) represents the typical size of the overlap region,
while Bn and Bp are the magnetic fields carried by individual vortices
and flux tubes, respectively. The force per unit length of a given
vortex is then

fpin ≈ Fint

dp
, (5)

where

dp ≈
(

B

φ0

)1/2

≈ 3 × 103B
−1/2
12 fm. (6)

Here, B (and B12 = B/1012 G) is the macroscopic core magnetic
field, φ0 is the quantum of magnetic flux and dp is the typical
distance separating the flux tubes.

This estimate allows us to quantify how easy it is for a vortex to
cut through the array of flux tubes in a neutron star core. A necessary
condition is that vortices do not pin to the flux tubes, which means
that the Magnus force must exceed the pinning force. To make this
quantitative, let us represent the vortex and flux tube velocities by un

and up, respectively. Meanwhile, the macroscopic flows (that enter
the averaged two-fluid hydrodynamics) are given by vn (for the
superfluid neutrons) and vp (for the proton condensate). If a vortex
is pinned to the flux tubes, then we expect to have un = up ≈ vp.
Basically, it is natural to assume that the flux tubes move with
the proton condensate. This means that the velocity difference that
enters into the Magnus force is approximated by un − vn ≈ vp −
vn ≡ w. Given this, we can obtain a minimum velocity lag, wpin,
between the neutron and proton fluids below which vortex pinning
is likely to take place (Link 2003):

wpin ≈ fpin

ρnκ
≈ 1.5 × 104 B

1/2
12 cm s−1. (7)

We note here that in this expression (and the ones hereafter) only the
dependence with respect to the magnetic field is shown while the
fluid density has been set to ρ = 1014 g cm−3, a value representative
of a neutron star outer core.

The estimate (7) will be of central importance later. The key point
is that, as long as the relative velocity w between the two fluids is
below wpin, the vortices will not be able to move relative to the flux
tubes. Hence, the damping mechanism that we will now discuss will
not act.

3.2 Kelvin-wave damping

Once the pinning can no longer balance the Magnus force and the
vortices start moving, they must cut through the flux tube array to
keep going. This may be a highly dissipative process due to the
excitation of Kelvin waves along the vortex. This point was first
argued by Epstein & Baym (1992) for vortices moving through

the lattice of nuclei in the star’s crust, and later adapted by Link
(2003) to the conditions in the core that we discuss here. In an
effective theory, the waves on the vortex can be treated as particles,
‘kelvons’, with effective mass μ and energy Ek = �

2k2/2μ, where
k is the associated wavenumber. If we let

u = up − un (8)

be the relative vortex–flux tube velocity, then the interaction at each
intersection lasts a time interval tint ∼ �∗/u. The kelvon energy
can be estimated by using this characteristic time-scale in the stan-
dard formula for an oscillator; Ek ≈ �/tint (ultimately originating
from the uncertainty principle). This then leads to the characteristic
wavenumber

k ≈
(

2μ

��∗
u

)1/2

≡ 1

�∗

(
u

v�

)1/2

. (9)

Given that the characteristic velocity is

v� = �/2μ�∗ ≈ 109 cm s−1, (10)

we should typically have k�∗ � 1 in the case of neutron star
dynamics. A more sophisticated analysis, leading to the same final
estimate, can be found in Link (2003).

In order to calculate a dissipation rate, we need the kelvons pro-
duced at different intersections of the same vortex to add incoher-
ently. This requires kdp � 1, which in turn leads to a lower limit
for the relative vortex–flux tube velocity:

ulow ≈ 6.5 × 105 B12 cm s−1. (11)

In order for the mechanism we discuss to operate efficiently, we
need u � ulow. Note that ulow > wpin when B � 108 G or so. The
estimates we present are thus still consistent for the case of LMXBs,
as long as the internal magnetic field is not much stronger than the
inferred exterior dipolar magnetic field strength (which is inferred to
be ≈108 G). If we want to consider significantly stronger magnetic
fields, we would need to first understand the behaviour at velocities
in the range between wpin and ulow better.

The energy released at each vortex/flux tube intersection was
determined by Link (2003). The result is

�E = 2

π

F 2
int

ρnκ
(v�u)−1/2 . (12)

This suggests that the energy loss rate (per unit volume) is

Ėcut = Nnu

d2
p

�E, (13)

where Nn is the number of vortices per unit area. Alternatively, we
can use the fact that (ignoring entrainment, which only affects the
estimate by a factor of order unity; Andersson, Sidery & Comer
2006) 2	n ≈ Nnκ , to get

Ėcut = 4	n

πρnκ2
f 2

pin

(
u

v�

)1/2

. (14)

We can relate the rate (equation 14) to the work done by a drag
force (exerted on a unit length vortex segment) of the general form

f D = ρnκRu (15)

with a velocity-dependent coefficient R = R(u). From this, we can
construct a hydrodynamical mutual friction force density exerted
on the neutron fluid by averaging over the vortex array,

Fmf = Nn f D → Fmf = 2	nρnR(u)u. (16)
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Then, from

Ėcut = Fmf · u, (17)

we infer that

R = R0

( v�

u

)3/2
(18)

with

R0 = 2

π

(
fpin

ρnκv�

)2

→ R0 ≈ 1.4 × 10−10 B12. (19)

The key observation here is that, as soon as the vortices start to
move relative to the flux tubes they are likely to be prevented by
a very strong friction. This is obvious since wpin and ulow are both
going to be much smaller than v�. The lower the relative velocity,
the stronger this damping is. In practice, this means that the vortices
are unlikely to be able to keep moving and the system will be driven
back towards pinning.

4 r- M O D E DA M P I N G A N D S AT U R AT I O N

In the previous section, we outlined the argument that leads to
vortices cutting though flux tubes being a highly dissipative process.
This argument is not original, but we believe this is the first time
that the discussion has been framed in the context of a mutual
friction force. The final result (equation 16) allows us to consider
the mechanism in a range of relevant contexts. For example, once the
dissipation due to vortex–flux tube cutting is expressed as a mutual
friction force, we can adapt it for the two-fluid hydrodynamics
model used to model neutron star oscillations and instabilities. As
an illustration of this analysis, let us try to estimate what the effect
on the gravitational-wave-driven r-mode instability may be.

In order to make use of the deduced mutual friction force in
a problem involving the standard two-fluid model, we first of all
need to replace the dependence on the relative velocity, u, between
vortices and flux tubes with the relative velocity, w, between the
two macroscopic fluid components. The standard approach to this,
pioneered by Hall and Vinen more than half a century ago (Hall &
Vinen 1956), is to first balance the vortex force (equation 16) by the
Magnus force that acts on the vortices and invert the relation to get
an expression for u = u(w). The steps involved are straightforward
in the case where the friction coefficient R is constant. When R
is velocity dependent, the analysis becomes slightly more involved
and one should in principle consider the full problem, including
relative flows in the background. However, in the present case,
we can bypass this problem by making a couple of (potentially
debatable) assumptions.

First of all, on dynamical time-scales, the flux tubes can be as-
sumed to move with the protons, which means that up ≈ vp. It is not
quite so easy to justify a similar relation between the neutron fluid
and vortex velocities. To make progress, we nevertheless assume
that un ≈ vn. This would be true for free vortices and it might be
a reasonable approximation in the case of vortices moving at high
speed through the flux tube array. This is, in fact, the approximation
underpinning the model in Section 3 so it make sense to make this
approximation here as well. With these assumptions, we simply
have u = w.

Now, from detailed two-fluid calculations (Haskell et al. 2009),
we know that unstable r modes have a particular relative velocity
contribution. In general, this contribution is position dependent,
due to the density dependence of the superfluid pairing gaps. In
order to keep things simple, we will nevertheless assume that this

contribution is proportional to the average velocity perturbation, v.
This leads to

w = λv → w ≈ λα
( r

R

)2
	R, (20)

where α is the usual (dimensionless) r-mode amplitude (e.g. Owen
et al. 1998). We know from actual mode calculations that the
counter-moving contribution enters at higher order in the slow-
rotation expansion such that

λ = λ0

(
	

	K

)2

, (21)

where 	K is the break-up frequency and λ0 is taken to be a spin-
independent factor.

If the mode has large enough amplitude to force vortices through
flux tubes, then w � wpin which means that

R � 2.5 × 10−3 B
1/4
12 . (22)

It is worth noting that the deduced upper limit, depending on the
magnetic field strength, is about a factor of ∼10–100 larger than
the drag coefficient associated with the standard mutual friction
mechanism: scattering of electrons by vortices (Alpar et al. 1988;
Andersson et al. 2006). Note that a direct comparison to such a
mechanism can, however, be misleading. In our case, the drag co-
efficient is velocity dependent (thus introducing a different velocity
dependence in the damping integrals) and, furthermore, we will
be calculating the r-mode damping time-scale using the eigenfunc-
tions and counter-moving velocity amplitudes obtained in the strong
pinning limit.

The damping time-scale can be estimated in the usual way (see
e.g. Andersson & Kokkotas 2001) by making use of equation (3).
This argument involves the r-mode energy

Emode ≈ 1

2
α2	2 MR2J̃ , where J̃ = 1

MR4

∫ R

0
ρr6dr,

(23)

which leads to J̃ = 0.016 for an n = 1 polytrope (Owen et al. 1998).
The mutual friction damping rate is given by

Ėmf =
∫

ĖcutdV (24)

and our estimates lead to

Ėmf ≈ 4	

πκ2

∫
f 2

pin

ρ

(
w

v�

)1/2

dV . (25)

That is,

Ėmf ≈ 8	5/2

πνK

f 2
pin

κ2

(
αλ0

Rv�

)1/2 ∫ R

Rin

r3

ρ
dr, (26)

where νK = 	K/2π. We have assumed that flux tube cutting takes
place in the outer part of the stellar core, in the region Rin < r � R
(where the coexistence of a neutron superfluid and a proton super-
conductor is likely) and that λ0 and ρ are approximately uniform.

Through these arguments, we obtain an order of magnitude es-
timate for the mutual friction damping time-scale (using νK ≈
1233 Hz for canonical stellar parameters M = 1.4 M
, R = 106 cm)
as

τmf ≈ 6 × 1010λ
−1/2
0 α3/2ν

−1/2
500 B−1

8 s, (27)

where ν500 = ν/500 Hz is the scaled spin frequency of the star
(ν = 	/2π).
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If we want to consider the relevance of the proposed mechanism
for various astrophysical scenarios, then we need to provide an esti-
mate for λ0. This will require a more detailed numerical calculation
for realistic superfluid parameters, etc. However, we can use previ-
ous mode calculations to get an idea of the likely range of values
for this parameter. Extracting an averaged value from the r-mode
study by Haskell et al. (2009, assuming their pinning limit), we find
that λ0 ought to lie in the range

〈λ0〉 ≈ 0.1−1 (28)

both for strong and weak superfluidity models. This result is obvi-
ously not very precise, but it will allow us to assess whether the new
damping mechanism is strong enough to warrant a more detailed
investigation.

In considering possible astrophysical scenarios, it is important
to appreciate that the features of the new mechanism are rather
different from the standard mutual friction. Most importantly, the
dissipation due to flux tube cutting is a non-linear process that
saturates but does not completely suppress an unstable mode. This
mutual friction mechanism does not operate as soon as w is driven
down to wpin when vortices can repin to the flux tubes. Hence,
one would expect an unstable mode to evolve in such a way that
its amplitude saturates around this level.1 This provides a rough
estimate of the r-mode amplitude of such systems:

w ≈ wpin → αpin ≈ 10−6

(
λ0

0.1

)−1

ν−3
500B

1/2
8 . (29)

We can use this threshold amplitude to rewrite the mutual friction
time-scale (equation 27) in a more transparent form:

τmf ≈ 190

(
λ0

0.1

)−2 (
α

αpin

)3/2

ν−5
500B

−1/4
8 s. (30)

This time-scale is (at least) about an order of magnitude shorter
than the mode’s growth time-scale, assuming an n = 1 polytropic
star (Andersson & Kokkotas 2001). It is therefore likely that the
scenario outlined above works: once the mode amplitude exceeds
αpin, the unpinned vortex array is driven through the flux tubes
and the ensuing friction quickly damps out the mode, effectively
suppressing it back to αpin.

5 A STRO PHYSICS: APPLICATION
TO ACCRETING SYSTEMS

An obvious astrophysical setting where the flux tube cutting sce-
nario may apply is in fast spinning accreting neutron stars in
LMXBs. From previous considerations of the r-mode instability
in this context (Brown & Ushomirsky 2000), we know that the
mode amplitude required to achieve torque balance is

αacc ≈ 1.3 × 10−7

(
Lacc

1035 erg s−1

)1/2

ν
−7/2
500 . (31)

1 In reality, the damping mechanism will only operate during a fraction of
the oscillation, corresponding to an instantaneous amplitude |w(t)| > wpin.
In principle, this effect would result in a weakened dissipation and a lower
time-averaged damping rate. However, the analysis of a one-dimensional
toy model consisting of a clamped vibrating string suggests that, unless the
oscillation amplitude is very close to the dissipation cut-off amplitude, the
time-averaged damping rate is not seriously affected by this effect. We can
therefore ignore it in our analysis.

Balancing the two mechanisms, as would be appropriate if the flux
tube cutting allows the r mode to grow to the precise amplitude
required to prevent further spin-up in an accreting system, we have

αpin

αacc
≈ 8

(
λ0

0.1

)−1

B
1/2
8

(
Lacc

1035 erg s−1

)−1/2

ν
1/2
500 . (32)

In order for the new mechanism to play a role in explaining the
observed population, one would expect to have αpin/αacc ≈ 1 for
the fastest spinning systems.

As an example, let us consider 4U 1608+522 which spins
at 620 Hz and for which the averaged accretion luminosity is
5 × 1036 erg s−1. If the range we have suggested for λ0 is reli-
able, then we find that the proposed scenario would work provided
the interior magnetic field in this system is

B ≈ (0.9 − 3) × 108 G. (33)

This is in the range of the expected surface fields for these mature
systems. Moreover, it is natural to assume that the interior field
(which may initially be much stronger than the externally visible
field) of an old neutron star would be of the same order of magnitude
as that in the exterior. The main point here is that our rough estimates
lead to a result that appears consistent with both observations and
our understanding of these systems. This makes it plausible that
the new mechanism does, indeed, have a role to play in the r-mode
scenario. At the very least, it warrants a more detailed investigation.

It is also worth noting an alternative strategy. We could take λ0

as a ‘free parameter’, which would make sense given our general
ignorance of the conditions in the outer core of a neutron star.
This parameter could then be constrained by observations relat-
ing to the magnetic field of fast spinning accreting neutron stars.
As an example of this strategy, let us consider the data for IGR
J00291+5934 (taking the observational constraints from Patruno
2010). In this case, we have a spin frequency of 600 Hz, a lumi-
nosity of 6 × 1036 erg s−1 and a suggested external field of B ≈
2 × 108 G from the spin-down rate in quiescence. From equation
(32), we find that the accretion torque could be balanced by the flux
tube cutting mechanism as long as

λ0 ≈ 0.16 (34)

comfortably inside the range suggested by the mode calculations.
Again, this example suggests that the new mechanism should be
relevant.

Finally, it is interesting to compare the mode amplitude αpin (es-
sentially the saturation amplitude associated with flux tube cutting)
against previous results on r-mode saturation due to non-linear cou-
plings with other inertial modes. In general, different saturation
mechanisms would be competing with each other, and the one lead-
ing to the smallest mode amplitude would be physically the most
relevant.

The first incarnation of r-mode saturation by non-linear mode-
couplings is the model of Arras et al. (2003); that work predicts a
maximum r-mode amplitude as

αA ≈ 1.4 × 10−3ν
5/2
500 . (35)

This result has been refined by the more recent calculations of
Bondarescu et al. (2007, 2009), resulting in a saturation amplitude
αsat ≈ 0.1αA [for simplicity, we retain the spin dependence of
equation (35) but we note that the behaviour of the Bondarescu
et al. (2007, 2009) saturation amplitude shows a rather complicated
behaviour as a function of time].
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Comparing this more recent mode-coupling saturation amplitude
with our αpin, we obtain

αpin

αsat
≈ 10−2

(
λ0

0.1

)−1

B
1/2
8 ν

−11/2
500 . (36)

This suggests that the flux tube cutting mechanism is competitive
as an r-mode saturation mechanism, being at least as efficient as
mode-coupling. This result supports our earlier claim that a more
detailed investigation of the physics of flux tube–vortex interaction
as a source of friction for the r-mode instability is needed.

6 C O N C L U D I N G D I S C U S S I O N

To summarize our results, we have formulated a new type of vortex
mutual friction force, based on the dissipative cutting of flux tubes
by fast moving vortices, and have studied its impact on the r-mode
instability in superfluid neutron stars. The non-linear dependence
of this force with respect to the relative vortex–flux tube velocity
leads to a rapid damping of the r mode above a threshold amplitude
at which the vortex array is forced to unpin from the flux tubes. Ef-
fectively, this flux tube cutting friction provides a natural saturation
mechanism for the r-mode instability.

We have highlighted the fact that our results may have important
implications for the physics of accreting neutron stars in LMXBs.
We have shown that the saturation amplitude due to flux tube cutting
(represented by αpin, see equation 29) could be smaller than the
maximum amplitude set by non-linear couplings between the r mode
and other inertial modes. Remarkably, this same amplitude could
also be comparable to that required for balancing the accretion spin-
up torque. In practice, this means that the saturation amplitude we
calculate is such that it may allow for gravitational wave emission
to be setting the spin equilibrium period for some systems (thus
making them potential candidates for gravitational wave detection).
However, our amplitude may also be small enough to never allow
the mode to grow to the point where gravitational wave emission
would influence the spin evolution (or, indeed, thermal evolution) of
the system. This would allow a system to ‘live’ inside the standard
r-mode instability window, without the need of additional damping
mechanisms to explain the observations of Haskell et al. (2012)
and Mahmoodifar & Strohmayer (2013). Our qualitative analysis
thus shows that the saturation amplitude due to flux tube cutting is
clearly in a very interesting range that can have diverse astrophysical
consequences.

A more sophisticated treatment of the problem is of course nec-
essary to accurately predict the relative strength of gravitational
wave, accretion and electromagnetic spin-down torques. This is of
key importance for gravitational wave detection, given that recent
analysis have shown that the dynamics of many sources is probably
dictated by electromagnetic and accretion torques, with only a few
systems likely to be interesting targets for next-generation gravita-
tional wave detectors (Haskell & Patruno 2011; Patruno, Haskell &
D’Angelo 2012; Mahmoodifar & Strohmayer 2013).

There are aspects of the flux tube-cutting friction that have not
been discussed in any detail here. For instance, an important issue is
the fact that, as any other frictional force, the mechanism discussed
here should provide an additional source of heating in the stellar
interior. However, calculating the rate of heating is a difficult task
because the quasi-stationary state of the system is likely to be that
of pinning. This ‘pinning regime’ may not actually translate to
physically immobilized vortices. The system’s finite temperature
may drive vortex creep with u ∼ wpin. Unfortunately, in this velocity
regime, our analysis breaks down, making it impossible to make

any prediction about dissipation and heating. We can, nevertheless,
obtain an upper limit for the heating rate by using the mode damping
rate of the cutting regime. By then balancing the energy dissipation
rate in equation (14) with the energy carried away by neutrino
emission due to Cooper paring, Ėcp = 1.5 × 1031T 8

8 erg s−1, with
T8 the temperature in units of 108 K, we obtain core temperatures of
the order of 108 K. This temperature is consistent with the observed
surface temperatures of LMXBs, especially for the faster systems
which are also likely to be the most interesting for gravitational
wave emission (Haskell et al. 2012; Mahmoodifar & Strohmayer
2013).

A more detailed understanding of vortex–flux tube interactions
over the entire range of the expected velocities would represent
a key advance in this area, relevant for many aspects of neutron
star dynamics. The mechanism we have discussed may not only
be crucial for our understanding of the non-linear development
of the r-mode instability, it could also impact on models of pul-
sar glitches (Link 2012; Haskell, Pizzochero & Seveso 2013) and
the combined magnetorotational evolution of neutron stars (Rud-
erman et al. 1998; Glampedakis & Andersson 2011; Glampedakis,
Andersson & Samuelsson 2011). To make further progress, we need
to sharpen our computational tools and develop models that account
for the mesoscopic vortex–flux tube interactions while, at the same
time, track the macroscopic fluid dynamics. This is a challenging
problem but the estimates we have presented provide clear motiva-
tion for future efforts.
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80, 1455

Alford M. A., Mahmoodifar S., Schwenzer K., 2012, Phys. Rev. D. 85,
044051

Alpar M. A., Langer S. A., Sauls J. A., 1988, ApJ, 282, 533
Andersson N., 1998, ApJ, 502, 714
Andersson N., Kokkotas K., 2001, Int. J. Mod. Phys. D, 10, 381
Andersson N., Sidery T., Comer G. L., 2006, MNRAS, 368, 162
Andersson N., Glampedakis K., Haskell B., 2009, Phys. Rev. D, 79, 103009
Andersson N., Haskell B., Comer G. L., 2010, Phys. Rev. D, 82, 023007
Arras P., Flanagan E. E., Morsink S. M., Schenk A. K., Teukolsky S. A.,

Wasserman I., 2003, ApJ, 591, 1129
Bildsten L., Ushomirsky G., 2000, ApJ, 529, L33
Bondarescu R., Teukolsky S. A., Wasserman I., 2007, Phys. Rev. D, 76,

064019
Bondarescu R., Teukolsky S. A., Wasserman I., 2009, Phys. Rev. D, 79,

104003
Brown E. F., Ushomirsky G., 2000, ApJ, 536, 915
Chakrabarty D., Morgan E. H., Muno M. P., Galloway D. K., Wijnands R.,

van der Klis M., Markwardt C. B., 2003, Nature, 424, 42
Colaiuda A., Kokkotas K. D., 2012, MNRAS, 423, 811
Epstein R. I., Baym G., 1992, ApJ, 387, 276
Friedman J. L., Morsink S. M., 1998, ApJ, 502, 714
Gabler M., Cerda-Duran P., Font J. A., Müller E., Stergioulas N., 2013,

MNRAS, 430, 1811
Glampedakis K., Andersson N., 2006, MNRAS 371, 1311

MNRAS 441, 1662–1668 (2014)
Downloaded from https://academic.oup.com/mnras/article-abstract/441/2/1662/1060802
by Nicolaus Copernicus Astronomical Center user
on 05 January 2018



1668 B. Haskell, K. Glampedakis and N. Andersson

Glampedakis K., Andersson N., 2011, ApJ, 740, L35
Glampedakis K., Andersson N., Samuelsson L., 2011, MNRAS, 410, 805
Gusakov M. E., Chugunov A. I., Kantor E. M., 2014, Phys. Rev. Lett., 112,

151101
Hall H. E., Vinen W. F., 1956, Proc. R. Soc. A, 238, 215
Haskell B., Andersson N., 2010, MNRAS, 408, 1897
Haskell B., Patruno A., 2011, ApJ, 738, L14
Haskell B., Andersson N., Passamonti A., 2009, MNRAS, 397, 1464
Haskell B., Degenaar N., Ho W. C. G., 2012, MNRAS, 424, 93
Haskell B., Pizzochero P. M., Seveso S., 2013, ApJ, 764, L25
Ho W. C. G., Andersson N., Haskell B., 2011, Phys. Rev. Lett., 107, 101101
Lee U., Yoshida S., 2003, ApJ, 586, 403
Lindblom L., Mendell G., 1995, ApJ, 444, 804
Link B., 2003, Phys. Rev. Lett., 91, 101101
Link B., 2012, preprint (arXiv:1211.2209)
Mahmoodifar S., Strohmayer T., 2013, ApJ, 773, 140
Nayyar M., Owen B. J., 2006, Phys. Rev. D, 73, 084001

Owen B. J., Lindblom L., Cutler C., Schutz B. F., Vecchio A., Andersson
N., 1998, Phys. Rev. D, 58, 084020

Page D., Prakash M., Lattimer J. M., Steiner A. W., 2011, Phys. Rev. Lett.,
106, 081101

Passamonti A., Haskell B., Andersson N., 2009, MNRAS, 396, 951
Patruno A., 2010, ApJ, 722, 909
Patruno A., Haskell B., D’Angelo C., 2012, ApJ, 746, 9
Piro A., 2005, ApJ, 634, L153
Rezzolla L., Lamb F. K., Shapiro S. L., 2000, ApJ, 531, L139
Ruderman M., Zhu T., Chen K., 1998, ApJ, 492, 267
Samuelsson L., Andersson N., 2007, MNRAS, 374, 256
Shternin P. S., Yakovlev D. G., Heinke C. O., Ho W. C. G., Patnaude D. J.,

2011, MNRAS, 412, L108
Strohmayer T. E., Watts A. L., 2005, ApJ, 632, L111

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 441, 1662–1668 (2014)
Downloaded from https://academic.oup.com/mnras/article-abstract/441/2/1662/1060802
by Nicolaus Copernicus Astronomical Center user
on 05 January 2018

http://arxiv.org/abs/1211.2209

