
Chapter 4

Covariant derivatives.

4.1 Di�erentiation of tensors.

Let us 
al
ulate the derivative of a 
ontravariant ve
tor �eld v

�

after it had been trans-

formed from the fxg-
oordinates to the fx

0

g-
oordinates. We have
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This is not a tensor, in 
onsequen
e of the term x

�

0

;

��

x

�

;

�

0

v

�

. An analogous result would

be obtained for most other tensors. The derivative of an arbitrary tensor �eld transforms

like a tensor only under linear transformations, for whi
h x

�

0

;

��

= 0. There are only a few

spe
ial 
ases in whi
h the derivatives of tensor �elds are themselves tensors with respe
t to

arbitrary 
oordinate transformations. One example we already know { it is the derivative

of a s
alar �eld, whi
h is a 
ovariant ve
tor. The three other examples are:

1. The derivatives of the Levi-Civita symbols and of all the Krone
ker deltas are

identi
ally equal to zero.

2. If T

�

1

:::�

k

is a tensor (of weight 0), then T

[�

1

:::�

k

;�

k+1

℄

is a tensor, too. This quantity

is a generalisation of the rotation of a ve
tor �eld.

3. If T

�

1

:::�

k

is a tensor density of weight �1, and is 
ompletely antisymmetri
 in all

the indi
es, then T

�

1

:::�

k

;

�

k

is also a tensor density of weight �1. This is a generalisation

of the divergen
e of a ve
tor �eld.

The �rst example is trivial, while the se
ond one is easy to verify (hint: we 
onsider

only fun
tions of 
lass C

2

, for whi
h se
ond derivatives 
ommute). We will verify the third

example be
ause it provides an appli
ation of multidimensional deltas in a 
al
ulation.

By assumption, when the 
oordinates are transformed from fxg to fx

0

g, T

�

1

:::�

k

trans-

forms as follows
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: (4.2)

Let us di�erentiate this by x

�

0

k

and 
ontra
t the result by �

0

k

:
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We leave the �rst term un
hanged. In the se
ond term, ea
h 
omponent of the sum 
ontains
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. This expression is symmetri
 in (�

i

; �

k

) and is 
ontra
ted with

respe
t to both (�

i

; �

k

) with T

�

1

:::�

k

, whi
h is antisymmetri
 in these same two indi
es.

Su
h a 
ontra
tion is always identi
ally zero, hen
e the se
ond term is zero.

In the third term, we note that x

�

0
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;

�

k

is an element of the inverse matrix to [x

�

;

�

0

℄.

Consequently, x

�
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is equal to the 
ofa
tor of the element transposed to

�
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k

�

k

�

in the

matrix [x
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℄, divided by the determinant of [x
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, so its 
ofa
tor is, by (3.36)
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. Hen
e we have
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The di�erentiation of x

�
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;

�
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i

by x

�

0
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will give zero 
ontributions be
ause x
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k

, are sym-

metri
 in (�
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) and will be 
ontra
ted with the delta whi
h is antisymmetri
 in the same

indi
es. The only nonzero 
ontribution will be from the derivative of the determinant, so
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The last line above is just
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. Using this in the third term of (4.3) we obtain
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We see that terms I and III 
an
el out. The �nal result in (4.3) is thus the last term. Using

x

�

0

k

;

�

k

x

�

;

�

0

k

= x

�

;

�

k

= Æ

�

�

k

, it be
omes

T

�

0

1

:::�

0

k

;

�

0

k

=

�(x)

�(x

0

)

x

�

0

1

;

�

1

: : : x

�

0

k�1

;

�

k�1

T

�

1

:::�

k

;

�

k

: (4.7)



4.2. AXIOMS OF THE COVARIANT DERIVATIVE. 37

Hen
e, T

�

1

:::�

k

;

�

k

is a tensor density of weight �1.

Note that the statement proved above is also 
orre
t for the 
ase when T

�

has just one

index and is a 
ontravariant ve
tor density. In that 
ase, terms I and III still 
an
el ea
h

other while term II in (4.3) simply does not exist.

The fa
t that derivatives of tensor �elds are not tensor �elds is unfortunate be
ause

laws of physi
s are usually formulated as di�erential equations. Hen
e, those equations

are not tensorial; they will 
hange when 
oordinates are transformed. But we would like

the laws of physi
s to have the form (a tensor) = 0, sin
e su
h an equation would hold in

all the 
oordinate systems. This suggests the following idea: let us de�ne a \generalised

di�erentiation", whi
h will yield tensor �elds when a
ting on tensor �elds, and will 
oin
ide

with ordinary di�erentiation when a
ting on s
alars and the Krone
ker deltas, for whi
h

the partial derivative does not destroy the tensor property. Then, we will repla
e the

partial derivatives with the generalised derivatives in the laws of physi
s. We guess that

this generalised di�erentiation, 
alled 
ovariant di�erentiation, will redu
e to ordinary

di�erentiation in 
ertain privileged 
oordinate systems.

4.2 Axioms of the 
ovariant derivative.

We want the 
ovariant di�erentiation to have all the algebrai
 properties of an ordinary

di�erentiation, but in addition we want it to yield tensor densities when a
ting on tensor

densities. We will denote the 
ovariant derivative by r

�

or

j�

or D=�x

�

. The symbols

T

i

[w; k; l℄ will denote tensor densities whose indi
es we do not need to write out expli
itly.

Spe
i�
ally, we want the r

�

to have the following properties:

1. To be distributive with respe
t to addition:
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1

[w; k; l℄) : (4.8)

2. To obey the Leibniz rule when a
ting on a tensor produ
t:
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3. To redu
e to the partial derivative when a
ting on a s
alar:

r

�

� = �;

�

: (4.10)

4. To yield zero when a
ting on the Levi-Civita symbols and Krone
ker deltas:
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The last equation implies at on
e that
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for any k. It also implies that r

�


ommutes with 
ontra
tion.

5. When a
ting on a tensor density of type [w; k; l℄, it produ
es a tensor density of type

[w; k; l + 1℄, thus

r

�

(T

1

[w; k; l℄) = T

2

[w; k; l + 1℄:

Only the last property is di�erent for the 
ovariant and for the partial derivative.

From these requirements we will now derive an operational formula for the 
ovariant

derivative.

4.3 A �eld of ve
tor bases on a manifold and s
alar


omponents of tensors.

In every tangent spa
e to an n-dimensional manifold M

n

we 
an 
hoose a set of n linearly

independent 
ontravariant ve
tors, fe

1

�

; : : : ; e

n

�

g. The indi
es a, b, 
, : : : will label ve
tors

(as opposed to Greek indi
es that label 
oordinate 
omponents of tensors). After su
h a

basis of the tangent spa
e is 
hosen at every x 2M

n

, let us 
onsider the n ve
tor �elds:

x! e

a

�

(x); a = 1; : : : ; n:

The 
olle
tion of quantities fe

a

�

(x)g, � = 1; : : : ; n, a = 1; : : : ; n forms a matrix whose

elements are fun
tions on the manifold. Sin
e all the ve
tors are linearly independent at

every x, the matrix is nonsingular, so there exists an inverse matrix e

a

�

that obeys

e

a

�

e

a

�

= Æ

�

�

: (4.13)

Subsets of the matrix jje

a

�

jj de�ned by a �xed a are then 
ovariant ve
tors that form a

dual basis to fe

a

�

(x)g, a = 1; : : : ; n. One 
an verify that, in virtue of the fe

a

�

(x)g being

linearly independent, eq. (4.13) implies the following:

e
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: (4.14)

It follows that for any tensor �eld (i.e. of weight 0) T
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l
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olle
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�
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labelled by the indi
es a

1

; : : : ; a

k

; b

1

; : : : ; b

l

= 1; : : : ; n is a set of n

k+l

s
alar �elds that

uniquely represents the set of n

k+l


oordinate 
omponents of the tensor �eld T

�

1

:::�

k

�

1

:::�

l

. This

is be
ause, in 
onsequen
e of (4.13) { (4.14), an inverse formula to (4.15) exists that allows

one to 
al
ulate T
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1

:::�

l

when T
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Let us denote

e := det jje

a
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Now, �

�

1

:::�

n

is a tensor density of weight +1, while �

a

1

:::a

n

is a set of s
alars be
ause it

depends on the 
hoi
e of basis in the ve
tor spa
e, and not on the 
oordinate system.

Hen
e, e is a s
alar density of weight +1.

The quantity e, together with the bases fe

a

�

g and fe

a

�

g 
an be used to represent

arbitrary tensor densities by sets of s
alars. Let T

�

1

:::�

k

�

1

:::�

l

now be a tensor density of type

[w; k; l℄; then ea
h element of the set

T

a

1

:::a

k

b

1

:::b

l

:= e

�w

e

a

1

�

1

: : : e

a

k

�

k

e

b

1

�

1

: : : e

b

l

�

l

T

�

1

:::�

k

�

1

:::�

l

(4.18)

is a s
alar. The set T

a

1

:::a

k

b

1

:::b

l

uniquely de�nes T

�

1

:::�

k

�

1

:::�

l

via (4.16) with the fa
tor e

+w

added.

The weight w has to be given as an extra bit of information, sin
e the set of s
alars alone

does not de�ne the weight.

4.4 The aÆne 
onne
tion.

We now de�ne the set of quantities:
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) e

s

�

: (4.19)

The elements of this set are the 
oeÆ
ients of aÆne 
onne
tion.When spe
i�ed expli
itly,

they tell us how the 
ovariant derivative a
ts on the basis ve
tor �elds. Later we will


onsider manifolds in whi
h these 
oeÆ
ients 
an be 
al
ulated from more basi
 obje
ts

(see Chapter 7). For now, we 
onsider manifolds in whi
h the �

�

�


are just given.

Equation (4.19) 
an be rewritten in an equivalent form
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We will verify that the �
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do not depend on the 
hoi
e of basis. Let us assume that
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�

g and fe

a

0

�

g are two di�erent bases. The ve
tors of the se
ond basis 
an then be

de
omposed in the �rst basis

e
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b
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0
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�

; (4.20)

and the elements of the transformation matrix

A

b

a

0
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b

�

e
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�

(4.21)

are s
alar �elds. Hen
e, A

b

a

0

j�

= A

b
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0

;�
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. Then, 
al
ulating the
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0

�

g we have

(�

�

�


)

e

0

= �e

s

0

�

(r




� �




) e

s

0

�

= �A

r

s

0

e

r

�

(r




� �




)

h

�

A

�1

�

s

0

s

e

s

�

i

= �A

r

s

0

�

A

�1

�

s

0

s

e

r

�

(r




� �




) e

s

�

= �Æ

r

s

e

r

�

(r




� �




) e

s

�

= �e

s

�

(r




� �




) e

s

�

= (�

�

�


)

e

: (4.22)

Now let us note that the �

�

�


are not tensor �elds. When 
oordinates are transformed,

these 
oeÆ
ients 
hange as follows
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�
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However, the antisymmetri
 part of �

�

�





�

�


def

= �

�

[�
℄

; (4.24)

is a tensor, 
alled the torsion tensor, sin
e x

�

;

[�

0




0

℄

= 0.

4.5 The expli
it formula for the 
ovariant derivative

of tensor densities.

In order to obtain the expli
it formula for the 
ovariant derivative, we need to know two

other properties of the 
onne
tion 
oeÆ
ients:

(I) �
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= e
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�
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� �




) e

s

�

: (4.25)

The veri�
ation of this is an easy exer
ise.

(II) r

�

(e

w

) = we

w�1

r

�

e: (4.26)

This 
an be veri�ed in the following way. Let us 
onsider the quantity
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�w
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) : (4.27)

Using the postulated properties of the 
ovariant derivative we obtain:
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�
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2
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Every 
ontinuous fun
tion that has the property f (w

1

+ w

2

) = f (w

1

) + f (w

2

) for all real

w

1

and w

2

also has the property f(w) = f(1)w. Hen
e

e

�w

r

�

(e

w

) = we

�1

r

�

e;

whi
h is equivalent to (4.26).

Equation (4.26) holds also for partial derivatives, so

e

�w

(r




� �




) (e

w

) = we

�1

(r




� �




) e: (4.29)

Now, using (3.32) and (3.36), we obtain

(r




� �




) e =

1

(n� 1)!

Æ

a

1

:::a

n

�

1

:::�

n

e

a

1

�

1

: : : e

a

n�1

�

n�1

(r




� �




) e

a

n

�

n

= ee

a

n

�

n

(r




� �




) e

a

n

�

n

= e�

�

�


: (4.30)

At this point, we are prepared to dedu
e the general formula for the 
ovariant derivative

of an arbitrary tensor density. As an introdu
tory exer
ise we do it �rst for 
ontravariant

and 
ovariant ve
tor densities.
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Let us 
onvert a 
ontravariant ve
tor density A

�

of weight w to a set of s
alars by

(4.18). Sin
e A

a

= e

�w

e

a

�

A

�

are s
alars, axiom 3 implies

(r




� �




)A

a

= 0: (4.31)

On the other hand, using now axiom 2 and (4.30), we apply (r




� �




) to the right-hand

side of (4.18) and obtain

(r




� �




)A

a

=

�we

�w

�

�

�


e

a

�

A

�

+ e

�w

[(r




� �




) e

a

�

℄A

�

+ e

�w

e

a

�

(r




� �




)A

�

: (4.32)

Now let us 
onvert this equation ba
k to 
oordinate 
omponents, by 
ontra
ting it with

e

w

e

a

�

(�rst 
hange the summation index �!). Using eqs. (4.19) and (4.25), we get

(r




� �




)A

�

= w�

�

�


A

�

+ �

�

�


A

�

: (4.33)

From here, �nally

r




A

�

= �




A

�

+ w�

�

�


A

�

+ �

�

�


A

�

: (4.34)

By similar 
al
ulations we obtain for a 
ovariant ve
tor density B

�

of weight w:

r




B

�

= �




B

�

+ w�

�

�


B

�

� �

�

�


B

�

; (4.35)

and for tensors of rank 2:

T

��

j


= T

��

;




+�

�

�


T

��

+ �

�

�


T

��

; (4.36)

T

��j


= T

��;


� �

�

�


T

��

� �

�

�


T

��

; (4.37)

T

�

�j


= T

�

�;


+ �

�

�


T

�

�

� �

�

�


T

�

�

: (4.38)

For a general tensor density of weight w, T

�

1

:::�

k

�

1

:::�

l

, still by the same reasoning, we obtain

r




T

�

1

:::�
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1

:::�

l

= �




T

�

1

:::�
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�

1

:::�

l

+ w�

�

�


T

�

1

:::�

k

�

1

:::�

l

+

k

X
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�

�

i

�

i




T

�

1

:::�

i

:::�

k

�

1

:::�

l

�

l

X

j=1

�

�

j

�

j




T

�

1

:::�

k

�

1

:::�

j

:::�

l

; (4.39)

where the sums run through all the positions of the respe
tive indi
es.

Note that, unlike a partial derivative, the 
ovariant derivative does not a
t on single


omponents of tensor densities. It is an operator that a
ts on the whole tensor density and

produ
es another tensor density.

4.6 Exer
ises.

1. What is the 
ondition for the \
ovariant rotation" T

[�j�℄

of a 
ovariant ve
tor �eld T

�

to 
oin
ide with the ordinary rotation T

[�;�℄

?
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2. Let g

��

= g

(��)

be a doubly 
ovariant tensor that is nonsingular, i.e. det jjg

��

jj 6= 0.

Let g

��

be its inverse matrix, i.e.

g

��

g

��

= Æ

�

�

:

Show that the obje
t de�ned as follows

�

�

�


�

=

1

2

g

��

(g

��;


+ g


�;�

� g

�
;�

)

transforms under 
oordinate transformations by the same law as the 
oeÆ
ients of aÆne


onne
tion. What is the torsion in this 
ase?



Chapter 5

Parallel transport and geodesi
 lines.

5.1 Parallel transport.

Let a 
urve C be given in a manifold with aÆne 
onne
tion, and let v be a �eld of ve
tors

de�ned along the 
urve, C 3 x ! v

�

(x). In a Eu
lidean spa
e, in Cartesian 
oordinates,

the ve
tors of the �eld are parallel when

dv

�

d�

=

�v

�

�x

�

dx

�

d�

= 0; (5.1)

where � is a parameter along C, while x

�

(�) are 
oordinates of a point on C. Then, for

any two points on C 
orresponding to the parameter values � = �

1

and � = �

2

we have

v

�

(�

1

) =

�

v

�

(�

2

): (5.2)

(An asterisk below the equality sign means that the equation holds only in some spe
i�



oordinate systems. For example, (5.2) does not hold for parallel ve
tors in polar 
oordi-

nates on a Eu
lidean plane.) We now generalise the de�nition of parallelism along a 
urve

C in su
h a way that it is independent of the 
oordinates used:

Dv

�

d�

def

= (r

�

v

�

)

dx

�

d�

= 0; (5.3)

where dx

�

=d� are 
omponents of the tangent ve
tor to C. Equation (5.3) is at the same

time the de�nition of a 
ovariant derivative along a 
urve. Using (4.34) with w = 0, (5.3)

is equivalent to

v

�

;

�

dx

�

d�

+ �

�

��

v

�

dx

�

d�

= 0: (5.4)

This 
an be written as

dv

�

d�

= ��

�

��

v

�

dx

�

d�

: (5.5)

Thus, the ve
tor v

�

(�

1

), while being parallely transported from the point � = �

1

to the

point � = �

2

along C, 
hanges in the following way

v

�

k

(�

2

) = v

�

(�

1

)�

Z

�

2

�

1

C

�

�

��

(�)v

�

(�)

dx

�

d�

d� = v

�

(�

1

)�

Z

x(�

2

)

x(�

1

)

C

�

�

��

(x)v

�

(x)dx

�

: (5.6)
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The integrand in (5.6) in general is not a perfe
t di�erential, so the result of integration

in general depends on the 
urve C. Con
lusion: the parallel transport so de�ned is not

universal; its result depends on the path of transport. In parti
ular, for parallel transport

along a 
losed 
urve, in general we will have

v

�

k

(�

1

)

def

= v

�

(�

1

)�

I

C

�

�

��

(�)v

�

(�)

dx

�

d�

d� 6= v

�

(�

1

) : (5.7)

The 
onditions under whi
h the result of parallel transport is independent of the path, i.e.

under whi
h the e�e
t (5.7) does not o

ur, will be given in Chap. 6.

Parallel transport of an arbitrary tensor density T

�

1

:::�

k

�

1

:::�

l

is de�ned analogously to (5.3):

D

d�

T

�

1

:::�

k

�

1

:::�

l

= T

�

1

:::�

k

�

1

:::�

l

j�

dx

�

d�

= 0: (5.8)

5.2 Geodesi
 lines.

We 
all a geodesi
 line (brie
y just geodesi
) su
h a 
urve G whose tangent ve
tor,

after being parallely transported along it from a point x (�

0

) 2 G to an arbitrary point

x

�

(�) 2 G, is 
ollinear with the tangent ve
tor that is de�ned at x

�

(�). Hen
e

v

�

k

(�)

�

�

�

0

!�

= �(�)v

�

(�); (5.9)

or, a

ording to (5.6)

v

�

k

(�)

�

�

�

0

!�

= v

�

(�

0

)�

Z

�

�

0

G

�

�

��

(t)�(t)v

�

(t)v

�

(t)dt = �(�)v

�

(�): (5.10)

An example of a geodesi
 is a straight line in a Eu
lidean spa
e. In that 
ase, in

Cartesian 
oordinates, the integral in (5.10) is zero and, if � is the length of ar
, �(�) = 1.

A geodesi
 line is a generalisation of the notion of a straight line to any manifold with

aÆne 
onne
tion.

Let us di�erentiate (5.10) by � . The result is

��

�

��

(�)�(�)v

�

(�)v

�

(�) =

d�

d�

v

�

(�) + �(�)

dv

�

d�

:

This 
an be rewritten as follows

�

�

d

2

x

�

d�

2

+ �

�

��

(�)

dx

�

d�

dx

�

d�

�

= �

d�

d�

dx

�

d�

: (5.11)

Now let us 
hange the parameter as follows

� ! s(�)

def

=

Z

�

�

0




�(t)

dt; (5.12)
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where 
 and �

0

are arbitrary 
onstants. Then, eq. (5.11) be
omes:

d

2

x

�

ds

2

+ �

�

��

(s)

dx

�

ds

dx

�

ds

= 0; (5.13)

or, equivalently

D

ds

�

dx

�

ds

�

= 0: (5.14)

The form (5.13) of the geodesi
 equation is privileged in that, in the parametrisation

(5.12), the tangent ve
tor transported parallely along the geodesi
 is not only 
ollinear

with the lo
ally de�ned tangent ve
tor, but 
oin
ides with it. The parameter s that has

this property exists for any �(�) su
h that �(�) 6= 0 at every � , and it is 
alled the aÆne

parameter. It is de�ned up to the linear transformations

s

0

= as + b; a; b = 
onstant: (5.15)

Equation (5.13) allows us to prove the following theorem:

Theorem 5.1 On a manifold M

n

with an aÆne 
onne
tion, at its every point x and for

every ve
tor v tangent to M

n

at x, there exists a geodesi
 line passing through x that is

tangent to v.

This is so be
ause a solution of a se
ond-order di�erential equation is uniquely determined

by its value at one point and its �rst derivative at that point.

However, it is not the 
ase that on a manifold with aÆne 
onne
tion any two points


an be 
onne
ted by one and only one geodesi
. A geodesi
 joining two points may not

exist, like on a two-sheeted hyperboloid. On the other hand, any two points on the surfa
e

of a 
ylinder (where the geodesi
 lines are straight lines, 
ir
les and s
rew-lines) 
an be


onne
ted by an in�nite number of geodesi
s. (Imagine a s
rew-line that 
onne
ts two

points p and q by the shortest ar
, then another one that runs one extra time around the


ylinder between p and q, then another one that runs two times around the 
ylinder, and

so on.)

Note that only the symmetri
 part of the 
onne
tion gives a nonzero 
ontribution to

the geodesi
 equation.

5.3 Exer
ises.

1. Consider a ve
tor on a Eu
lidean plane being transported parallely along a straight

line. Find how its 
omponents 
hange when they are given in polar 
oordinates.

2. Do the same for a ve
tor in a 3-dimensional Eu
lidean spa
e when its 
omponents

are given in spheri
al 
oordinates. From the result, read out the 
onne
tion 
oeÆ
ients of

the Eu
lidean spa
e in spheri
al 
oordinates.


