Chapter 4

Covariant derivatives.

4.1 Differentiation of tensors.

Let us calculate the derivative of a contravariant vector field v* after it had been trans-
formed from the {z}-coordinates to the {z'}-coordinates. We have

!

v B = (l‘a’,a ’Ua) B = l‘a’,agl v + l‘a’,a ’Ua,g/ = l‘a’,ag LLﬁ,gl v* + LL‘a,,a l‘ﬁ,gl ’Ua,ﬁ . (4.1)

This is not a tensor, in consequence of the term x"",ag 2P .5 v®. An analogous result would
be obtained for most other tensors. The derivative of an arbitrary tensor field transforms
like a tensor only under linear transformations, for which :r”",ag = 0. There are only a few
special cases in which the derivatives of tensor fields are themselves tensors with respect to
arbitrary coordinate transformations. One example we already know — it is the derivative
of a scalar field, which is a covariant vector. The three other examples are:

1. The derivatives of the Levi-Civita symbols and of all the Kronecker deltas are
identically equal to zero.

2. If T}, .., is a tensor (of weight 0), then Tjs, oy a4y,
is a generalisation of the rotation of a vector field.

] is a tensor, too. This quantity

3. If T is a tensor density of weight —1, and is completely antisymmetric in all
the indices, then T+, is also a tensor density of weight —1. This is a generalisation
of the divergence of a vector field.

The first example is trivial, while the second one is easy to verify (hint: we consider
only functions of class C?, for which second derivatives commute). We will verify the third
example because it provides an application of multidimensional deltas in a calculation.

By assumption, when the coordinates are transformed from {x} to {z'}, T~ trans-
forms as follows

T"‘Il"'a;c _

« of Q...
T g, o x% T : (4.2)

Let us differentiate this by % and contract the result by Q.
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Ta'l...agc% _ <g((j,))> . ‘xa;%ak Terak
+g((;7,)) :11 2% 0, fr""i,aia;c -:r"‘;f,a,c oLa
+§((xx’)) % o . .xa;cfl,ak_l :1c"‘;c,aka;c A

We leave the first term unchanged. In the second term, each component of the sum contains
! / ! . . . . . . .
%, 00!, T 0y = T%,004- This expression is symmetric in (o, ) and is contracted with
respect to both («;, o) with 7% which is antisymmetric in these same two indices.

Such a contraction is always identically zero, hence the second term is zero.

In the third term, we note that 2%,,, is an element of the inverse matrix to [z, ].
Consequently, xa%,ak is equal to the cofactor of the element transposed to ("‘?cak) in the
matrix [2%,y ], divided by the determinant of [#*,, ]. The element transposed to (%, ) in
[2%,ar ] 18 2%, , 0 its cofactor is, by (3.36)

1 by by Un—
méazyll"'yn‘llx S T (4.4)
while det [x%,, | = g((f,)). Hence we have

!
ey
k _—
<LL’ Yo ) 704c -

The differentiation of 2", by x% will give zero contributions because T, Are Sym-
metric in (u}, o)) and will be contracted with the delta which is antisymmetric in the same
indices. The only nonzero contribution will be from the derivative of the determinant, so

() = = (5) (560) =

1 o ! ’
kH1Mp 1 148 Vn—1
7(,” — 1)'(504,@,,1,.,,,”71 Tl e s Ty (46)
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The last line above is just (g((f,)) xo‘;c,ak ) Using this in the third term of (4.3) we obtain

0(x)
o(x")
We see that terms I and III cancel out. The final result in (4.3) is thus the last term. Using

/ .
%0y, @710 = P10, = 074, , 1t becomes

o(x) )

«@ «@ Q...
1 k—1
TNy o T — A o

third term = — (

! !
« « Q...
1 k
)7%‘76 sar - X T .

! !
Tal...ak pp—
'

= ) (4.7)
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Hence, T % . is a tensor density of weight —1.

k

Note that the statement proved above is also correct for the case when 7 has just one
index and is a contravariant vector density. In that case, terms I and III still cancel each
other while term II in (4.3) simply does not exist.

The fact that derivatives of tensor fields are not tensor fields is unfortunate because
laws of physics are usually formulated as differential equations. Hence, those equations
are not tensorial; they will change when coordinates are transformed. But we would like
the laws of physics to have the form (a tensor) = 0, since such an equation would hold in
all the coordinate systems. This suggests the following idea: let us define a “generalised
differentiation”, which will yield tensor fields when acting on tensor fields, and will coincide
with ordinary differentiation when acting on scalars and the Kronecker deltas, for which
the partial derivative does not destroy the tensor property. Then, we will replace the
partial derivatives with the generalised derivatives in the laws of physics. We guess that
this generalised differentiation, called covariant differentiation, will reduce to ordinary
differentiation in certain privileged coordinate systems.

4.2 Axioms of the covariant derivative.

We want the covariant differentiation to have all the algebraic properties of an ordinary
differentiation, but in addition we want it to yield tensor densities when acting on tensor
densities. We will denote the covariant derivative by V, or |, or D/0z®. The symbols
T;lw, k, ] will denote tensor densities whose indices we do not need to write out explicitly.

Specifically, we want the V, to have the following properties:
1. To be distributive with respect to addition:

Vo (T1[w, k, 1] + Tolw, k1)) = Vo (T3 [w, k, 1]) + Vo (Ti[w, k,1]) (4.8)

2. To obey the Leibniz rule when acting on a tensor product:

va (Tl [wla kl: ll] X T2 [w27 k?: lZ])
= (V(ITI [U)1, kl) ll]) X TZ[wQJ k?) l2] + (Tl [U)1, kl) ll]) X (VQTZ[wQJ k?) ZQ]) . (49)

3. To reduce to the partial derivative when acting on a scalar:

V®=0,,. (4.10)

4. To yield zero when acting on the Levi-Civita symbols and Kronecker deltas:

Vaeal"'a" _ 0,
Vaeal...an - 07
Va0 = 0. (4.11)

The last equation implies at once that

Vadg gt =0 (4.12)
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for any k. It also implies that V, commutes with contraction.

5. When acting on a tensor density of type [w, k, [], it produces a tensor density of type
[w, k, 1+ 1], thus
Va (Tl[wa ka l]) = TQ[wa k: ! + 1]
Only the last property is different for the covariant and for the partial derivative.

From these requirements we will now derive an operational formula for the covariant
derivative.

4.3 A field of vector bases on a manifold and scalar
components of tensors.

In every tangent space to an n-dimensional manifold M,, we can choose a set of n linearly

independent contravariant vectors, {e;“,...,e,*}. The indices a, b, ¢, ... will label vectors

(as opposed to Greek indices that label coordinate components of tensors). After such a
basis of the tangent space is chosen at every x € M, let us consider the n vector fields:

T — e (), a=1,...,n.

The collection of quantities {e,*(z)}, o = 1,...,n, a = 1,...,n forms a matrix whose
elements are functions on the manifold. Since all the vectors are linearly independent at
every x, the matrix is nonsingular, so there exists an inverse matrix e, that obeys

eqes’ =67, (4.13)

Subsets of the matrix ||e%,|| defined by a fixed a are then covariant vectors that form a
dual basis to {e,*(z)}, a = 1,...,n. One can verify that, in virtue of the {e,%(z)} being
linearly independent, eq. (4.13) implies the following:

6aa6ba == 5ab' (414)

It follows that for any tensor field (i.e. of weight 0) Tgll.::,éo;k7 the collection of quantities

..ayp def
Tyt = ey e e ey TR, (4.15)
labelled by the indices ai,...,ax, b1,...,b0; = 1,...,n is a set of nf*! scalar fields that

uniquely represents the set of n**! coordinate components of the tensor field Tﬂalléj’“ This

is because, in consequence of (4.13) — (4.14), an inverse formula to (4.15) exists that allows

one to calculate T2 when T, % are given:
B1...01 b1...b;

TEtoet = eq,™ .. eq, e g, . e g Ty, (4.16)

Let us denote

1
e :=det [[e,*|] = Eieaynan a

.eg, " (4.17)

605]_...0477, ea]_ n
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Now, €4,..qa, 18 a tensor density of weight 41, while €**%* is a set of scalars because it
depends on the choice of basis in the vector space, and not on the coordinate system.
Hence, e is a scalar density of weight +1.

The quantity e, together with the bases {e,*} and {e%,} can be used to represent
arbitrary tensor densities by sets of scalars. Let Tg‘ll.'.'.;;’“ now be a tensor density of type
[w, k,1]; then each element of the set

ai..a . ,—w, a1 ak 51 Bial...ak
Tyl =e e, e ey ey T (4.18)

is a scalar. The set T,";* uniquely defines T g% via (4.16) with the factor ™ added.
The weight w has to be given as an extra bit of information, since the set of scalars alone
does not define the weight.

4.4 The affine connection.

We now define the set of quantities:
[, = —e,*(V, —0,)e’s. (4.19)

The elements of this set are the coefficients of affine connection.When specified explicitly,
they tell us how the covariant derivative acts on the basis vector fields. Later we will
consider manifolds in which these coefficients can be calculated from more basic objects
(see Chapter 7). For now, we consider manifolds in which the I'*,, are just given.

Equation (4.19) can be rewritten in an equivalent form

V76“5 = 876“/3 — Fag,yeaa.

We will verify that the I'“3, do not depend on the choice of basis. Let us assume that
{e,*} and {ey*} are two different bases. The vectors of the second basis can then be
decomposed in the first basis

€a/a = Abaleba, (420)
and the elements of the transformation matrix

Ay = el en® (4.21)

! /

are scalar fields. Hence, A%y, = A’y and (A7), = (A1), .. Then, calculating the
['*5, in the basis {e,*} we have
(Fa/ﬁv)e' =—ey*(V,—-0,) eS,ﬂ =—A"ye,* (V, —0,) [(Ail)s sesﬂ]
=—A"y (A_I)S,sera (V,=0,))e’s = —6"5e,* (V, = 0,) €'
= =" (Vy=9,)€e’s = (%), - (4.22)

Now let us note that the ['*g, are not tensor fields. When coordinates are transformed,
these coefficients change as follows

!

Fa By = —eso‘ (V,y/ — 87/) esﬂ/ = ;L‘a Yo 1‘6,/3/ 1‘7,7/ Fag,y + l‘a P :cp,g/y . (4.23)
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However, the antisymmetric part of I'*g,,

a def ~q
Q gy = I (B7]> (4-24)

is a tensor, called the torsion tensor, since 27,51 = 0.

4.5 The explicit formula for the covariant derivative
of tensor densities.

In order to obtain the explicit formula for the covariant derivative, we need to know two
other properties of the connection coefficients:

(1) Ty =e’5(Vy—0y)es”. (4.25)
The verification of this is an easy exercise.
(II) Vg (e”) =we" 'V,e. (4.26)
This can be verified in the following way. Let us consider the quantity
Fo(w) :=e""V, (). (4.27)
Using the postulated properties of the covariant derivative we obtain:

F,(wy +wy) =e e 2 [(V,e")e” + et (V,er?)]
= e " (Vae") + 72 (Vae"?) = Fy(wy) + Fy(ws). (4.28)

Every continuous function that has the property f (w; + we) = f (wy) + f (wy) for all real
w; and wy also has the property f(w) = f(1)w. Hence

eV (e¥) = we ' Vae,

which is equivalent to (4.26).

Equation (4.26) holds also for partial derivatives, so
e " (V,—0,) (") =we ' (V,—0,)e. (4.29)

Now, using (3.32) and (3.36), we obtain

1 a a
(Vy,—0,)e = = 1)'5p11.'.'.'pgealpl gy P (V. —0y) eq,
=ee', (V,—0,) e, "™ =el’,,. (4.30)

At this point, we are prepared to deduce the general formula for the covariant derivative
of an arbitrary tensor density. As an introductory exercise we do it first for contravariant
and covariant vector densities.
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Let us convert a contravariant vector density A® of weight w to a set of scalars by
(4.18). Since A* = e "e®, A are scalars, axiom 3 implies

(V. — 0,) A® = 0. (4.31)

On the other hand, using now axiom 2 and (4.30), we apply (V. — 0,) to the right-hand
side of (4.18) and obtain

(Vy—0,) A" =
—we I e’ A+ eV [(V, —0,) e’ A" + e Ve (V, —0,) A% (4.32)

Now let us convert this equation back to coordinate components, by contracting it with
eve,” (first change the summation index «!). Using eqs. (4.19) and (4.25), we get

(V,—0,) A% = wI?, A + T, A" (4.33)
From here, finally

V,AY = 0,A% +wl'’, A% + 1, A”. (4.34)
By similar calculations we obtain for a covariant vector density B, of weight w:

V.B, = 0,B, +wl'*,,B, —I'",,B,, (4.35)
and for tensors of rank 2:

T, =T 41, T + 17, 1T; (4.36)

Taply = Tapy = TP ayTpp — 17y Tap; (4.37)

T%y = T%y + 1% T3 — 175,17, (4.38)

For a general tensor density of weight w, T&,::Ejk, still by the same reasoning, we obtain

k
Q... _ Qal...0% P Qr...0 (e 7] Al ...07...0
=1
l
_ Pj al...«
Z r J/Bj'YTﬁl...pjl.c..ﬁﬂ (4.39)
J=l1

where the sums run through all the positions of the respective indices.

Note that, unlike a partial derivative, the covariant derivative does not act on single
components of tensor densities. It is an operator that acts on the whole tensor density and
produces another tensor density.

4.6 Exercises.

1. What is the condition for the “covariant rotation” T}, g of a covariant vector field T,
to coincide with the ordinary rotation T}, s”
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2. Let gap = g(ap) be a doubly covariant tensor that is nonsingular, i.e. det ||gqs|| # 0.
Let ¢* be its inverse matrix, i.e.

9" Go8 = 0%p-
Show that the object defined as follows

1
(04
{/B’Y} = §9ap (gﬁpﬁ + Gyp, — gﬂ%p)

transforms under coordinate transformations by the same law as the coefficients of affine
connection. What is the torsion in this case?



Chapter 5

Parallel transport and geodesic lines.

5.1 Parallel transport.

Let a curve C' be given in a manifold with affine connection, and let v be a field of vectors
defined along the curve, C' 3 v — v*(z). In a Euclidean space, in Cartesian coordinates,
the vectors of the field are parallel when

dv®  Ov® daf
= = 1
dr  0af dr 0 (5.1)

where 7 is a parameter along C, while (1) are coordinates of a point on C. Then, for
any two points on C' corresponding to the parameter values 7 = 7 and 7 = 75 we have

v*(1) = v (7). (5.2)

(An asterisk below the equality sign means that the equation holds only in some specific
coordinate systems. For example, (5.2) does not hold for parallel vectors in polar coordi-
nates on a Euclidean plane.) We now generalise the definition of parallelism along a curve
C in such a way that it is independent of the coordinates used:

Dv® ger a dz?
e (Vpv?) o =Y (5.3)

where da”/dr are components of the tangent vector to C. Equation (5.3) is at the same
time the definition of a covariant derivative along a curve. Using (4.34) with w = 0, (5.3)

is equivalent to
da? N da?

« 1“ L . 4

Yor ar T et dr ! o4
This can be written as do® A
v h

— T, ° ) 5.5

dr P dr 9

Thus, the vector v® (77), while being parallely transported from the point 7 = 7, to the
point 7 = 75 along C', changes in the following way

2 dz? z(72)
ujf (12) = v (1) —/ Fagp(T)Ua(T)FdT =0 (1) —/( ) [ (x)v” (x)da’. (5.6)
p 1 013 T1
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The integrand in (5.6) in general is not a perfect differential, so the result of integration
in general depends on the curve C. Conclusion: the parallel transport so defined is not
universal; its result depends on the path of transport. In particular, for parallel transport
along a closed curve, in general we will have

v (11) et e (1) — fFaap(T)v”(T)%dT # v (7). (5.7)

C

The conditions under which the result of parallel transport is independent of the path, i.e.
under which the effect (5.7) does not occur, will be given in Chap. 6.

Parallel transport of an arbitrary tensor density 7' 5" is defined analogously to (5.3):

D dx?

Qr..Q 0 ...O

dr BB T ﬂl...ﬁl\pgzo' (5.8)

5.2 Geodesic lines.

We call a geodesic line (briefly just geodesic) such a curve G whose tangent vector,
after being parallely transported along it from a point = (79) € G to an arbitrary point
z*(7) € G, is collinear with the tangent vector that is defined at z®(7). Hence

U‘T(T)‘TOHT = A1)v*(7), (5.9)
or, according to (5.6)
G, =0 ) = [ PO OrOa = A0 610

An example of a geodesic is a straight line in a Euclidean space. In that case, in
Cartesian coordinates, the integral in (5.10) is zero and, if 7 is the length of arc, A\(7) = 1.
A geodesic line is a generalisation of the notion of a straight line to any manifold with
affine connection.

Let us differentiate (5.10) by 7. The result is

d\ do®
T o Pl — =0« i
I, ()N (7)o (1)vP(T) dTU (1) + A(7) o
This can be rewritten as follows
d%z@ dx? da? d) dz®
r« —_ ) = —— ) A1
A ( dr? +o(7) dr dT) dr dr (5.11)

Now let us change the parameter as follows

o s(r) ¥ /OT ﬁdt, (5.12)
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where ¢ and 7y are arbitrary constants. Then, eq. (5.11) becomes:

d?z dx? dz”
@ — =0, 5.13
ds? + o (5) ds ds ( )

D [dz®
= =0. 0.14
ds < ds ) (5.14)

The form (5.13) of the geodesic equation is privileged in that, in the parametrisation
(5.12), the tangent vector transported parallely along the geodesic is not only collinear
with the locally defined tangent vector, but coincides with it. The parameter s that has
this property exists for any A(7) such that A\(7) # 0 at every 7, and it is called the affine
parameter. It is defined up to the linear transformations

or, equivalently

s' =as+ b, a,b = constant. (5.15)

Equation (5.13) allows us to prove the following theorem:

Theorem 5.1 On a manifold M, with an affine connection, at its every point x and for
every vector v tangent to M, at x, there exists a geodesic line passing through x that is
tangent to v.

This is so because a solution of a second-order differential equation is uniquely determined
by its value at one point and its first derivative at that point.

However, it is not the case that on a manifold with affine connection any two points
can be connected by one and only one geodesic. A geodesic joining two points may not
exist, like on a two-sheeted hyperboloid. On the other hand, any two points on the surface
of a cylinder (where the geodesic lines are straight lines, circles and screw-lines) can be
connected by an infinite number of geodesics. (Imagine a screw-line that connects two
points p and ¢ by the shortest arc, then another one that runs one extra time around the
cylinder between p and ¢, then another one that runs two times around the cylinder, and
so on.)

Note that only the symmetric part of the connection gives a nonzero contribution to
the geodesic equation.

5.3 Exercises.

1. Consider a vector on a Euclidean plane being transported parallely along a straight
line. Find how its components change when they are given in polar coordinates.

2. Do the same for a vector in a 3-dimensional Euclidean space when its components
are given in spherical coordinates. From the result, read out the connection coefficients of
the Euclidean space in spherical coordinates.



