
Chapter 4

Covariant derivatives.

4.1 Di�erentiation of tensors.

Let us alulate the derivative of a ontravariant vetor �eld v

�

after it had been trans-

formed from the fxg-oordinates to the fx

0

g-oordinates. We have
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This is not a tensor, in onsequene of the term x

�

0

;

��

x

�

;

�

0

v

�

. An analogous result would

be obtained for most other tensors. The derivative of an arbitrary tensor �eld transforms

like a tensor only under linear transformations, for whih x

�

0

;

��

= 0. There are only a few

speial ases in whih the derivatives of tensor �elds are themselves tensors with respet to

arbitrary oordinate transformations. One example we already know { it is the derivative

of a salar �eld, whih is a ovariant vetor. The three other examples are:

1. The derivatives of the Levi-Civita symbols and of all the Kroneker deltas are

identially equal to zero.

2. If T

�

1

:::�

k

is a tensor (of weight 0), then T

[�
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:::�

k

;�

k+1

℄

is a tensor, too. This quantity

is a generalisation of the rotation of a vetor �eld.

3. If T

�

1

:::�

k

is a tensor density of weight �1, and is ompletely antisymmetri in all

the indies, then T

�

1

:::�

k

;

�

k

is also a tensor density of weight �1. This is a generalisation

of the divergene of a vetor �eld.

The �rst example is trivial, while the seond one is easy to verify (hint: we onsider

only funtions of lass C

2

, for whih seond derivatives ommute). We will verify the third

example beause it provides an appliation of multidimensional deltas in a alulation.

By assumption, when the oordinates are transformed from fxg to fx

0

g, T
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k

trans-

forms as follows
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Let us di�erentiate this by x

�

0

k

and ontrat the result by �

0

k

:
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We leave the �rst term unhanged. In the seond term, eah omponent of the sum ontains
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. This expression is symmetri in (�
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) and is ontrated with

respet to both (�
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, whih is antisymmetri in these same two indies.

Suh a ontration is always identially zero, hene the seond term is zero.

In the third term, we note that x

�
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is an element of the inverse matrix to [x
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℄.
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, so its ofator is, by (3.36)
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while det [x
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. Hene we have
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The di�erentiation of x

�

i

;

�

0

i

by x
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will give zero ontributions beause x
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) and will be ontrated with the delta whih is antisymmetri in the same

indies. The only nonzero ontribution will be from the derivative of the determinant, so
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The last line above is just
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. Using this in the third term of (4.3) we obtain
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We see that terms I and III anel out. The �nal result in (4.3) is thus the last term. Using
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Hene, T

�

1

:::�

k

;

�

k

is a tensor density of weight �1.

Note that the statement proved above is also orret for the ase when T

�

has just one

index and is a ontravariant vetor density. In that ase, terms I and III still anel eah

other while term II in (4.3) simply does not exist.

The fat that derivatives of tensor �elds are not tensor �elds is unfortunate beause

laws of physis are usually formulated as di�erential equations. Hene, those equations

are not tensorial; they will hange when oordinates are transformed. But we would like

the laws of physis to have the form (a tensor) = 0, sine suh an equation would hold in

all the oordinate systems. This suggests the following idea: let us de�ne a \generalised

di�erentiation", whih will yield tensor �elds when ating on tensor �elds, and will oinide

with ordinary di�erentiation when ating on salars and the Kroneker deltas, for whih

the partial derivative does not destroy the tensor property. Then, we will replae the

partial derivatives with the generalised derivatives in the laws of physis. We guess that

this generalised di�erentiation, alled ovariant di�erentiation, will redue to ordinary

di�erentiation in ertain privileged oordinate systems.

4.2 Axioms of the ovariant derivative.

We want the ovariant di�erentiation to have all the algebrai properties of an ordinary

di�erentiation, but in addition we want it to yield tensor densities when ating on tensor

densities. We will denote the ovariant derivative by r

�

or

j�

or D=�x

�

. The symbols

T

i

[w; k; l℄ will denote tensor densities whose indies we do not need to write out expliitly.

Spei�ally, we want the r

�

to have the following properties:

1. To be distributive with respet to addition:
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2. To obey the Leibniz rule when ating on a tensor produt:
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3. To redue to the partial derivative when ating on a salar:

r

�

� = �;

�

: (4.10)

4. To yield zero when ating on the Levi-Civita symbols and Kroneker deltas:
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The last equation implies at one that
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for any k. It also implies that r

�

ommutes with ontration.

5. When ating on a tensor density of type [w; k; l℄, it produes a tensor density of type

[w; k; l + 1℄, thus

r

�

(T

1

[w; k; l℄) = T

2

[w; k; l + 1℄:

Only the last property is di�erent for the ovariant and for the partial derivative.

From these requirements we will now derive an operational formula for the ovariant

derivative.

4.3 A �eld of vetor bases on a manifold and salar

omponents of tensors.

In every tangent spae to an n-dimensional manifold M

n

we an hoose a set of n linearly

independent ontravariant vetors, fe

1

�

; : : : ; e

n

�

g. The indies a, b, , : : : will label vetors

(as opposed to Greek indies that label oordinate omponents of tensors). After suh a

basis of the tangent spae is hosen at every x 2M

n

, let us onsider the n vetor �elds:

x! e

a

�

(x); a = 1; : : : ; n:

The olletion of quantities fe

a

�

(x)g, � = 1; : : : ; n, a = 1; : : : ; n forms a matrix whose

elements are funtions on the manifold. Sine all the vetors are linearly independent at

every x, the matrix is nonsingular, so there exists an inverse matrix e

a

�
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e
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�
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Subsets of the matrix jje

a

�

jj de�ned by a �xed a are then ovariant vetors that form a

dual basis to fe

a

�

(x)g, a = 1; : : : ; n. One an verify that, in virtue of the fe

a

�

(x)g being

linearly independent, eq. (4.13) implies the following:
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It follows that for any tensor �eld (i.e. of weight 0) T
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labelled by the indies a

1

; : : : ; a

k

; b

1

; : : : ; b

l

= 1; : : : ; n is a set of n

k+l

salar �elds that

uniquely represents the set of n

k+l

oordinate omponents of the tensor �eld T
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:::�

k
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l

. This

is beause, in onsequene of (4.13) { (4.14), an inverse formula to (4.15) exists that allows

one to alulate T
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Let us denote

e := det jje
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Now, �

�

1

:::�

n

is a tensor density of weight +1, while �

a

1

:::a

n

is a set of salars beause it

depends on the hoie of basis in the vetor spae, and not on the oordinate system.

Hene, e is a salar density of weight +1.

The quantity e, together with the bases fe

a

�

g and fe
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�

g an be used to represent

arbitrary tensor densities by sets of salars. Let T
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now be a tensor density of type

[w; k; l℄; then eah element of the set
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is a salar. The set T

a

1

:::a

k

b

1

:::b

l

uniquely de�nes T

�

1

:::�

k

�

1

:::�

l

via (4.16) with the fator e

+w

added.

The weight w has to be given as an extra bit of information, sine the set of salars alone

does not de�ne the weight.

4.4 The aÆne onnetion.

We now de�ne the set of quantities:
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: (4.19)

The elements of this set are the oeÆients of aÆne onnetion.When spei�ed expliitly,

they tell us how the ovariant derivative ats on the basis vetor �elds. Later we will

onsider manifolds in whih these oeÆients an be alulated from more basi objets

(see Chapter 7). For now, we onsider manifolds in whih the �

�

�

are just given.

Equation (4.19) an be rewritten in an equivalent form
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We will verify that the �
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and the elements of the transformation matrix

A

b

a

0

= e

b

�

e

a

0

�

(4.21)

are salar �elds. Hene, A
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Now let us note that the �

�

�

are not tensor �elds. When oordinates are transformed,

these oeÆients hange as follows
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However, the antisymmetri part of �

�

�




�
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def

= �

�

[�℄

; (4.24)

is a tensor, alled the torsion tensor, sine x

�

;

[�

0



0

℄

= 0.

4.5 The expliit formula for the ovariant derivative

of tensor densities.

In order to obtain the expliit formula for the ovariant derivative, we need to know two

other properties of the onnetion oeÆients:

(I) �
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= e
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) e

s

�

: (4.25)

The veri�ation of this is an easy exerise.

(II) r

�
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e: (4.26)

This an be veri�ed in the following way. Let us onsider the quantity
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Using the postulated properties of the ovariant derivative we obtain:
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Every ontinuous funtion that has the property f (w

1

+ w

2

) = f (w

1

) + f (w

2

) for all real

w

1

and w

2

also has the property f(w) = f(1)w. Hene
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whih is equivalent to (4.26).

Equation (4.26) holds also for partial derivatives, so
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Now, using (3.32) and (3.36), we obtain
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At this point, we are prepared to dedue the general formula for the ovariant derivative

of an arbitrary tensor density. As an introdutory exerise we do it �rst for ontravariant

and ovariant vetor densities.
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Let us onvert a ontravariant vetor density A

�

of weight w to a set of salars by

(4.18). Sine A

a

= e

�w

e

a

�

A

�

are salars, axiom 3 implies

(r



� �



)A

a

= 0: (4.31)

On the other hand, using now axiom 2 and (4.30), we apply (r



� �



) to the right-hand

side of (4.18) and obtain

(r



� �



)A

a

=

�we

�w

�

�

�

e

a

�

A

�

+ e

�w

[(r



� �



) e

a

�

℄A

�

+ e

�w

e

a

�

(r



� �



)A

�

: (4.32)

Now let us onvert this equation bak to oordinate omponents, by ontrating it with

e

w

e

a

�

(�rst hange the summation index �!). Using eqs. (4.19) and (4.25), we get

(r



� �



)A

�

= w�

�

�

A

�

+ �

�

�

A

�

: (4.33)

From here, �nally

r



A

�

= �



A

�

+ w�

�

�

A

�

+ �

�

�

A

�

: (4.34)

By similar alulations we obtain for a ovariant vetor density B

�

of weight w:

r



B

�

= �



B

�

+ w�

�

�

B

�

� �

�

�

B

�

; (4.35)

and for tensors of rank 2:

T

��

j

= T

��

;



+�

�

�

T

��

+ �

�

�

T

��

; (4.36)

T

��j

= T

��;

� �

�

�

T

��

� �

�

�

T

��

; (4.37)

T

�

�j

= T

�

�;

+ �

�

�

T

�

�

� �

�

�

T

�

�

: (4.38)

For a general tensor density of weight w, T

�

1

:::�

k

�

1

:::�

l

, still by the same reasoning, we obtain

r



T

�

1

:::�

k

�

1

:::�

l

= �



T

�

1

:::�

k

�

1

:::�

l

+ w�

�

�

T

�

1

:::�

k

�

1

:::�

l

+

k

X

i=1

�

�

i

�

i



T

�

1

:::�

i

:::�

k

�

1

:::�

l

�

l

X

j=1

�

�

j

�

j



T

�

1

:::�

k

�

1

:::�

j

:::�

l

; (4.39)

where the sums run through all the positions of the respetive indies.

Note that, unlike a partial derivative, the ovariant derivative does not at on single

omponents of tensor densities. It is an operator that ats on the whole tensor density and

produes another tensor density.

4.6 Exerises.

1. What is the ondition for the \ovariant rotation" T

[�j�℄

of a ovariant vetor �eld T

�

to oinide with the ordinary rotation T

[�;�℄

?
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2. Let g

��

= g

(��)

be a doubly ovariant tensor that is nonsingular, i.e. det jjg

��

jj 6= 0.

Let g

��

be its inverse matrix, i.e.

g

��

g

��

= Æ

�

�

:

Show that the objet de�ned as follows

�

�

�

�

=

1

2

g

��

(g

��;

+ g

�;�

� g

�;�

)

transforms under oordinate transformations by the same law as the oeÆients of aÆne

onnetion. What is the torsion in this ase?



Chapter 5

Parallel transport and geodesi lines.

5.1 Parallel transport.

Let a urve C be given in a manifold with aÆne onnetion, and let v be a �eld of vetors

de�ned along the urve, C 3 x ! v

�

(x). In a Eulidean spae, in Cartesian oordinates,

the vetors of the �eld are parallel when

dv

�

d�

=

�v

�

�x

�

dx

�

d�

= 0; (5.1)

where � is a parameter along C, while x

�

(�) are oordinates of a point on C. Then, for

any two points on C orresponding to the parameter values � = �

1

and � = �

2

we have

v

�

(�

1

) =

�

v

�

(�

2

): (5.2)

(An asterisk below the equality sign means that the equation holds only in some spei�

oordinate systems. For example, (5.2) does not hold for parallel vetors in polar oordi-

nates on a Eulidean plane.) We now generalise the de�nition of parallelism along a urve

C in suh a way that it is independent of the oordinates used:

Dv

�

d�

def

= (r

�

v

�

)

dx

�

d�

= 0; (5.3)

where dx

�

=d� are omponents of the tangent vetor to C. Equation (5.3) is at the same

time the de�nition of a ovariant derivative along a urve. Using (4.34) with w = 0, (5.3)

is equivalent to

v

�

;

�

dx

�

d�

+ �

�

��

v

�

dx

�

d�

= 0: (5.4)

This an be written as

dv

�

d�

= ��

�

��

v

�

dx

�

d�

: (5.5)

Thus, the vetor v

�

(�

1

), while being parallely transported from the point � = �

1

to the

point � = �

2

along C, hanges in the following way

v

�

k

(�

2

) = v

�

(�

1

)�

Z

�

2

�

1

C

�

�

��

(�)v

�

(�)

dx

�

d�

d� = v

�

(�

1

)�

Z

x(�

2

)

x(�

1

)

C

�

�

��

(x)v

�

(x)dx

�

: (5.6)
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The integrand in (5.6) in general is not a perfet di�erential, so the result of integration

in general depends on the urve C. Conlusion: the parallel transport so de�ned is not

universal; its result depends on the path of transport. In partiular, for parallel transport

along a losed urve, in general we will have

v

�

k

(�

1

)

def

= v

�

(�

1

)�

I

C

�

�

��

(�)v

�

(�)

dx

�

d�

d� 6= v

�

(�

1

) : (5.7)

The onditions under whih the result of parallel transport is independent of the path, i.e.

under whih the e�et (5.7) does not our, will be given in Chap. 6.

Parallel transport of an arbitrary tensor density T

�

1

:::�

k

�

1

:::�

l

is de�ned analogously to (5.3):

D

d�

T

�

1

:::�

k

�

1

:::�

l

= T

�

1

:::�

k

�

1

:::�

l

j�

dx

�

d�

= 0: (5.8)

5.2 Geodesi lines.

We all a geodesi line (briey just geodesi) suh a urve G whose tangent vetor,

after being parallely transported along it from a point x (�

0

) 2 G to an arbitrary point

x

�

(�) 2 G, is ollinear with the tangent vetor that is de�ned at x

�

(�). Hene

v

�

k

(�)

�

�

�

0

!�

= �(�)v

�

(�); (5.9)

or, aording to (5.6)

v

�

k

(�)

�

�

�

0

!�

= v

�

(�

0

)�

Z

�

�

0

G

�

�

��

(t)�(t)v

�

(t)v

�

(t)dt = �(�)v

�

(�): (5.10)

An example of a geodesi is a straight line in a Eulidean spae. In that ase, in

Cartesian oordinates, the integral in (5.10) is zero and, if � is the length of ar, �(�) = 1.

A geodesi line is a generalisation of the notion of a straight line to any manifold with

aÆne onnetion.

Let us di�erentiate (5.10) by � . The result is

��

�

��

(�)�(�)v

�

(�)v

�

(�) =

d�

d�

v

�

(�) + �(�)

dv

�

d�

:

This an be rewritten as follows

�

�

d

2

x

�

d�

2

+ �

�

��

(�)

dx

�

d�

dx

�

d�

�

= �

d�

d�

dx

�

d�

: (5.11)

Now let us hange the parameter as follows

� ! s(�)

def

=

Z

�

�

0



�(t)

dt; (5.12)
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where  and �

0

are arbitrary onstants. Then, eq. (5.11) beomes:

d

2

x

�

ds

2

+ �

�

��

(s)

dx

�

ds

dx

�

ds

= 0; (5.13)

or, equivalently

D

ds

�

dx

�

ds

�

= 0: (5.14)

The form (5.13) of the geodesi equation is privileged in that, in the parametrisation

(5.12), the tangent vetor transported parallely along the geodesi is not only ollinear

with the loally de�ned tangent vetor, but oinides with it. The parameter s that has

this property exists for any �(�) suh that �(�) 6= 0 at every � , and it is alled the aÆne

parameter. It is de�ned up to the linear transformations

s

0

= as + b; a; b = onstant: (5.15)

Equation (5.13) allows us to prove the following theorem:

Theorem 5.1 On a manifold M

n

with an aÆne onnetion, at its every point x and for

every vetor v tangent to M

n

at x, there exists a geodesi line passing through x that is

tangent to v.

This is so beause a solution of a seond-order di�erential equation is uniquely determined

by its value at one point and its �rst derivative at that point.

However, it is not the ase that on a manifold with aÆne onnetion any two points

an be onneted by one and only one geodesi. A geodesi joining two points may not

exist, like on a two-sheeted hyperboloid. On the other hand, any two points on the surfae

of a ylinder (where the geodesi lines are straight lines, irles and srew-lines) an be

onneted by an in�nite number of geodesis. (Imagine a srew-line that onnets two

points p and q by the shortest ar, then another one that runs one extra time around the

ylinder between p and q, then another one that runs two times around the ylinder, and

so on.)

Note that only the symmetri part of the onnetion gives a nonzero ontribution to

the geodesi equation.

5.3 Exerises.

1. Consider a vetor on a Eulidean plane being transported parallely along a straight

line. Find how its omponents hange when they are given in polar oordinates.

2. Do the same for a vetor in a 3-dimensional Eulidean spae when its omponents

are given in spherial oordinates. From the result, read out the onnetion oeÆients of

the Eulidean spae in spherial oordinates.


